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KHINCHINE’S THEOREM AND EDGEWORTH APPROXIMATIONS
FOR WEIGHTED SUMS

BY SERGEY G. BOBKOV1

University of Minnesota and National Research University Higher School of
Economics

Let Fn denote the distribution function of the normalized sum of n i.i.d.
random variables. In this paper, polynomial rates of approximation of Fn by
the corrected normal laws are considered in the model where the underlying
distribution has a convolution structure. As a basic tool, the convergence part
of Khinchine’s theorem in metric theory of Diophantine approximations is
extended to the class of product characteristic functions.

1. Introduction. Let X,X1,X2, . . . be independent, identically distributed
random variables (r.v.’s) with mean zero and variance σ 2 (σ > 0), and let Fn(x) =
P{Zn ≤ x} denote the distribution functions of the normalized sums

Zn = X1 + · · · + Xn

σ
√

n
.

The Edgeworth expansions are used to sharpen the standard 1√
n

–rate of ap-
proximation for Fn in the Berry–Esseen theorem, which is possible under certain
assumptions on the distribution of X. To describe the simplest situation, first con-
sider the Edgeworth correction of the third order

�3(x) = �(x) − α3

6σ 3
√

n

(
x2 − 1

)
ϕ(x), α3 = EX3 (x ∈ R),

where � stands for the standard normal distribution function with density ϕ(x) =
1√
2π

e−x2/2. Note that �3 also depends on n, except for the case α3 = 0, when

�3 = �. It is known that, if the fourth moment EX4 is finite, and the characteristic
function (c.f.) f (t) = E eitX satisfies the Cramér condition lim supt→∞ |f (t)| < 1,
then the uniform deviations

�(3)
n = sup

x

∣∣Fn(x) − �3(x)
∣∣

are at most of order 1/n (cf. [7, 8]). To reach this rate, the Cramér condition may
not be removed in general, even under higher order moment assumptions. Never-
theless (alternatively), suppose that X = ξ0 + αξ1 for some independent r.v.’s ξk
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with nondegenerate distributions, and write �
(3)
n (α) so that to use α as parame-

ter. This model appears naturally in the situation where it is known that several
independent observations of X contain a certain univariate “noise” αξ1. If so, how
accurate is an application of the central limit theorem to the observed data? As
it turns out, chances for an improved (corrected) normal approximation are rather
high, although there is no confident criterion. Indeed, if say both ξ0 and ξ1 have a
Bernoulli distribution, the order of magnitude of �

(3)
n (α) may vary between 1/

√
n

and 1/n, depending on the arithmetic properties of the number α. However, in a
typical situation, that is, for almost all α ∈ R with respect to the Lebesgue measure,
the order is actually 1/n modulo a logarithmic factor. This observation has been
made in [5], and here we extend it to the case of arbitrary distributions participating
in the convolution.

THEOREM 1.1. If the r.v.’s ξ0 and ξ1 have mean zero with finite moments Eξ4
k ,

then, for any given δ > 0, we have �
(3)
n (α) = o( 1

n
(logn)

3
2 +δ) for almost all α.

The statement admits a generalization with refinement of approximation in the
model of the multivariate “noise,” that is, for the class of r.v.’s represented as the
weighted sum

(1.1) X = ξ0 + α1ξ1 + · · · + αmξm (m = 1,2, . . . )

of independent r.v.’s ξk having fixed nondegenerate distributions. Namely, for al-

most all coefficients αk , the rate may be improved to n−m+1
2 modulo a logarithmic

factor, if we replace �3 with an Edgeworth correction of a suitable order. To this
aim, assuming that E|ξk|m+2 < ∞ for all k ≤ m (so that E|X|m+2 < ∞), introduce
the function of bounded variation

(1.2) �m+2(x) = �(x) − ϕ(x)

m∑
j=1

n− j
2 Qj(x), x ∈ R,

which may also be viewed as a polynomial in 1/
√

n of degree at most m. Here,
the polynomials in the sum are defined to be

Qj(x) = ∑ 1

k1! . . . km!
(

γ3

3!
)k1

. . .

(
γm+2

(m + 2)!
)km

σ−kHk−1(x),

where γr = i−r (logf )(r)(0) are the cumulants of X, and the summation is running
over all integers k1, . . . , km ≥ 0 such that k1 +2k2 +· · ·+mkm = j , with k = 3k1 +
· · · + (m + 2)km. As usual, Hk−1(x) denotes the Chebyshev–Hermite polynomial
with leading term xk−1.

Following Esseen [7], (1.2) defines the Edgeworth expansion for Fn of order
m + 2. It is constructed in such a way that the first m + 2 moments of �m+2
treated as a signed measure coincide with the first m + 2 moments of Fn. In the
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case γ3 = · · · = γm+1 = 0, that is, when the first m + 1 moments of X coincide
with those of a standard normal r.v. Z, (1.2) is simplified to

�m+2(x) = �(x) − γm+2

(m + 2)! Hm+1(x)ϕ(x)n−m
2

with γm+2 = EXm+2 −EZm+2. For a detail exposition of Edgeworth expansions,
we refer to [2, 8] and a recent survey [4].

Note that the Edgeworth expansion is well defined under the moment assump-
tions regardless of the convolution structure of the distribution of X. Collecting
the coefficients in (1.1) in a vector α = (α1, . . . , αm), put

�(m+2)
n (α) = sup

x

∣∣Fn(x) − �m+2(x)
∣∣.

THEOREM 1.2. Suppose that the r.v.’s ξk in (1.1) have mean zero and finite
moments E|ξk|m+3 for some integer m ≥ 1. Then, for any given δ > 0, for almost
all α ∈ R

m,

(1.3) �(m+2)
n (α) = o

(
n−m+1

2 (logn)
m
2 +1+δ).

As easy to check, if ξk have a symmetric Bernoulli distribution, and the
numbers 1, α1, . . . , αm are linearly independent over the field of rationals, then

�
(m+2)
n (α) ≥ cn−m+1

2 with some constant c > 0 not depending on n. Hence, the
power of n in the o-term of (1.3) may not be improved. On the other hand, the
power of the logarithmic term may be sharpened on average.

THEOREM 1.3. Under the same assumptions as in Theorem 1.2,

(1.4)
∫
(−1,1)m

�(m+2)
n (α) dα = O

(
n−m+1

2 logn
)
.

When n is large, �
(m+2)
n (α) is thus of order n−m+1

2 logn for all α from a large
part of the cube (−1,1)m. The proofs of (1.3)–(1.4) use the Berry–Esseen bound,
while (1.3) also involves a rather interesting property that the c.f. f for the r.v. X

in (1.1) is properly bounded away from 1 at infinity.

THEOREM 1.4. Suppose that the r.v.’s ξk have mean zero and finite moments
E|ξk|3. Given a nonincreasing function ε(t) > 0 in t > 0, such that

(1.5)
∞∑

q=1

ε(q)
m
2 < ∞,

for almost all α ∈ R
m, we have |f (t)| ≤ 1 − ε(t) for all t large enough.
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In particular, 1
1−|f (t)| = o(t

2
m (log t)

2
m

+δ) as t → ∞, for any fixed δ > 0; cf.
Corollary 5.1. This relation is what is needed for the proof of (1.3).

Being specialized to the case of Bernoulli summands ξk , this assertion is equiv-
alent to the “convergence” part of the following Khinchine’s theorem: Under the
condition (1.5), for almost all α ∈R

m, the system of m Diophantine inequalities

(1.6)
∣∣∣∣αk − pk

q

∣∣∣∣ <
1

q

√
ε(q) (1 ≤ k ≤ m)

has only finitely many rational solutions pk/q . In this sense, Theorem 1.4 may be
viewed as a natural extension of this result from integer numbers to the class of
probability distributions with product c.f.’s.

The derivation of Theorem 1.4 occupies Sections 3–4, with a preliminary re-
minder of one general bound on c.f.’s. Its relationship with Diophantine inequali-
ties is explained in Section 5. In Section 6, we state the Berry–Esseen inequality,
when it is specialized to the Edgeworth corrections, and in Sections 7–8, there have
been done final steps of the proof of Theorems 1.2–1.3 (under the more general as-
sumption E|ξk|s+1 with 3 ≤ s ≤ m + 2).

2. Esseen’s upper bound on characteristic functions. Let ξ be a r.v. with
distribution function F(x) = P{ξ ≤ x}, x ∈ R, and c.f.

v(t) = E eitξ =
∫ ∞
−∞

eitx dF (x), t ∈ R.

Put βs = E |ξ |s and, until Proposition 3.4 below, let Var(ξ) = 1. Assuming that
β3 is finite, we are going to see that |v(t)| is well bounded away from 1 on a
“significant part” of the real line. We will use the following observation due to
Esseen [7] (page 94, Lemma 1).

LEMMA 2.1. Putting g = |v|2, for all points t0, t ∈ R with |t − t0| = r ,

(2.1)
∣∣v(t)

∣∣2 ≤ ∣∣v(t0)
∣∣2 +g′(t0)(t − t0)− r2

(
1−6

(
1− ∣∣v(t0)

∣∣2)1/3
β

2/3
3 − 4r

3
β3

)
.

PROOF. For completeness, let us remind the argument. First, let v be real-
valued, that is, let F be symmetric about the origin (as measure), in which case
v(t) = ∫ ∞

−∞ cos(tx) dF (x). For a moment, we do not require that Var(ξ) = 1. Ex-
panding the function t → cos(tx) near t0 according to Taylor’s formula, we have
the representation

cos(tx) = cos(t0x) − (t − t0)x sin(t0x) − (t − t0)
2

2
x2

+ (t − t0)
2

2
x2(

1 − cos(t0x)
) + θ

(t − t0)
3

6
x3 sin(tx), |θ | ≤ 1.
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Hence, after integration over dF(x), we get

v(t) = v(t0) + (t − t0)v
′(t0) − (t − t0)

2

2
β2 + θ0

(t − t0)
2

2
J + θ1

|t − t0|3
6

β3

with some θ0 ∈ [0,1] and θ1 ∈ [−1,1], where J = ∫ ∞
−∞ x2(1 − cos(t0x)) dF (x).

Splitting the integration into the regions |x| ≤ λ and |x| > λ leads to

J ≤ λ2
∫
|x|≤λ

(
1 − cos(t0x)

)
dF(x) + 2

∫
|x|>λ

x2 dF(x)

≤ λ2
∫ ∞
−∞

(
1 − cos(t0x)

)
dF(x) + 2

λ

∫
|x|>λ

|x|3 dF(x)

≤ λ2 (
1 − v(t0)

) + 2

λ
β3.

If v(t0) < 1, the last expression is minimized when λ3 = β3/(1 − v(t0)) in which
case it equals 3(1 − v(t0))

1/3β
2/3
3 . If v(t0) = 1, then J = 0. Hence

v(t) = v(t0) + (t − t0)v
′(t0) − (t − t0)

2

2
β2

+ θ ′
0
(t − t0)

2

2
3
(
1 − v(t0)

)1/3
β

2/3
3 + θ1

|t − t0|3
6

β3,

so,

(2.2) v(t) ≤ v(t0) + v′(t0)(t − t0) − r2

2

(
β2 − 3

(
1 − v(t0)

)1/3
β

2/3
3 − r

3
β3

)
.

Finally, one may apply (2.2) to the c.f. g(t) = |v(t)|2 = E eitη, where η = ξ − ξ ′
with ξ ′ being an independent copy of ξ . In that case, β2(η) = 2, while by Jensen’s
inequality, β3(η) ≤ 8β3. �

COROLLARY 2.2. If |v|2 has a local minimum at the point t0, then

(2.3)
∣∣v(t0)

∣∣2 ≤ 1 − 1

216β2
3

.

Indeed, the derivative of g = |v|2 is vanishing at t0 so that, by (2.1),

(2.4)
∣∣v(t)

∣∣2 ≤ ∣∣v(t0)
∣∣2 − r2

(
1 − 6

(
1 − ∣∣v(t0)

∣∣2)1/3
β

2/3
3 − 4r

3
β3

)
,

where |t − t0| = r . Hence

1 − 6
(
1 − ∣∣v(t0)

∣∣2)1/3
β

2/3
3 − 4r

3
β3 ≤ 0

for all r > 0 small enough. Letting r → 0, we arrive at (2.3).
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Below we will be more interested in local maxima. If t0 is a point of local
maximum of g = |v|2, then g′(t0) = 0, so that again we obtain (2.4). If |v(t0)|2 ≥
1 − ε, ε ∈ (0,1), this inequality implies

∣∣v(t)
∣∣2 ≤ ∣∣v(t0)

∣∣2 − r2
(

1 − 6 ε1/3β
2/3
3 − 4r

3
β3

)
.

To further simplify, one may impose the conditions 6ε1/3β
2/3
3 ≤ 1

2 and 4r
3 β3 ≤ 1

3 ,
under which the expression in brackets ≥ 1

6 . Then we arrive at the following.

COROLLARY 2.3. Given 0 < ε ≤ 1
123β2

3
, suppose that |v|2 has at the point t0

a local maximum with |v(t0)|2 ≥ 1 − ε. Then

(2.5)
∣∣v(t)

∣∣2 ≤ ∣∣v(t0)
∣∣2 − 1

6
|t − t0|2 for |t − t0| ≤ 1

4β3
.

In particular, if |v(t)|2 ≥ 1 − ε on some finite interval [a, b] containing t0, then for
all t ∈ [a, b],

(2.6) |t − t0| ≤ 1

4β3
⇒ |t − t0| ≤

√
6ε.

The last conclusion follows from (2.5), by using |v(t0)|2 ≤ 1. Note that, by
Corollary 2.2, no point in [a, b] may be a point of local minimum of |v|2.

Corollary 2.3 has the following consequence. If the distance from t0 to one of
the endpoints, say a, is greater than or equal to 1

4β3
, then t = t0 − 1

4β3
∈ [a, b],

and we conclude that 1
4β3

≤ √
6ε, that is, ε ≥ 1

96β2
3

. But this contradicts to the

assumption on ε. Therefore, the distance from t0 to the endpoints must be smaller
than 1

4β3
. Choosing t = a and t = b in (2.6), we thus obtain the following.

COROLLARY 2.4. Suppose that |v(t)|2 ≥ 1 − ε on some interval [a, b] con-
taining a point t0 of local maximum of |v(t)|, where 0 < ε ≤ 1

123β2
3

. Then |a − t0| ≤√
6ε and |b − t0| ≤

√
6ε. In particular, |a − b| ≤ 2

√
6ε.

3. Behavior above fixed levels and curves. The statement of Corollary 2.4
may be refined in terms of the open sets

Uε = Uε(v) = {
t ∈ R : ∣∣v(t)

∣∣2 > 1 − ε
}
.

PROPOSITION 3.1. If 0 < ε ≤ 1/(123β2
3 ), the set Uε may be decomposed into

finitely or countably many intervals (an, bn) which do not touch each other and
satisfy |an − bn| ≤ 2

√
6ε.
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One of these intervals must contain the origin, and in addition |v(an)|2 =
|v(bn)|2 = 1 − ε for all n. The property that these intervals do not touch each
other follows from Corollary 2.2. Indeed, in case an = bn′ , necessarily an must be
a point of local minimum of |v|2. But then we would have

∣∣v(an)
∣∣2 ≤ 1 − 1

216β2
3

< 1 − ε,

which contradicts to the assumption on ε. Also, by Corollary 2.2, for any finite
[a, b] ⊂ (an, bn), we have |a − b| ≤ 2

√
6ε, so the interval (an, bn) must be finite,

and |an − bn| ≤ 2
√

6ε as well.
In the sequel, we denote by diam(A) the diameter of a set A ⊂ R, assigning the

value zero in case A is empty.

PROPOSITION 3.2. Let 0 < ε ≤ 1/(123β2
3 ). For any interval I ⊂ R of length

|I | ≤ 1
6β3

,

(3.1) diam(Uε ∩ I ) ≤ 2
√

6ε.

PROOF. Using the intervals from Proposition 3.1 and assuming that Uε ∩ I is
nonempty, one may pick t ′ in this set and choose n such that t ′ ∈ (an, bn). Since
|v(an)|2 = |v(bn)|2 = 1 − ε, there is a point tn ∈ (an, bn) of local maximum of
|v|2. By Corollary 2.4, |an − tn| ≤

√
6ε and |bn − tn| ≤

√
6ε, so |t ′ − tn| ≤

√
6ε as

well. Moreover, by Corollary 2.3, |v(t)|2 ≤ 1 − ε on the set

√
6ε ≤ |t − tn| ≤ 1

4β3
.

But the interval |t − tn| ≤ 1
4β3

contains I . Indeed, since t ′ ∈ I and |t ′ − tn| ≤
√

6ε,

we only need to check that
√

6ε + |I | ≤ 1
4β3

. By the assumption on |I |, the latter

follows from
√

6ε ≤ 1
12β3

, that is, from ε ≤ 1
6·122β2

3
. This holds by the assumption

on ε. Thus, Uε ∩ I is contained in the interval |t − tn| ≤
√

6ε. �

COROLLARY 3.3. Given 0 < ε ≤ 1, for all T ≥ 1
6β3

,

(3.2)
1

2T
mes

{
t ∈ [−T ,T ] : ∣∣v(t)

∣∣2 ≥ 1 − ε
} ≤ 24β3

√
6ε.

PROOF. If ε > 1
123β2

3
, then 24β3

√
6ε >

√
2, and (3.2) is immediate. So, we

may assume that ε ≤ 1
123β2

3
. Put T1 = 1

6β3
, Tn = nT1 (n = 1,2, . . . ). By Proposi-

tion 3.2, for any integer k,

mes
{
t ∈ [Tk, Tk+1] : ∣∣v(t)

∣∣2 ≥ 1 − ε
} ≤ 2

√
6ε.
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Given T ≥ T1, choose n such that Tn ≤ T < Tn+1. Summing these inequalities
over k = 0,1, . . . , n, we then get

mes
{
t ∈ [0, T ] : ∣∣v(t)

∣∣2 ≥ 1 − ε
} ≤ 2(n + 1)

√
6ε.

On the other hand, since n ≤ T
T1

, we have T1(n + 1) ≤ T1(
T
T1

+ 1) = T + T1 ≤ 2T .
Hence

mes
{
t ∈ [0, T ] : ∣∣v(t)

∣∣2 ≥ 1 − ε
} ≤ 4T

T1

√
6ε = 24β3

√
6ε.

Since |v(−t)| = |v(t)|, the conclusion follows. �

Corollary 3.3 (with different numerical constants) is due to Esseen who actually
considered multidimensional c.f.’s for isotropic, mean zero probability measures;
cf. Theorem 2 in [7], page 94. Information about the diameter as in Proposition 3.2
is more precise and is needed in the proof of Theorem 1.4. Let us state Proposi-
tion 3.2 and Corollary 3.3 in a more flexible setting without the constraint on the
variance.

PROPOSITION 3.4. Let the r.v. ξ have variance σ 2 = Var(ξ) (σ > 0) and finite
moment β3 = E |ξ |3, with c.f. v(t). Given 0 < ε ≤ σ 6/(123β2

3 ), for any interval
I ⊂R of length |I | ≤ σ 2/(6β3), we have

(3.3) diam(Uε ∩ I ) ≤ 2

σ

√
6ε,

where Uε = Uε(v). Moreover, if 0 < ε ≤ 1 and T ≥ σ 2

6β3
, then

(3.4)
1

2T
mes

{
t ∈ [−T ,T ] : ∣∣v(t)

∣∣2 ≥ 1 − ε
} ≤ 24β3

σ 3

√
6ε.

PROOF. Indeed, the r.v. ξσ = ξ/σ has variance 1, while its c.f. is given by
vσ (t) = v(t/σ ). Hence, Uε(vσ ) = {t ∈ R : |vσ (t)|2 > 1 − ε} = σUε , and by (3.1),

diam(σUε ∩ I ) = σ diam(Uε ∩ I/σ ) ≤ 2
√

6ε, 0 < ε ≤ 1/
(
123β2

3 (ξσ )
)
,

for any interval I ⊂ R of length |I | ≤ 1
6β3(ξσ )

. Here, β3(ξσ ) = E|ξσ |3 = 1
σ 3 β3, and

replacing I/σ with I , we get (3.3) under the constraint |I | ≤ σ 2

6β3
. Also,

1

2T
mes

{
t ∈ [−T ,T ] : ∣∣v(t/σ )

∣∣2 ≥ 1 − ε
}

= 1

2T/σ
mes

{
t ∈ [−T/σ,T /σ ] : ∣∣v(t)

∣∣2 ≥ 1 − ε
}

for any T > 0. Substituting T ′ = T/σ , we get, by (3.2),

1

2T ′ mes
{
t ∈ [−T ′, T ′] : ∣∣v(t)

∣∣2 ≥ 1 − ε
} ≤ 24β3(ξσ )

√
6ε,

under the assumption T ≥ 1/(6β3(Xσ )), that is, T ′ ≥ σ 2/(6β3). �
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Let us now turn to more general sets of the form

U = {
t ∈ R : ∣∣v(t)

∣∣2 > 1 − ε(t)
}
,

assuming that the function ε(t) is even, positive, nonincreasing in t > 0, with
ε(0) ≤ ε0 = σ 6

123β2
3

. In particular, 0 < ε(t) ≤ ε0 for all t ∈R. Put

T1 = σ 2/(6β3), Tn = nT1, In = [Tn,Tn+1] (n integer).

By Proposition 3.4 with ε = ε0, we have diam(Uε ∩ I ) ≤ 2
σ

√
6ε for any interval

I of length |I | = T1. Since U ⊂ Uε , a similar conclusion is true about U as well.
Moreover, by the monotonicity of ε(t), choosing tn = inf{U ∩ In} in case U ∩ In

is nonempty, we have U ⊂ Uε(tn) on In for any n ≥ 0. As a result, diam(U ∩ In) ≤
2
σ

√
6ε(tn), and we get the following.

COROLLARY 3.5. If the set U is unbounded, there exists an increasing se-
quence tn ≥ Tn (n ≥ 1) with the following properties:

(a) |v(tn)|2 ≥ 1 − ε(tn).
(b) For each t ≥ T1 with |v(t)|2 > 1− ε(t), we have tn ≤ t ≤ tn + 2

σ

√
6ε(tn) for

some n.

4. Products of characteristic functions. For the proof of Theorem 1.4, we
need a general triangle-type inequality for c.f.’s.

LEMMA 4.1. Let u be the c.f. of a r.v. ξ with variance b2. For all t, s ∈ R,

1 − ∣∣u(t)
∣∣2 ≥ 1

2

(
1 − ∣∣u(s)

∣∣2) − b2|t − s|2.

PROOF. Since sin2(y) ≤ 2 sin2(x) + 2 sin2(y − x) for all x, y ∈ R, there is a
general bound

2 sin2(x) ≥ sin2(y) − 2|x − y|2.
Let η = ξ − ξ ′, where ξ ′ is an independent copy of ξ , so that 1 − |u(t)|2 =
2E sin2(tη/2). Hence, the above inequality yields

1 − ∣∣u(t)
∣∣2 ≥ 1

2

(
1 − ∣∣u(s)

∣∣2) − |t − s|2
2

Eη2. �

PROOF OF THEOREM 1.4. We restrict ourselves to the values αk ∈ (0,1). The
r.v. X in (1.1) has the product c.f.

f (t) = v(t)uα(t), uα(t) = v1(α1t) · · ·vm(αmt), t ∈ R,

where v is the c.f. of ξ0 and vk’s denote the c.f.’s of ξk . Note that the property
β3 = E|X|3 < ∞ is equivalent to β3,k = E|ξk|3 < ∞ for each k = 0,1, . . . ,m.
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Without loss of generality, one may assume that the set U = {t ≥ 0 : |v(t)|2 >

1 − 2ε(t)} is unbounded, and

ε(0) ≤ ε0 = min
0≤k≤m

σ 6
k

2 · 123β2
3,k

,

where σ 2
k = Var(ξk). Indeed, since ε(t) → 0 as t → ∞, there exists t0 > 0 such

that ε(t0) ≤ ε0. One may then extend ε(t) from [t0,∞) as a constant ε(t) = ε(t0)

on [0, t0], and apply the assertion to the new function.
Put T1 = σ 2

0 /(6β3,0) and take a sequence tn ≥ nT1 as in Corollary 3.5 for the
function 2ε(t), so that:

(a) |v(tn)|2 ≥ 1 − 2ε(tn).
(b) For each t ≥ T1 with the property |v(t)|2 > 1 − 2ε(t), there exists n such

that tn ≤ t ≤ tn + 2
σ0

√
12 ε(tn).

Since the values tn grow linearly (at worst), using the monotonicity of ε(t), the
hypothesis (1.5) implies that

(4.1)
∞∑

n=1

ε(tn)
m
2 < ∞.

Now, fix a parameter A > 2. For t large enough, we have Aε(t) < 1, in which
case the property |uα(t)|2 ≥ 1 − Aε(t) implies |vk(αt)|2 ≥ 1 − Aε(t) for each
k ≤ m. Let us apply the second part of Proposition 3.4 with ε = Aε(tn) and T = tn,
where n is large enough so that tn ≥ maxk≤m σ 2

k /(6β3,k) and Aε(tn) < 1. The
inequality (3.4) then gives that the measure

Pn = mes
{
α ∈ (0,1)m : ∣∣uα(tn)

∣∣2 ≥ 1 − Aε(tn)
}

is bounded by

mes
{
α ∈ (0,1)m : ∣∣vk(αktn)

∣∣2 ≥ 1 − Aε(tn) for each k ≤ m
}

=
m∏

k=1

mes
{
αk ∈ (0,1) : ∣∣vk(αktn)

∣∣2 ≥ 1 − Aε(tn)
}

=
m∏

k=1

1

2tn
mes

{
t ∈ [−tn, tn] : ∣∣vk(t)

∣∣2 ≥ 1 − Aε(tn)
} ≤ Bm(

Aε(tn)
)m

2 ,

where B = maxk 24
√

6β3,k/σ
3
k . Hence, according to (4.1),

∑∞
n=1 Pn < ∞. Apply-

ing the Borel–Cantelli lemma, it follows that, for almost all α ∈ (0,1)m, for all
n ≥ nα , we have

(4.2)
∣∣uα(tn)

∣∣2 < 1 − Aε(tn)

and then also∣∣f (tn)
∣∣2 = ∣∣v(tn)

∣∣2∣∣uα(tn)
∣∣2 < 1 − Aε(tn) < 1 − 2ε(tn).
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Our next step is to extend this inequality to all t large enough, by replacing tn
with t on both sides. Given t ≥ T1, consider the two cases.

Case 1. If |v(t)|2 ≤ 1 − 2ε(t), then also |f (t)|2 ≤ 1 − 2ε(t).
Case 2. If |v(t)|2 > 1 − 2ε(t), we apply property b) and choose n such that

tn ≤ t, |t − tn| ≤ C
√

ε(tn), C = 2

σ0

√
12.

At this point, we apply Lemma 4.1 to the c.f. u = uα , which gives

1 − ∣∣uα(t)
∣∣2 ≥ 1

2

(
1 − ∣∣uα(tn)

∣∣2) − b2|t − tn|2, b2 =
m∑

k=1

σ 2
k .

By (4.2), 1 − |uα(tn)|2 > Aε(tn), while |t − tn| ≤ C
√

ε(tn). Hence

1 − ∣∣uα(t)
∣∣2 ≥ 1

2

(
A − 2b2C2)

ε(tn).

Choosing A to be sufficiently large, the coefficient in front of ε(tn) can be made
as large, as we wish. Since also ε(tn) ≥ ε(t), we obtain that |uα(t)|2 ≤ 1 − 2ε(t)

for all t sufficiently large, and then again |f (t)|2 ≤ 1− 2ε(t). Finally, 1−|f (t)| =
1−|f (t)|2
1+|f (t)| ≥ ε(t), which is the required inequality. �

5. Relationship with Diophantine inequalities. One may apply Theo-
rem 1.4 with

ε(t) = 1

1 + t
2
m (log(e + t))

2
m

+δ
,

and then we get the following.

COROLLARY 5.1. Given δ > 0, for almost all α ∈R
m and t ≥ tα ,

(5.1)
∣∣f (t)

∣∣ ≤ 1 − t−
2
m (log t)−

2
m

−δ.

Let us now describe the relationship between Diophantine inequalities and
Theorem 1.4 specialized to the summands ξk with a symmetric Bernoulli dis-
tribution on {−1,1} [this will help us see, in particular, that the parameter δ

may not be removed from (5.1)]. In this case, the c.f. of X is given by f (t) =
cos(t) cos(α1t) . . . cos(αmt).

The property that the system (1.6) has only finitely many rational solutions pk/q

may be written as

(5.2) max
k≤m

‖qαk‖ ≥
√

ε(q) for all q ≥ q0 (i.e., large enough),
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where ‖x‖ denotes the closest distance from a real number x to integers. Assuming
for simplicity that αk ∈ (0,1), the above may be extended to all real t ≥ q0 as the
the relation

(5.3) ‖t‖2 + ‖tα1‖2 + · · · + ‖tαm‖2 ≥ 1

4
ε
(
q(t)

)
,

where q(t) denotes the closest integer to t [for definiteness, let q(t) = q in case
t = q + 1/2]. Indeed, write t = q + γ , |γ | = ‖t‖, with q = q(t). If ‖t‖ ≥ cε(q),
c > 0, then

M(t) ≡ max
{‖t‖,‖tα1‖, . . . ,‖tαm‖} ≥ cε(q).

Let now ‖t‖ < cε(q). By the assumption, ‖qαk‖ ≥ ε(q) for some k ≤ m. Using
the elementary inequalities ‖x‖ ≤ |x| and |‖x‖ − ‖y‖| ≤ ‖x − y‖ (x, y ∈ R), we
conclude that tαk = qαk + γαk satisfies

‖tαk‖ ≥ ‖qαk‖ − ‖γαk‖
≥ ‖qαk‖ − |γαk| = ‖qαk‖ − ‖t‖αk ≥ (1 − cαk)ε(q).

Here, 1 − cαk = c for c = 1
1+αk

, and then ‖tαk‖ ≥ cε(q) in both cases. Hence

M(t) ≥ 1

1 + αk

ε(q) ≥ 1

2
ε(q),

thus proving (5.3). Note that this inequality with integer values t = q returns us to
(5.2) with an additional factor 1

2 on the right-hand side.
Using | cos(πx)| ≤ exp{−π2‖x‖2/2}, from (5.3), we then obtain that

∣∣f (πt)
∣∣ ≤ exp

{−π2ε
(
q(t)

)
/8

} ≤ 1 − cε
(
q(t)

)
,

which is a slightly modified conclusion of Theorem 1.4. The argument may easily
be reversed. Starting from |f (t)| ≤ 1 − ε(t), for the values t = πq with integer q

we then have

1 − ε(πq) ≥ ∣∣f (πq)
∣∣ = (1 − δ1) · · · (1 − δm) ≥ 1 − (δ1 + · · · + δm),

where δk = 1 − | cos(πqαk)|. That is, ε(πq) ≤ δ1 + · · · + δm. Using another in-

equality 1 − | cos(πx)| ≤ π2

2 ‖x‖2, we have δk ≤ π2

2 ‖qαk‖2, and thus

ε(πq) ≤ π2

2

m∑
k=1

‖qαk‖2 ≤ mπ2

2
max
k≤m

‖qαk‖2.

So, we return to (5.2) with the function ε(πq) up to an m-dependent factor.
This shows that the Bernoulli case in Theorem 1.4 may be rephrased as the

statement that, under the condition (1.5), the property (5.2) holds true for almost
all α ∈ (0,1)m.
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In the other case,
∑∞

q=1 ε(q)
m
2 = ∞, the “divergence” (more difficult) part of

Khinchine’s theorem asserts that (5.2) holds true for almost no α (cf. [6, 10, 11]).
In particular, given c > 0, for almost all α, the inequality

max
k≤m

‖qαk‖ < c(q logq)−
1
m

has infinitely many integer solutions q > 1. Equivalently, the inequality |f (t)| >

1− t− 2
m (log t)− 2

m is fulfilled for infinitely many integer multiples of 2π . Therefore,
the parameter δ may not be removed from (5.1).

Let us mention that, in connection with Diophantine inequalities, the proper-
ties of the c.f.’s such as 1

1−|f (t)| = O(tr) (under the name “weak Cramér”) were
recently considered in [1]; see also [3].

6. Berry–Esseen inequality for Edgeworth corrections. Let us now con-
sider the i.i.d. r.v.’s X,X1,X2, . . . with mean zero, standard deviation σ > 0 and
c.f. f (t). The closeness of the distribution functions Fn of the normalized sums
Zn to the Edgeworth correction �s of a given integer order s ≥ 3 in terms of the
Kolmogorov distance

�(s)
n = sup

x

∣∣Fn(x) − �s(x)
∣∣, n = 1,2, . . . ,

essentially depends on the behavior of f (t) on large intervals of the real line. This
may be seen from the following statement.

LEMMA 6.1. Assume that βs+1 = E |X|s+1 is finite. Then, for all T ≥ t0 =
(σ 2/βs+1)

1
s−1 , with some constant cs > 0 depending on s only, we have

(6.1) cs�
(s)
n ≤ βs+1

σ s+1 n− s−1
2 + 1

T σ
√

n
+

∫ T

t0

|f (t)|n
t

dt.

The derivation of similar inequalities can be found in [8, 9], with final formu-
lations which often assume the Cramér condition. For completeness, we include a
standard argument based on the general Berry–Esseen bound.

PROOF. Let F be a distribution function, and G be a differentiable function
of bounded variation such that G(−∞) = 0, G(∞) = 1, supx |G′(x)| ≤ D. The
Berry–Esseen bound asserts that, for all T > 0,

(6.2) c sup
x

∣∣F(x) − G(x)
∣∣ ≤

∫ T

0

|f (t) − g(t)|
t

dt + D

T

with some absolute constant c > 0, where

f (t) =
∫ ∞
−∞

eitx dF (x), g(t) =
∫ ∞
−∞

eitx dG(x)

are corresponding Fourier–Stieltjes transforms (cf. [3, 7–9]).
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One may apply (6.2) with Fn in place of F and G = �s . The Fourier–Stieltjes
transform of Fn is the c.f. of Zn given by fn(t) = f ( t

σ
√

n
)n, while, according to

(6.1), the Fourier–Stieltjes transform of �s is

gs(t) = e−t2/2
∑ 1

k1! . . . ks−2!
(

γ3

3!
)k1 · · ·

(
γs

s!
)ks−2

n−j/2σ−k (it)k.

Here, the summation is running over all nonnegative integers k1, . . . , ks−2 such
that k1 + 2k2 + · · · + (s − 2)ks−2 ≤ s − 2, with k = 3k1 + · · · + sks−2 and j =
k1 + 2k2 + · · · + (s − 2)ks−2. Note that �s has density (i.e., derivative) described
by a similar expression

ϕs(x) = ϕ(x)
∑ 1

k1! . . . ks−2!
(

γ3

3!
)k1 · · ·

(
γs

s!
)ks−2

n−j/2 σ−kHk(x).

Thus, by (6.2), for any T1 > 0,

(6.3) c�(s)
n ≤

∫ T1

0

|fn(t) − gs(t)|
t

dt + 1

T1
sup
x

∣∣ϕs(x)
∣∣.

Some general properties of gs and its closeness to fn can be stated in terms

of the Lyapunov coefficients Lp = βp

σp n−p−2
2 , where βp = E |X|p . We refer to the

following (cf., e.g., [4]):

(6.4)
∣∣fn(t) − gs(t)

∣∣ ≤ CsLs+1 min
(
1, |t |s+1)

e−t2/8 for |t | ≤ 1/L3

with some constant Cs depending on s only. Moreover, if Ls+1 ≤ 1, then

(6.5)
∣∣gs(t)

∣∣ ≤ CsLs+1 e−t2/8 for |t |L
1

3(s−1)

s+1 ≥ 1/8,

and supx |ϕs(x)| ≤ Cs . In addition, without any condition on Ls+1,∫ ∞
−∞

∣∣ϕs(x) − ϕ(x)
∣∣dx ≤ s

√(
3(s − 2)

)! max
{
L

1
s−1
s+1,L

s−2
s−1
s+1

}
.

The latter implies a rough upper bound

(6.6) �(s)
n ≤ Cs max{1,Ls+1},

which may be used in the (noninteresting) case where Ls+1 is large.
Put

T0 = L
− 1

s−1
s+1 = σ

s+1
s−1 β

− 1
s−1

s+1

√
n = t0 σ

√
n.

Since the function p → L
1

p−2
p is nondecreasing in p > 2, we have L3 ≤ L

1
s−1
s+1.

Therefore, the bound (6.4) holds true on the smaller interval |t | ≤ T0. Thus, in case
Ls+1 ≤ 1, that is, if T0 ≥ 1, (6.3) yields

(6.7) cs�
(s)
n ≤ Ls+1 + 1

T1
+

∫ T1

T0

|fn(t) − gs(t)|
t

dt, T1 ≥ T0,
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with some constant cs > 0 depending on s only. Moreover, (6.5) gives
∫ T1

T0

|gs(t)|
t

dt ≤ Cs

∫ ∞
T0

e−t2/8 dt < Cs

√
2πe−T 2

0 /8 <
C′

s

T s−1
0

.

As a result, (6.7) is simplified to

cs�
(s)
n ≤ Ls+1 + 1

T1
+

∫ T1

T0

|f (t/σ )|n
t

dt,

which continues to hold in case Ls+1 ≥ 1 as well, due to (6.6). Finally, putting
T1 = T σ

√
n and changing the variable, we arrive at (6.1). �

7. Theorem 1.2 and its extension. Keeping the assumptions of the previous
section, Lemma 6.1 may be used to obtain a variety of bounds on �

(s)
n depending

on the asymptotic behavior of f (t) at infinity. First, let us describe one general
situation, still assuming that X has a finite absolute moment βs+1 = E |X|s+1 of
an integer order with s ≥ 3.

PROPOSITION 7.1. Suppose that, for some p > 0 and q ∈ R,

(7.1)
1

1 − |f (t)| = O
(
tp(log t)q

)
as t → ∞.

Then

(7.2) �(s)
n = O

(
n

− 1
2 − 1

p (logn)
q+1
p + n− s−1

2
)
.

PROOF. Suppose that q �= 0. By the assumption, |f (t)| < 1 for all t large
enough and hence for all t > 0 (since otherwise X1 would have a lattice distribu-

tion). Moreover, for all T ≥ t0 = ( σ 2

βs+1
)

1
s−1 , we have

M(T ) = max
t0≤t≤T

∣∣f (t)
∣∣ ≤ 1 − a

T p logq(2 + T )

with some constant a > 0 which does not depend on T . Using 1 − u ≤ e−u, we
then get

∣∣f (t)
∣∣n ≤ M(T )n ≤ exp

{
− na

T p logq(2 + T )

}
,

so that ∫ T

t0

|f (t)|n
t

dt ≤ exp
{
− na

T p logq(2 + T )

}
log(T /t0).

Thus, by (6.1),

(7.3) cs�
(s)
n ≤ βs+1

σ s+1 n− s−1
2 + 1

T σ
√

n
+ exp

{
− na

T p logq(2 + T )

}
log(T /t0).
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Let us take T = Tn = (bn)1/p(logn)−r with r = q+1
p

and b > 0. Then

na

T
p
n logp(2 + Tn)

≥ apq

b
logn + O(log logn) ≥ (m + 1) logn,

where the last inequality holds true with b = apq/s for all n large enough. In this
case, the last term in (7.3) is estimated from above by O(n−(s−2)). In case q = 0
with choice r = 1/p, we clearly arrive at the same conclusion. Therefore, (7.3)
yields

�(s)
n = O

(
n− s−1

2 + 1

Tn

√
n

)
= O

(
n− s−1

2 + n
− 1

p
− 1

2 (logn)r
)
. �

Combining Proposition 7.1 with Corollary 5.1, we arrive at the following more
general variant of Theorem 1.2. Suppose that X admits the representation (1.1)
for independent r.v.’s ξk having nondegenerate distributions with mean zero. To
emphasize the dependence on the coefficients, we write

�(s)
n (α) = sup

x

∣∣P{
Zn(α) ≤ x

} − �s(x)
∣∣

where α = (α1, . . . , αm) ∈ R
m and

Zn(α) = X1 + · · · + Xn

σ
√

n
, σ 2 = Var(X) = Var(ξ0) +

n∑
k=1

α2
k Var(ξk).

THEOREM 7.2. If E |ξk|s+1 < ∞ (0 ≤ k ≤ m) for some s = 3, . . . ,m+1, then
for almost all α ∈ R

m, as n → ∞ we have

(7.4) �(s)
n (α) = O

(
n− s−1

2
)
.

Moreover, in case s = m + 2, the relation (1.3) holds true with any δ > 0.

Indeed, the hypothesis (7.1) is fulfilled with p = 2
m

and q = 2
m

+δ with arbitrary
δ > 0 (Corollary 5.1). In this case, relation (7.2) reduces to

�(s)
n = O

(
n−m+1

2 (logn)
q+1
p + n− s−1

2
)
.

If s < m + 2, the latter leads to (7.4), and we get (1.3) in case s = m + 2, where o

may replace O by choosing a smaller value of δ.

8. Theorem 1.3 and its extension. Similarly to Theorem 7.2, let us now de-
rive a more general variant of Theorem 1.3.

THEOREM 8.1. If E |ξk|s+1 < ∞ (0 ≤ k ≤ m) for some s = 3, . . . ,m+1, then
as n → ∞
(8.1)

∫
(−1,1)m

�(s)
n (α) dα = O

(
n− s−1

2
)
.

Moreover, in case s = m + 2, the relation (1.4) holds true.
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PROOF. The c.f. of X in (1.1) is given by f (t) = v0(t)v1(α1t) · · ·vm(αmt),
where vk denotes the c.f. of ξk . One may appeal to Lemma 6.1 once more in order
to estimate the quantity �

(s)
n (α) integrally over the cube (−1,1)m. To simplify the

Berry–Esseen inequality (6.1), note that σ 2 = Var(X) ≥ σ 2
0 = Var(ξ0) while, by

Jensen’s inequality,

βs+1 = E |X|s+1 ≤ β ≡ (m + 1)s+1
m∑

k=0

E |ξk|s+1.

Therefore, (6.1) yields, for any T ≥ t1 = (σ 2
0 /β)1/(s−1),

(8.2) c

∫
(0,1)m

�(s)
n (α) dα ≤ n− s−1

2 + 1

T
√

n
+

∫
(0,1)m

∫ T

t0

|f (t)|n
t

dt dα,

where c is a positive constant which does not depend on n. Changing the order of
integration, the last double integral may be written as

Jn(T ) =
∫ T

t0

|v0(t)|n
t

m∏
k=1

ψk,n(t) dt, ψk,n(t) = 1

t

∫ t

−t

∣∣vk(s)
∣∣n ds.

Here, ψk,n are connected with concentration functions for the distributions of
sums of independent copies of ξk . Recall that, for the c.f. u of any r.v. ξ , for any
t > 0, we have, up to an absolute constant c > 0,

1

t

∫ t

−t

∣∣u(s)
∣∣2 ds ≤ cQ(ξ,1/t) where Q(ξ,h) = sup

x
P{x ≤ ξ ≤ x + h}

(cf. [9], page 60, Lemma 7). Therefore, for any integer N ≥ 1,

1

t

∫ t

−t

∣∣u(s)
∣∣2N

ds ≤ cQ(SN,1/t)

for the sum SN = (η1 −η′
1)+· · ·+(ηN −η′

N), where ηj , η
′
j are independent copies

of ξ . On the other hand, if the distribution of ξ is nondegenerate, then

Q(SN,h) ≤ c
h + 1√

N
, h ≥ 0,

where the constant does not depend on h and n ([9], page 76, Theorem 11). These
results ensure that ψk,n(t) ≤ c√

n
for all t ≥ t1 with n ≥ 2. Therefore,

Jn(T ) ≤ c

nm/2

∫ T

t0

|v0(t)|n
t

dt.

Now, putting In(t) = ∫ t
0 |v(s)|n ds and using again the bound ψ0,n(t) = 1

t
In(t) ≤

c√
n

, we have, integrating by parts,

∫ T

t0

|v(t)|n
t

dt =
∫ T

t0

1

t
dIn(t) ≤ ψ0,n(T )+

∫ T

t0

ψ0,n(t)

t
dt ≤ c√

n
+ c√

n
log(T /t0).
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As a result, Jn(T ) ≤ cn−(m+1)/2 log(T e/t0), and (8.2) leads to

c

∫
(−1,1)m

�(s)
n (α) dα ≤ n−m+1

2 + 1

T
√

n
+ n−m+1

2 logT ,

where c > 0 does not depend on n. Choosing T = Tn ∼ nm/2, the latter bound
yields (8.1) in the case s ≤ m + 1 and (1.4) for s = m + 2. �
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