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Abstract Let Fn denote the distribution function of the normalized sum Zn =
(X1+· · ·+ Xn)/(σ

√
n) of i.i.d. random variables with finite fourth absolute moment.

In this paper, polynomial rates of convergence of Fn to the normal law with respect to
the Kolmogorov distance, as well as polynomial approximations of Fn by the Edge-
worth corrections (modulo logarithmically growing factors in n), are given in terms
of the characteristic function of X1. Particular cases of the problem are discussed in
connection with Diophantine approximations.
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1 Introduction

Let X, X1, X2, . . . be independent, identically distributed random variables withmean
zero, variance σ 2 (σ > 0) and finite 3-rd absolute moment β3 = E |X |3. Denote by
F(x) = P{X ≤ x} the distribution function and by f (t) = E eit X the characteristic
function of X .
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The Berry–Esseen theorem provides a standard rate of approximation of the distri-
bution functions Fn(x) = P{Zn ≤ x} of the normalized sums

Zn = X1 + · · · + Xn

σ
√
n

by the standard normal distribution function �(x) with density ϕ(x) = 1√
2π

e−x2/2

(x ∈ R). Namely, up to a numerical constant c, we have

sup
x

|Fn(x) − �(x)| ≤ c
β3

σ 3
√
n
.

In general, higher-ordermoment assumptions do not improve this rate, as can been seen
on the example of lattice distributions F . Nevertheless, under the Cramér condition

lim sup
t→∞

| f (t)| < 1, (1.1)

it is possible to slightly correct the limit law (by allowing dependence in n), so as to
improve the rate of approximation. In particular, consider an Edgeworth correction of
the 3-rd order

�3(x) = �(x) − α3

6σ 3
√
n

(x2 − 1) ϕ(x), α3 = EX3, (1.2)

which also depends on n, except for the case α3 = 0 (when�3 = �). It is well known
that if the 4-th absolute moment β4 = EX4 is finite, the uniform deviations

�n = sup
x

|Fn(x) − �3(x)|

are at most of order 1/n. Moreover, with higher-order moment assumptions, the cor-
responding higher-order Edgeworth corrections (called also Edgeworth expansions)
provide an error of approximation decaying as powers of 1/

√
n, cf. e.g., [2,12].

Without Cramér condition (1.1), the problem of possible rates is rather delicate, as
the order of magnitude of�n depends on arithmetical properties of the point spectrum
of Fn . This was already emphasized by Esseen, who established the following general
result (cf. [8], pp. 49–53): If X has a non-lattice distribution (equivalently, | f (t)| < 1
for all t > 0), and if the 3-rd absolute moment of X is finite, then

�n = o
( 1√

n

)
as n → ∞. (1.3)

It seems that not much has been said in the literature in addition to this theorem (see,
however, a cycle of papers [7]). The aim of these notes is to refine (1.3) by connecting
possible polynomial rates for �n with behavior of the characteristic function f (t) at
infinity. Let us stress that, although the lack of the Cramér property forces F not to
have an absolutely continuous component, the class of probability distributions with
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lim supt→∞ | f (t)| = 1 is extremely rich and interesting (including discrete and many
purely singular continuous probability measures).

For simplicity, we focus on intermediate rates between 1√
n
and 1

n for �n . Let us

state the relationship, by using the notation Õ(t p) for the growth rate O(t p (log t)q)
with some q ∈ R, and similarly Õ(n−p) for O(n−p (log n)q).

Theorem 1.1 Suppose that β4 < ∞. Given p ≥ 2, the following two properties are
equivalent:

1

1 − | f (t)| = Õ(t p ) as t → ∞; (1.4)

�n = Õ
(
n− 1

2− 1
p
)

as n → ∞. (1.5)

Amore precise formulation reflecting appearance of the logarithmic factors in Õ in
(1.4–1.5) will be given in Sects. 3 and 5. As for the restriction p ≥ 2, it may actually
be relaxed to p > 0 under higher moment assumptions by adding to �3 other terms
in the corresponding Edgeworth expansions.

Let us illustrate Theorem1.1 in a simple discrete situation.As is standard,we denote
by ‖x‖ the distance from a real number x to the closest integer. Given an irrational
real number α, define the quantity

η(α) = sup
{
η > 0 : lim inf

n→∞ nη‖nα‖ = 0
}

= inf
{
η > 0 : inf

n≥1
nη‖nα‖ > 0

}
.

One says that α is of type η = η(α) and calls 1 + η an irrationality exponent of α.
Equivalently, the value of η is an optimal one, for which the Diophantine inequality

∣∣∣α − p

q

∣∣∣ <
1

q1+η−ε

has infinitely many rational solutions p
q with any fixed ε > 0 (cf. e.g., [1,11]). Thus,

this quantity provides an important information on how well the number α may be
approximated by rationals. By Dirichlet’s theorem, necessarily η ≥ 1, and actually
the possible values of η fill the half-axis [1,∞] including the case η = ∞ (which
describes the class of Liouville’s numbers).

Applying Theorem 1.1 with p = 2η, one may derive the next characterization.

Corollary 1.2 Given an irrational number α, suppose that the random variable X
takes the values ±1 and ±α each with probability 1/4. Then α is of finite type η, if
and only if, for any ε > 0,

sup
x

|Fn(x) − �(x)| = O
(
n− 1

2− 1
2η +ε

)
as n → ∞. (1.6)
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A similar description continuous to hold when X takes the values±1±α. In this case,
one may write X = X ′ + αX ′′ in the sense of laws, where X ′ and X ′′ are independent
random variables with a symmetric Bernoulli distribution on {−1, 1}. While for X ′
and αX ′′ separately, the corresponding deviations �n are of order 1/

√
n, we see that

the convolution structure in the underlying distribution F may essentially improve the
rate.

For example, by Roth’s theorem (cf. [6,14,15]), we have η = 1 for any irrational
algebraic α, and then (1.6) becomes �n = O(n−1+ε). If α is a quadratic irrationality,
or more generally, a badly approximable number, one may sharpen the rate to �n =
O( 1n

√
log n ). Although in these examples, such αs form a set of (Lebesgue) measure

zero, a slightly worse rate

�n = O
(1
n

(log n)
3
2+ε

)

can be derived for almost all values of α on the line (see Sect. 7 for details).
It is interesting to compare relation (1.6) with a statement about an asymptotic

behavior of “empirical” measures

F̃n = 1

n

n∑
k=1

δ{kα},

where {x} stands for the fractional part and δx denotes a pointmass at a given point (one
may similarly consider the sequence ‖kα‖ and use the identity ‖x‖ = min{{x}, 1 −
{x}}). By Weyl’s criterion, F̃n are weakly convergent to the uniform distribution on
(0, 1), as long as α is irrational. Results by Hecke, Ostrowski and Behnke in 1920s
quantify this convergence: For any ε > 0, with some positive c0 = c0(α, ε) and
c1 = c1(α, ε), we have

c0 n
− 1

η
−ε ≤ sup

0<x<1

∣∣F̃n(x) − x
∣∣ ≤ c1 n

− 1
η
+ε

, (1.7)

where η = η(α) [11]. Although there is some difference between (1.6) and (1.7), the
two rates turn out to be in essence the same in the critical case η = 1. Let us also
mention that, for quadratic irrationalities α, an asymptotic behavior of F̃n has been
comprehensively studied in the recent times by Beck [3].

The paper is organized as follows. In Sect. 2 we remind a basic Berry–Esseen-type
bound for the distributions Fn which is applicable to reach the rate of approximation
of Fn by �3 potentially up to order 1/n. Here we also explain the sufficiency part in
Theorem 1.1. In Sects. 3 and 4 we discuss non-uniform bounds on |Fn(x) − �3(x)|
together with bounds on the difference between the Fourier–Stieltjes transforms of
Fn and �3. The necessity part in Theorem 1.1 is considered separately in Sect. 5.
Section 6 deals with Diophantine inequalities, where Corollary 1.2 is derived, actually
in a somewhat more general and precise form. Applications of this corollary are
clarified in Sect. 7.
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2 Berry–Esseen Inequality: Sufficiency Part in Theorem 1.1

The derivation of uniform estimates on the difference between distribution functions,
say F and G, is commonly based on a general Berry–Esseen bound

c sup
x

|F(x) − G(x)| ≤
∫ T

0

| f (t) − g(t)|
t

dt + D

T
(T > 0), (2.1)

involving the Fourier–Stieltjes transforms

f (t) =
∫ ∞

−∞
eitx dF(x), g(t) =

∫ ∞

−∞
eitx dG(x) (t ∈ R).

Here and below we denote by c a positive absolute constant which may be different
in different places. In fact, in (2.1), G may be an arbitrary differentiable function
of bounded variation on the real line such that G(−∞) = 0, G(∞) = 1, and
supx |G ′(x)| ≤ D (cf. [4,8,13]). With this approach, implication (1.4) ⇒ (1.5) is
rather standard (although we cannot give an exact reference). For completeness, we
remind the basic argument in the special situation as in Theorem 1.1 which yields an
upper bound on the uniform distance

�n = sup
x

|Fn(x) − �3(x)|.

Namely, one may apply (2.1) with Fn in place of F and withG = �3. The Fourier–
Stieltjes transform of Fn is just the characteristic function of Zn given by fn(t) =
f ( t

σ
√
n
)n , where f is the characteristic function of X . The Fourier–Stieltjes transform

of �3 is

g3(t) = e−t2/2 + α3

6σ 3
√
n

(i t)3 e−t2/2 (t ∈ R). (2.2)

Such an application then leads to the following estimate.

Lemma 2.1 Suppose that β4 is finite. For all n ≥ 1 and T ≥ σ√
β4
,

c�n ≤ β4

σ 4n
+ 1

Tσ
√
n

+
∫ T

σ√
β4

| f (t)|n
t

dt. (2.3)

Proof Put T0 = σ 2√
β4

√
n and introduce the Lyapunov coefficients Ls = βs

σ s n− s−2
2

(βs = E |X |s), which we need for s = 3 and s = 4. Since the function s → L1/(s−2)
s

is non-decreasing in s > 2, we have L3 ≤ L1/2
4 and thus

|α3|
σ 3

√
n

≤ β3

σ 3
√
n

= L3 ≤ L1/2
4 = 1

T0
.
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Hence, according to definition (1.2), |�3(x)| ≤ c (1+ 1
T0

) for x ≤ 0 and |1−�3(x)| ≤
c (1 + 1

T0
) for x ≥ 0, and thus |�n| ≤ c (1 + 1

T0
). This implies that (2.3) holds

automatically in case T0 ≤ 1 for a suitable c. Thus, we may assume that T0 ≥ 1, i.e.,
n ≥ β4/σ

4.
In this case, the derivative of the function G = �3, which is given by

�′
3(x) = ϕ(x) + α3

6σ 3
√
n

(x3 − 3x) ϕ(x),

is uniformly bounded in absolute value by some constant. Hence, by (2.1), for any
T1 ≥ T0,

c�n ≤
∫ T0

0

| fn(t) − g3(t)|
t

dt +
∫ T1

T0

| fn(t) − g3(t)|
t

dt + 1

T1
. (2.4)

It is known that fn(t) is approximated by g3(t) on the interval |t | ≤ 1/L3 with
an error of order 1/n (using Taylor’s expansion for f (t) near zero and the product
structure of fn(t)). In particular, for a smaller interval |t | ≤ T0, there is a well-known
estimate

| fn(t) − g3(t)| ≤ c
β4

σ 4n
min{1, t4} e−t2/8

(cf. e.g., [5] for details). It allows one to properly bound the first integrand in (2.4),
which simplifies this Berry–Esseen estimate to the form

c�n ≤ β4

σ 4n
+ 1

T1
+

∫ T1

T0

| fn(t) − g3(t)|
t

dt. (2.5)

Now, according to (2.2) and using the assumption T0 ≥ 1, we also have

|g3(t)| ≤
(
1 + 1

6
t3

)
e−t2/2 < 1.3 e−t2/8 (t ≥ 0), (2.6)

which implies

∫ T1

T0

|g3(t)|
t

dt ≤ c
∫ ∞

T0
e−t2/8 dt < 4c e−T 2

0 /8 <
32 c

T 2
0

= 32c
β4

σ 4n
.

As a result, (2.5) is simplified to

c�n ≤ β4

σ 4n
+ 1

T1
+

∫ T1

T0

| fn(t)|
t

dt.

Putting T1 = Tσ
√
n and changing the variable, we arrive at (2.3). Note that the

condition T1 ≥ T0 is equivalent to T ≥ σ√
β4

��
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Using Lemma 2.1, one obtains the statement of Theorem 1.1 in one direction.

Proposition 2.2 Suppose that β4 is finite and let, for some p > 0 and q ∈ R,

1

1 − | f (t)| = O
(
t p (log t)q

)
as t → ∞.

Then

�n = O
(
n− 1

2− 1
p (log n)

q+1
p + n−1

)
. (2.7)

For p < 2 with arbitrary q and for p = 2 with q ≤ −1, relation (2.7) reduces to
�n = O

( 1
n

)
, while in the other cases,

�n = O
(
n− 1

2− 1
p (log n)

q+1
p

)
.

In particular, the hypothesis 1
1−| f (t)| = Õ(t p) with p ≥ 2 implies �n = Õ(n− 1

2− 1
p ).

Proof Suppose that q 
= 0. By the assumption, and since necessarily X has a non-
lattice distribution, we have for all T ≥ t0 = σ√

β4
,

M(T ) = max
t0≤t≤T

| f (t)| ≤ 1 − a

T p logq(2 + T )

with some constant a > 0. Using 1 − u ≤ e−u , we then get

| f (t)|n ≤ M(T )n ≤ exp
{

− na

T p logq(2 + T )

}
,

so that

∫ T

t0

| f (t)|n
t

dt ≤ exp
{

− na

T p logq(2 + T )

}
log(T/t0).

Thus, by (2.3),

c�n ≤ β4

σ 4n
+ 1

Tσ
√
n

+ exp
{

− na

T p logq(2 + T )

}
log(T/t0). (2.8)

Let us take T = Tn = (bn)1/p (log n)−r with parameters r ≥ 0, b > 0 to be
precised later on and assuming that n is large enough. Then

T p
n ≤ bn (log n)−rp, log(2 + Tn) ≤ 1

p
log n + O(log log n),
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and

logq(2 + Tn) ≤ 1

pq
(log n)q + O

(
(log n)q−1 log log n

)
.

This gives

T p
n logq(2 + Tn) ≤ b

pq
n (log n)q−rp + O

(
n (log n)q−rp−1 log log n

)
.

Choosing r = (q + 1)/p, the above is simplified to

T p
n logp(2 + Tn) ≤ b

pq
n (log n)−1

(
1 + O

(
(log n)−1 log log n

))
,

and then

na

T p
n logp(2 + Tn)

≥ apq

b
log n + O(log log n) ≥ 2 log n,

where the last inequality holds true with b = apq/3 for all n large enough. In this
case, the last term in (2.8) is estimated from above by O(1/n).

In case q = 0 with choice r = 1/p, we clearly arrive at the same conclusion.
Therefore, (2.8) yields

�n = O
(1
n

+ 1

Tn
√
n

)
= O

(1
n

+ n− 1
p − 1

2 (log n)r
)
, r = q + 1

p
.

��

3 Non-uniform Bounds Based on Uniform Bounds

Suppose that a given distribution function F is well approximated by some function
of bounded variation G such that G(−∞) = 0, G(∞) = 1, in the sense of the
Kolmogorov distance

� = sup
x

|F(x) − G(x)|.

Based on this quantity, one would also like to see that |F(x) − G(x)| decays poly-
nomially fast for growing x . To this aim one may use moment assumptions together
with some possible properties of G related to its behavior at infinity.

Lemma 3.1 Suppose that F and G have finite and equal second moments:

∫ ∞

−∞
x2 dF(x) =

∫ ∞

−∞
x2 dG(x). (3.1)
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Then, for any a > 0,

sup
x

[
x2 |F(x) − G(x)|

]
≤ 4a2� +

∫

|x |≥a
x2 dG(x)

+ max
{
sup
x≥a

[
x2 |1 − G(x)|], sup

x≤−a

[
x2 |G(x)|]

}
.

(3.2)

Proof For |x | ≤ a, we have x2 |F(x) − G(x)| ≤ a2� which is dominated by the
right-hand side of (3.2). So, when estimating x2 |F(x) −G(x)|, one may assume that
|x | > a and that ±a are the points of continuity of both F and G. Integrating by parts,
we have

∫ a

−a
y2 dF(y) = a2(F(a) − G(a)) − a2(F(−a) − G(−a))

− 2
∫ a

−a
y (F(y) − G(y)) dy +

∫ a

−a
y2 dG(y).

Hence

∫ a

−a
y2 dF(y) ≥ −4a2� +

∫ a

−a
y2 dG(y)

which implies, by moment assumption (3.1),

∫

|y|≥a
y2 dF(y) ≤ 4a2� +

∫

|y|≥a
y2 dG(y). (3.3)

On the other hand, in case x ≥ a,

∫

|y|≥a
y2 dF(y) ≥

∫ ∞

x
y2 dF(y)

≥ x2(1 − F(x)) = x2(G(x) − F(x)) + x2 (1 − G(x)),

so,

x2(G(x) − F(x)) ≤
∫

|y|≥a
y2 dF(y) + sup

x≥a

[
x2 |1 − G(x)|].

Since also

x2(F(x) − G(x)) ≤ x2(1 − G(x)) ≤ sup
x≥a

[
x2 |1 − G(x)|],
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we get

x2 |F(x) − G(x)| ≤
∫

|y|≥a
y2 dF(y) + sup

x≥a

[
x2 |1 − G(x)|].

By a similar argument, if x ≤ −a,

x2 |F(x) − G(x)| ≤
∫

|y|≥a
y2 dF(y) + sup

x≤−a

[
x2 |G(x)|].

Therefore, in both cases,

x2 |F(x) − G(x)| ≤
∫

|y|≥a
y2 dF(y) + max

{
sup
x≥a

[
x2 |1 − G(x)|], sup

x≤−a

[
x2 |G(x)|]

}
.

It remains to involve (3.3). ��

In particular, if G as measure is supported on the interval [−a, a], then, under
moment assumption (3.1), we have

sup
x

[
x2 |F(x) − G(x)|

]
≤ 4a2�. (3.4)

In the general (non-compact) case, in order to optimize inequality (3.2) over the
variable a, an extra information is needed about the behavior of G. For example, let
us require that, for some parameters A, B > 0,

|G(x)| ≤ Ae−x2/B for x ≤ 0, |1 − G(x)| ≤ Ae−x2/B for x ≥ 0. (3.5)

The function te−t is decreasing for t ≥ 1. Hence, if x ≥ a ≥ √
B, we have

x2 |1 − G(x)| ≤ Ax2 e−x2/B ≤ Aa2 e−a2/B .

In addition,

∫ ∞

a
x2 dG(x) = a2 (1 − G(a)) + 2

∫ ∞

a
x (1 − G(x)) dx

≤ Aa2 e−a2/B + 2A
∫ ∞

a
x e−x2/B dx = A (a2 + B) e−a2/B ≤ 2Aa2 e−a2/B .

Similar bounds also hold for the region x ≤ −a. Hence, inequality (3.2) yields, for
all x ∈ R,

x2 |F(x) − G(x)| ≤ 4a2� + 5Aa2 e−a2/B, a ≥ √
B.
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Moreover, choosing a2 = B log(e + 1
�

), the above right-hand side becomes

4B � log
(
e + 1

�

)
+ 5AB

1

e + 1
�

log
(
e + 1

�

)
≤ (4B + 5AB)� log

(
e + 1

�

)
.

Note that the parameters A and B may not be arbitrary. Applying hypothesis (3.5)
at the origin x = 0, we get 1 ≤ |G(0)|+ |1−G(0)| ≤ 2A. So, necessarily A ≥ 1

2 and
hence 4+5A ≤ 13A. Thus, applying Lemma 6.1, we arrive at the following assertion.

Proposition 3.2 Under assumptions (3.1) and (3.5),

sup
x

[
x2 |F(x) − G(x)|

]
≤ 13 AB � log

(
e + 1

�

)
. (3.6)

In case of the normal distribution function G = �, we have 1 − �(x) ≤ 1
2 e

−x2/2

(x ≥ 0), so, conditions (3.1) and (3.5) are fulfilled with A = 1
2 and B = 2. Hence

sup
x

[
x2 |F(x) − �(x)|

]
≤ 13� log(e + 1/�), (3.7)

provided that
∫ ∞
−∞ x2 dF(x) = 1. In fact, this bound can be generalized in order to

control a polynomial decay of |F(x)−�(x)| of any order p > 0. Namely, if� ≤ 1√
e
,

one has

sup
x

[
(1 + |x |p) |F(x) − �(x)|

]
≤ Cp � logp/2(1/�) + λp,

where

λp =
∣∣∣∣
∫ ∞

−∞
|x |p dF(x) −

∫ ∞

−∞
|x |p d�(x)

∣∣∣∣,

and the constant Cp depends on p only. This inequality can be found in [13], Ch.V,
Theorem 1.1 pp. 174–176 (where it is attributed to Kolodyazhnyi [10]). The proof
of Lemma 6.1 given above follows the same line of arguments as in [13]. As for
Proposition 3.2, we will need with G = �3.

4 Deviations of Characteristic Functions

Non-uniform bound (3.6) allows one to control deviations of the Fourier–Stieltjes
transform f of the distribution function F from the Fourier–Stieltjes transform of G.
Recall that G is assumed to be a function of bounded variation such that G(−∞) = 0
and G(∞) = 1.

From (3.6) it follows that, for any b > 0,

sup
x

[
(b2 + x2) |F(x) − G(x)|

]
≤ b2� + 13 AB � log

(
e + 1

�

)
,
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and therefore

W1(F,G) ≡
∫ ∞

−∞
|F(x) − G(x)| dx

≤ π

b

[
b2� + 13 AB � log

(
e + 1

�

)]
= π�

[
b + 13 AB

b
log

(
e + 1

�

)]
.

Optimizing the right-hand side over all b > 0 and using π
√
26 < 16.02, we arrive at

W1(F,G) ≤ 16.02
√
AB � log1/2

(
e + 1

�

)
. (4.1)

In particular, we get:

Proposition 4.1 Under assumptions (3.1) and (3.5), for all t ∈ R,

| f (t) − g(t)| ≤ 16.02
√
AB |t | � log1/2

(
e + 1

�

)
, (4.2)

where � = supx |F(x) − G(x)|.

This bound follows from (4.1) via the identity

f (t) − g(t) = −i t
∫ ∞

−∞
eitx (F(x) − G(x)) dx .

The logarithmic term in (4.2)maybe removed for compactly supported distributions
G, even if F is not compactly supported. Indeed, starting from (3.4), for any b > 0,

sup
x

[
(b2 + x2) |F(x) − G(x)|

]
≤ b2� + 4a2 �,

and therefore

W1(F,G) ≤ π

b
(b2 + 4a2)� = π�

[
b + 4a2

b

]
= 4πa �,

where in the last equality we take an optimal value b = 2a. Hence, if G is supported
on the interval [−a, a] (as measure) and has the same second moment as F , then

| f (t) − g(t)| ≤ 4πa � |t | (t ∈ R).

Now, let us return to the setting of Theorem 1.1 and specialize Proposition 4.1 to

G(x) = �3(x) = �(x) − α3

6σ 3
√
n

(x2 − 1) ϕ(x).
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As explained in Sect. 2, |α3|
σ 3√n

≤ 1 as long as n ≥ β4/σ
4. In this case, for any x ≥ 0,

|1 − �3(x)| ≤ |1 − �(x)| + |α3|
6σ 3√n

|x2 − 1| ϕ(x) ≤ 1

2
e−x2/2 + 1

6
√
2π

|x2 − 1| e−x2/2.

Being multiplied by ex
2/4, the above right-hand side attains maximum at zero, hence

|1 − �3(x)| ≤
(1
2

+ 1

6
√
2π

)
e−x2/4 < 0.57 e−x2/4.

Thus, assumption (3.5) is fulfilled with A = 0.57 and B = 4. We then get:

Corollary 4.2 Suppose that β4 is finite. For all n ≥ β4/σ
4, the characteristic function

fn(t) of Zn satisfies, for all t ∈ R,

| fn(t) − g3(t)| ≤ 24.2 |t | �n log
1/2

(
e + 1

�n

)
, (4.3)

where �n = supx |Fn(x) − �3(x)|.

In fact, when α3 = 0, we have �3 = �, and the requirement n ≥ β4/σ
4 together

with the 4-th moment assumption is not needed in Corollary 4.2. Moreover, since
AB = 1 for G = � in (3.5), from (3.7) we obtain a better numerical constant.
Namely,

| fn(t) − e−t2/2| ≤ 16.02 |t | �n log
1/2

(
e + 1

�n

)
.

5 Necessity Part in Theorem 1.1

Keeping the setting of Theorem1.1, onemay use deviation inequality (4.3) to show that
f (t) is properly bounded away from 1 and thus to reverse the statement of Proposition
2.2. In this direction, only the finiteness of the 3-rd absolute moments is needed (which
is necessary, since α3 participates in the definition of �3).

Proposition 5.1 Suppose that, for some p > 0 and q ∈ R,

�n = O
(
n−( 12+ 1

p )
(log n)q

)
as n → ∞.

Then

1

1 − | f (t)| = O
(
t p (log t)p ( 12+q)

)
as t → ∞. (5.1)
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Proof By the assumption,

�n log
1/2

(
e + 1

�n

)
= O

(
n− 1

2− 1
p (log n)q+ 1

2

)
.

Hence, using upper bound (2.6) on |g3(t)|, (4.3) yields, for all n ≥ β4/σ
4,

| fn(t)| ≤ 1.3 e−t2/8 + c |t | n− 1
2− 1

p (log n)q+ 1
2 .

Here in the region t ≥ √
n, the second term on the right-hand side dominates the first

one. Replacing t with t
√
n, we therefore obtain that

| f (t/σ)|n ≤ cp,q t n
−1/p (log(n + 1))q+1/2, t ≥ 1, (5.2)

with some (p, q)-dependent constant cp,q . Assuming that t ≥ e, let us choose

n = [2At p (log t)r ] (5.3)

with parameters A ≥ 1 and r > 0. In this case,

n−1/p ≤ (
At p (log t)r

)−1/p = A−1/p t−1 (log t)−r/p

and

log(n + 1) ≤ log(4At p (log t)r ) = log(4A) + p log t + r log log t

< log(4A) + (p + r) log t < (p + r + 1) log t,

where in the last inequality we require that t ≥ 4A. Hence

n−1/p (log(n + 1))q+1/2 ≤ A−1/p t−1 (log t)−r/p · (p + r + 1)q+1/2 (log t)q+1/2

= A−1/p c′
p,q t

−1,

where we chose r = p(q + 1/2) on the last step. Hence, with some (p, q)-dependent
constant, (5.2) is simplified to

| f (t/σ)|n ≤ cp,q A−1/p,

which can be made smaller than 1/e by choosing a sufficiently large value of A. Thus,
recalling (5.3), we have

| f (t/σ)| ≤ e−1/n ≤ 1 − 1

2n
≤ 1 − 1

4At p (log t)r
,

which yields (5.1). ��
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6 Diophantine Inequalities

Turning to Corollary 1.2 and other applications of Theorem 1.1, it makes sense to
describe a somewhat more general situation. First let us list a few simple metric
properties of the function x → ‖x‖ in the real variable x . This function is even,
1-periodic, and satisfies, for all real x, y,

(i) ‖x‖ ≤ |x |;
(ii) ‖x + y‖ ≤ ‖x‖ + ‖y‖;
(iii) | ‖x‖ − ‖y‖ | ≤ ‖x − y‖.

In addition,

| cos(πx)| ≤ exp{−π2‖x‖2/2}, 4 ‖x‖2 ≤ 1 − | cos(πx)| ≤ π2

2
‖x‖2. (6.1)

The inequalities in (6.1) are elementary, and we omit the proofs.
Below, we denote by n(x) the closest integer to x , so that ‖x‖ = |x − n(x)| (for

definiteness, let n(x) = n in case x = n + 1/2).

Lemma 6.1 Given real numbers α1, . . . , αm, suppose that maxk≤m ‖nαk‖ ≥ ε(n) >

0 for all integers n ≥ 1. Then, for all t ≥ 1 real,

‖t‖2 + ‖tα1‖2 + · · · + ‖tαm‖2 ≥ c2ε(n(t))2, (6.2)

where c−1 = 1 + maxk≤m |αk |.

Proof One may assume that all αk > 0. Let t = n + γ , |γ | = ‖t‖, with n = n(t). If
‖t‖ ≥ cε(n), c > 0, then automatically

M(t) ≡ max
{‖t‖, ‖tα1‖, . . . , ‖tαm‖} ≥ cε(n).

Now, suppose that ‖t‖ < cε(n). By the assumption, ‖nαk‖ ≥ ε(n) for some k ≤ m.
Since tαk = nαk + γαk , we get, applying the properties (i) and (iii):

‖tαk‖ ≥ ‖nαk‖ − ‖γαk‖
≥ ‖nαk‖ − |γαk | = ‖nαk‖ − ‖t‖αk ≥ (1 − cαk) ε(n).

Here 1 − cαk = c for c = 1
1+αk

, and then ‖tαk‖ ≥ cε(n) in both cases. Hence,

M(t) ≥ ε(n)
1+|αk | . ��

Clearly, (6.2) with integer values t = n returns us to the assumption, up to an
αk-depending factor in front of ε(n).
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Let us now consider a system of m Diophantine inequalities

∣∣∣αk − rk
n

∣∣∣ <
ε(n)

n
, k = 1, . . . ,m (n ≥ 1),

about which one is usually concerned whether or not it has infinitely many inte-
ger solutions (r1, . . . , rm, n). Here, we choose the particular functions ε(n) =
c n−η (log(n + 1))−η′

and consider the opposite property:

lim inf
n→∞

[
nη (log n)η

′
max{‖nα1‖, . . . , ‖nαm‖}

]
> 0. (6.3)

One may rephrase this in terms of the characteristic function

f (t) = cos(t) cos(α1t) · · · cos(αmt) (6.4)

of the sum X = ξ0 + α1ξ1 + · · · + αmξm , where ξk are independent Bernoulli random
variables, taking the values ±1 with probability 1/2.

Lemma 6.2 Given α1, . . . , αm ∈ R and η > 0, η′ ∈ R, relation (6.3) is equivalent to
the property that the characteristic function f in (6.4) satisfies

1

1 − | f (t)| = O
(
t2η (log t)2η

′)
as t → ∞. (6.5)

Proof For (6.3) to hold, it is necessary that at least one of αk be irrational. Moreover,
this relation may be strengthened to

max
1≤k≤m

‖nαk‖ ≥ c

nη (log(n + 1))η′ , n ≥ 1, (6.6)

with some constant c > 0 independent of n. Moreover, according to Lemma 6.1 with
ε(n) as above, we see that (6.6) is equivalent to

‖t‖2 + ‖tα1‖2 + · · · + ‖tαm‖2 ≥ c

t2η (log t)2η′ , t ≥ 2 (real) (6.7)

(modulo positive constants). Combining (6.7) with the first inequality in (6.1) yields

| f (π t)| ≤ exp
{

− π2

2

(‖t‖2 + ‖α1t‖2 + · · · + ‖tαm‖2)
}

≤ exp
{

− c

t2η (log t)2η′
}
,

which thus leads to required relation (6.5).
Conversely, (6.5) yields

1 − | f (π t)| ≥ c

tη (log(t + 1))η′ , t ≥ 1, (6.8)
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so that for the integer values t = n we get

1− c

n2η (log(n+1))2η′ ≥| f (πn)|=(1−δ1) . . . (1−δm), δk =1−| cos(πnαk)|.

Since the right-hand side is greater than or equal to 1 − (δ1 + · · · + δm), we obtain

c

n2η (log(n + 1))2η′ ≤ δ1 + · · · + δm .

Recalling (6.1), we have δk ≤ π2

2 ‖nαk‖2 and thus

c

n2η (log(n + 1))2η′ ≤ π2

2

m∑
k=1

‖nαk‖2 ≤ mπ2

2
max
k≤m

‖nαk‖2.

This gives (6.6) and therefore (6.3). ��

A similar conclusion continues to hold for other characteristic functions including

f (t) = p0 cos(t) +
m∑

k=1

pk cos(αk t), (6.9)

where pk are fixed positive parameters such that p0 +· · ·+ pm = 1. Indeed, by (6.1),

| f (π t)| ≤ p0
(
1 − 4 ‖t‖2) +

m∑
k=1

pk
(
1 − 4 ‖αk t‖2

)

≤ 1 − p′(‖t‖2 + ‖α1t‖2 + · · · + ‖αmt‖2
)
, p′ = 4 min

0≤k≤m
pk .

Starting from (6.6)–(6.7), we would obtain again (6.5).
Conversely, (6.5) leads to (6.8), which at the even integer values t = 2n yields

1 − c

n2η (log(n + 1))2η′ ≥ f (2πn) = p0 +
m∑

k=1

pk cos(2πnαk) = 1 − 2
m∑

k=1

pkδ
2
k ,

where now δk = sin(πnαk). Using | sin(πx)| ≤ π ‖x‖, the above inequality yields

c

n2η (log(n + 1))2η′ ≤ 2π2
m∑

k=1

pk‖nαk‖2 ≤ 2π2 max
k≤m

‖nαk‖2.

As a result, we arrive at:

123



J Theor Probab (2018) 31:2390–2411 2407

Lemma 6.3 The assertion of Lemma 6.2 is also true for all characteristic functions
f of form (6.9).

We are prepared to prove Corollary 1.2, in fact—in a more precise and general
form, if we apply Propositions 2.2 and 5.1. Let us return to the setting of Theorem 1.1
in which we will assume that the random variable X has a characteristic function f
given by (6.4) or (6.9). Equivalently, if we denote by Bα = 1

2 δα + 1
2 δ−α the symmetric

Bernoulli measure supported on {−α, α}, the distribution F of X may be written (as
measure) in either of the two forms

F = B1 ∗ Bα1 ∗ · · · ∗ Bαm , F = p0B1 +
m∑

k=1

pk Bαk (pk > 0, p0 + · · · + pm = 1).

Since any such measure is symmetric about the origin, the uniform distance in Theo-
rem 1.1 is defined by �n = supx |Fn(x) − �(x)|.
Proposition 6.4 Given α1, . . . , αm ∈ R, suppose that with some η ≥ 1, η′ ∈ R,

lim inf
n→∞

[
nη (log n)η

′
max

{‖nα1‖, . . . , ‖nαm‖}
]

> 0. (6.10)

Then

�n = O
(
n− 1

2− 1
2η (log n)η

′′)
(6.11)

with η′′ = 2η′+1
2η in case η > 1 and η′′ = max

{ 2η′+1
2 , 0

}
in case η = 1.

Conversely, if (6.11) holds with some η > 0, η′′ ∈ R, then (6.10) is fulfilled with
η′ = η ( 12 + η′′).

Indeed, starting from hypothesis (6.10), we obtain (6.5), so that the condition of
Proposition 2.2 is fulfilled with p = 2η and q = 2η′. Hence, by Proposition 2.2,

�n = O
(
n− 1

2− 1
p (log n)

q+1
p + n−1

)
,

i.e., (6.11). Conversely, (6.11) ensures that the condition of Proposition 5.1 is fulfilled
with p = 2η and q = η′′. Therefore,

1

1 − | f (t)| = O
(
t p (log t)p ( 12+q)

)
= O

(
t2η (log t)2η ( 12+η′′)

)
,

which is (6.5) with 2η′ = 2η ( 12 + η′′).
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7 Special Values of α and Typical Behavior of �n

Let us restrict the setting of Proposition 6.4 to the case m = 1 and assume that the
distribution F of X has a convolution structure, i.e., X = X ′ + αX ′′, where X ′, X ′′
are independent random variables with a symmetric Bernoulli distribution on {−1, 1}.
The corresponding characteristic function is then given by f (t) = cos(t) cos(αt), and
the second moment of F is σ 2 = 1 + α2. Hence, the measure Fn from Theorem 1.1
represents the distribution of

Zn = 1√
1 + α2

Z ′
n + α√

1 + α2
Z ′′
n ,

where Z ′ and Z ′′
n are independent normalized sums of n independent copies of X ′ and

X ′′.
Put

�n(α) = sup
x

|Fn(x) − �(x)|.

Since P{Zn = 0} ≥ P{Z ′
n = 0}P{Z ′′

n = 0} > c
n , we necessarily have �n(α) > c

n
with some absolute constant c > 0. On the other hand, Proposition 6.4 implies:

Corollary 7.1 If

lim inf
n→∞

[
nη (log n)η

′ ‖nα‖
]

> 0, (7.1)

for some η ≥ 1, η′ ∈ R, then

�n(α) = O
(
n− 1

2− 1
2η (log n)η

′′)
(7.2)

with η′′ = 2η′+1
2η . In turn, the latter relation implies (7.1) with η′ = η ( 12 + η′′).

This is a more precise formulation of Corollary 1.2. Note that (7.1) is impossible for
η = 1 and η′ < 0 (by Dirichlet’s theorem), so that necessarily η′′ = max

{ 2η′+1
2 , 0

} =
2η′+1

2 ≥ 1
2 . Similarly, (7.2) is impossible for η = 1 and η′′ < 0.

Relation (7.1) with η = 1, η′ = 0 defines the class of the so-called badly approx-
imable numbers α which can be characterized in terms of continued fractions. Namely,
representing

α = a0 + 1

a1 + 1
a2+ 1

a3+···

,

where a0 is an integer and a1, a2, . . . are positive integers, the property of being badly
approximable is equivalent to supi ai < ∞. In particular, all quadratic irrationalities
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(e.g., α = √
2) belong to this class, cf. [15]. Since in this case η′′ = 2η′+1

2 = 1
2 , we

arrive at:

Corollary 7.2 For any badly approximable number α, we have �n(α) =
O

( 1
n

√
log n

)
.

It is not clear at all whether one can improve this rate for at least one α. On the
other hand, at the expense of a logarithmic term, one may involve almost all values of
α. To this aim, one may apply a theorem due to Khinchine which asserts the following
(cf. [6,15]). Suppose that a function ψ(n) > 0 is defined on the positive integers. If
ψ(n) is non-increasing and

∑∞
n=1 ψ(n) = ∞, then the inequality

∣∣∣α − p

n

∣∣∣ <
ψ(n)

n
(7.3)

has infinitely many integer solutions (p, n) for almost all α (with respect to the
Lebesguemeasure on the real line). But when

∑∞
n=1 ψ(n) < ∞, (7.3) has only finitely

many solutions for almost all α. This second assertion is an easy part of Khinchine’s
theorem, which may be quantified in terms of the function

rψ(α) = inf
n≥1

[ 1

ψ(n)
‖nα‖

]
.

Indeed, restricting ourselves (without loss of generality) to the values 0 < α < 1, first
note that, for any integer n ≥ 1 and δ > 0,

mes{α ∈ (0, 1) : ‖nα‖ < δ} ≤ 2δ

(with equality in case δ ≤ 1/2). Hence, for any r > 0,

mes{α ∈ (0, 1) : rψ(α) < r} ≤
∞∑
n=1

mes
{
α ∈ (0, 1) : 1

ψ(n)
‖nα‖ < r

}
≤

∞∑
n=1

2r ψ(n),

and thus

mes{α ∈ (0, 1) : rψ(α) < r} ≤ Cr (r > 0)

with constant C = 2
∑∞

n=1 ψ(n). In particular, rψ(α) > 0 for almost all α.
For example, choosing the sequence ψ(n) = 1/(n log1+ε(n + 1)), Corollary 7.1

provides a rate which is applicable to almost all α.

Corollary 7.3 Given ε > 0, for almost all α ∈ R, we have �n(α) =
O

( 1
n (log n)3/2+ε

)
.
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It is not clear whether or not the power of the logarithmic termmay be improved. At
least, this is possible on average when α varies inside a given interval, say 0 < α < 1.

Proposition 7.4 With some absolute constant c > 0, for all n ≥ 1,

∫ 1

0
�n(α) dα ≤ c

log(n + 1)

n
. (7.4)

Proof Our basic tool is theBerry–Esseen inequality of Lemma 2.1. For the distribution
F , we have α3 = EX3 = 0 and

β4 = EX4 = E (X ′ + αX ′′)4 = 1 + 6α2 + α4.

In order to control the integral in (2.3), recall that σ 2 = 1 + α2 and note that σ 4 ≤
β4 ≤ 2σ 4. Using σ√

β4
≥ 1√

2(1+α2)
≥ 1

2 , Lemma 2.1 with T = √
n gives that

c�n(α) ≤ 1

n
+ In(α), where In(α) =

∫ √
n

1/2

| cos(t) cos(αt)|n
t

dt. (7.5)

By simple calculus, for any t ≥ 1/2,

ψn(t) ≡
∫ t

0
| cos(s)|n ds ≤ t√

n

√
2π,

so

∫ 1

0
In(α) dα =

∫ √
n

1/2

| cos t |n
t2

ψn(t) dt ≤
√
2π√
n

∫ √
n

1/2

| cos t |n
t

dt ≤ c log(n + 1)

n
.

Thus, integrating the inequality in (7.5) over α, we are led to (7.4). ��

Remark 1 Corollary 7.3 with quantity �n(α) = supx |Fn(x) − �3(x)| remains to
hold in a more general situation X = X ′ + αX ′′, where X ′, X ′′ are independent
random variables with non-degenerate distributions and finite 4-th absolute moments.
This extension requires an extra analysis of the behavior of characteristic functions,
and we will discuss it somewhere else. Let us note that it is possible to improve the
rate of convergence (in particular, to remove the logarithmic term) in models such as
X = X (0) + α1X (1) + · · · + αmX (m) with m ≥ 2 independent summands X (k). See
also [9] on randomized versions of the central limit theorem.
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