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Non-Uniform Bounds in the Poisson Approximation
With Applications to Informational Distances I

S. G. Bobkov"™, G. P. Chistyakov, and F. Gotze

Abstract— We explore asymptotically optimal bounds for devi-
ations of Bernoulli convolutions from the Poisson limit in terms of
the Shannon relative entropy and the Pearson xz-distance. The
results are based on proper non-uniform estimates for densities.
This part deals with the so-called non-degenerate case.

Index Terms— Poisson approximation, Rényi, xz-divergence.
I. INTRODUCTION
ET Xi,..., X, be independent Bernoulli random vari-
ables taking the two values, 1 (interpreted as a success)

and O (as a failure) with respective probabilities p; and
qj = 1— pj. The total number of successes

W=2X + +X,

takes values k = 0, 1, ..., n with probabilities
1— _
P{W =k} => pilq, " ... pirg, o, (1.1)
where the summation runs over all 0-1 sequences ¢y, ..., &,

such that ¢ +- - -+¢, = k. Although this expression is difficult
to determine in case of arbitrary p; and large 7, it can be well
approximated by the Poisson probabilities under quite general
assumptions. Putting

A=pi+-+p,

let Z be a Poisson random variable with parameter 4 > 0 (for
short, Z ~ P;), i.e.,
k

2
e =P{Z =k} = Fﬂ’

It is well-known for a long time that, if max; p; is small,
the distribution P, approximates the distribution Py of W,
which may be quantified by means of the total variation
distance

d(W,Z) = ||Pw — PillTv

k=0,1,...

o0
= 2 sup [P(W e A} —P(Z e A}l = > |wp — vl
ACZ k=0
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where wy = P{W = k}. In particular, based on Stein-Chen’s
method, there is the following two-sided bound due to Barbour
and Hall involving the functional

= pite oy

Theorem I.1 [1]. One has
-

1 1 -
S min(l,1/) 2 = 3d(W, 2) =< Tezg.

1.2)

Here, the parameter 1, or more precisely — the ratio 1,/4
(for 1 bounded away from zero), plays a similar role as the
Lyapunov ratio L3 in the central limit theorem.

In the i.i.d. case with p; = 4/n and fixed 1 > 0, both sides
of (I.2) are of the same order 1/n. In the case 1 < 1, the
upper bound in (I.2) is sharp also in the sense that the second
inequality becomes an equality when p; = 4, p; = 0
Q=j=n.

Theorem 1.1 refined many previous results in this direction,
starting from bounds for the i.i.d. case by Prokhorov [17] and
bounds for the general case by Le Cam [14]. In particular, Le
Cam obtained the upper bound

d(W,Z) < 2. (1.3)

For large A Kerstan et al. [12], respectively Chen [4] improved
these bounds to

2.1 1
dW,Z) < — Ay if maxp; < —,
A j<n 4

respectively
10
dW,2z) < v 2.

See also [10], [23], [21], [18], [19], [2] and the references
therein. A certain refinement of the lower bound in (I.2) was
obtained by Sason [20].

While (1.2) provides a sharp estimate for the total variation
distance, one may wonder whether or not similar approxima-
tion bounds hold for the stronger informational distances. As a
first interesting example, one may consider the relative entropy

o0

wi

DW||Z) = E wklog;,
k=0

often called the Kullback-Leibler distance, or an informational
divergence of Py from P,. It dominates the total variation
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distance in view of the Pinsker inequality 2 D(W||Z) >
d(W, Z)?. In this context, lower and upper bounds for the
relative entropy were studied by Harremoés [6], [7], and
Harremoés and Ruzankin [9]. In particular, in the i.i.d. case
pj = p, it was shown in [9] that

—log(1 — p) — 14 p?
ogl—p)—p P~ pwiiz)
2 n(l—p)?
—log(l—=p)—p (+p)p’
- 2 4n (1 — p)3’
If p = A/n with a fixed (or just bounded) value of 4,

these estimates provide the following rate for the Poisson
approximation

2

D(W||Z) = 42_,12 +0(1/n) as n— oco. (L4)

The general non-i.i.d. scenario (with not necessarily equal
probabilities p;) has been partially studied as well. A simple
upper estimate D(W||Z) < ,, analogous to Le Cam’s bound
(I.3), may be found in [6], cf. also Johnson [11]. It is however
not so sharp as (I.4). A tighter upper bound

1< P
DW||Z) < = /
( ”)—sz_;l—p,

(1.5)

was later derived by Kontoyiannis, Harremoé&s and John-
son [13]. If p; = A/n with 4 < n/2, it yields D(W||Z) <
242/n? reflecting a correct decay with respect to n up to a
constant, according to (I.4). Nevertheless, in the general case,
Pinsker’s inequality and the bounds (I.2)-(I.3) suggest that a
further sharpening such as

D(W||Z) < A;75 (1L6)

might be possible by involving A, rather than the functional
Az = P13 + o+ pg. To compare the two quantities, note
that i% < A43 (by Cauchy’s inequality). Hence, the inequality
(1.6) would be sharper compared to (I.5) modulo a 1-dependent
factor. An upper bound such as (I.6) may also be inspired by
the lower bound

D(W||Z) > % ('1—2)2 (L.7)

A
recently derived by Harremoés, Johnson and Kontoyiannis [8].
It is consistent with (I.4) and also shows that the constant %
is best possible.

As it turns out, (I1.6) does hold in the so-called non-
degenerate situation, and in essence, (I.7) may be reversed
(we say that the range of (4, 12) is non-degenerate, if 1, < k1
with x € (0,1), or if 2 < Ao, implicitly meaning that the
resulting inequalities may contain x or A¢ as fixed parameters).

In fact, one can further sharpen (I1.6) by replacing the
relative entropy with the Pearson y2-distance, as well as with
other Rényi/Tsallis distances. To avoid technical complica-
tions, let us restrict ourselves to the y>-divergence which is
given by

— (wr — vk)?
12(W,Z) = z —_—.
k=0 Uk
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It is a divergence type quantity which dominates the relative

entropy: x2(W,Z) > D(W||Z). For a general theory of

informational distances, we refer interested readers to the

recent review by van Erven and Harremogs [5]; an additional

material may be found in the books [15], [16], [22], [11].
Here, we reverse the bound (I.7) and prove:

Theorem L.2. If 1, < 1/2, then with some absolute constant ¢

Ao\ 2
pWIiz) = P W.2) =) a®)

The condition 4, < A/2 is readily fulfilled as long as
max; p; < % (note that, if 1 < % then necessarily p; < %
s0, A2 < A/2). Similar bounds as in (I.8) remain to hold under
the weaker assumption 1, < x4 with a constant ¢ = ¢
depending on ¥ € (0, 1), cf. Proposition VI.2 below. This
assumption may actually be replaced with the requirement that
A is bounded. More precisely, in the second part of the paper it
will be shown that without any restriction, up to some universal
factors, we have

A2\2
D(W||Z) ~ (7) (1 + log F),
o2
©Ww.2) ~ () VF.
where
_ max(1, 1)
~ max(1, 41— A)
This shows that in general the bound (I.7) cannot be
reversed.
For the study of the asymptotic behavior of D and y? in

terms of A and A,, we derive new bounds for the difference
between densities of W and Z, that is, for

Ak = wi — vx = P{W =k} — P{Z = k).

To this aim, one has to consider different zones of A’s,
distinguishing between “small” and “large” values. The case
A< % can be handled directly leading to the non-uniform
density bound

[Ag] < 24, Plk—2 < Z <k).

It easily yields sharp upper bounds for all distances as in
Theorems I.1-1.2 in the case of small 4, at least up to numerical
factors (cf. Propositions I11.3 and I11.4).

To treat larger values of 1, a more sophisticated analysis in
the complex plane is involved — using closeness of generating
functions associated with the sequences wy and vg. In partic-
ular, the following statement may be of independent interest.

Theorem 1.3. For all integers k > 0,

|Aol < 3Jae™,  |Axl <32 (k=1

Moreover, putting p = (1 — 12) min{%, %}, k > 1, we have

1.9)

— 2
|Akl < 7«@(%) Jamin {1, p" 2} P{Z =k}

3

P
21k szin{l,p_Z} P(Z = k). (1.10)
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Let us clarify the meaning of the last bound, assuming that
A2 < kA with some constant ¥ € (0, 1). If k <21 and 4 > %,
then with some ¢ = ¢, > 0, it gives

(k —2)*

y)
- +1) P(Z = k),

Akl < e =

while for k > /. > %, we also have
k3
Akl = e (3) 2Pz =k,

Since |k — A| is of order at most v/ on a sufficiently large
part of Z measured by P;, these non-uniform bounds explain
the possibility of upper bounds in Theorem L.2.

The paper is organized as follows. First we describe several
general bounds on the probability function of the Poisson law
(Section II). In Section III, we consider the deviations Ay and
prove Theorem 1.2 in case 4 < % Sections IV-V are devoted
to non-uniform bounds and the proof of Theorem 1.3, which is
used to complete the proof of Theorem 1.2 for 4 > % Uniform
bounds for large 1 are discussed in Section VII. There we shall
demonstrate that in a typical situation, when the ratio 1,/4 is
small, the Poisson approximation considerably improves the
rate of normal approximation described by the Berry-Esseen
bound in the central limit theorem.

II. GAUSSIAN TYPE BOUNDS ON POISSON PROBABILITIES

When bounding the Poisson probabilities

k

yl
uk:f(k)zp{zzk}zﬁe*i, k=0,1,...,

with a fixed parameter 4 > 0, it is convenient to use the well-
known Stirling-type two-sided bound:

V2m ki ek << ek¥tie  (k>1). (LD

In particular, it implies the following Gaussian type estimates.

Lemma II.1. Forallk > 1,

1
k) < . 11.2)
AL 2rk
Moreover, if 1 < k < 24, then
1 k=n)? 1 (k=)?
—e 7 < f(k) < e ¥ (I1.3)
ek F& 2k
Here, the lower bound may be improved in the region k > /1 as
1 w=)?
k) > ——e 7, (I1.4)
1 ek
Proof. Applying the lower estimate in (II.1), we get
1 ANk
k) < ——— k7 (—) (IL5)
Q) G X
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where
h(@) =60 —(1+6)log(l+0).

The function A(#) is concave on the half-axis 8 > —1, with
h(0) = 1’ (0) = 0. Hence, h(0) < O for all &, thus proving the
first assertion (I1.2).

Assuming that 1 < k < 24 (with 1 > %), we necessarily
have |#| < 1. In this interval, consider the function 7.(0) =
h(0) 4 cH? with parameter % < ¢ < 1. The second derivative

1
10 =gt (Fl<0<D)
is vanishing at the point 6y = z_lc — 1, while 7//(—1) = —o0.

This means that T, is concave on [—1,0y] and convex on
[6o, 1]. Since also 7.(0) = T/(0) = 0, we have T.(0) < 0
for all § € [—1, 1], if and only if this inequality is fulfilled at
0 = 1. But Tc(1) = 1 —2log2 + ¢, so the optimal value is
c=2log2—1=0.387... > % Hence, h(0) < —% 62, and we
arrive at the upper bound in (IL.3).

Similarly, applying the upper estimate in (II.1), we get

Nk 1,
K > okt (_) _ O
flk) = ok . "
where 0 = k% Choosing ¢ = 1, consider the function

T(0) = h(9) + 62 in the interval |@] < 1. Since T”(—%) =0,
it is concave on [—1, —%] and is convex on [—%, 1]. Since
TO) = T'(0) = 0 and T(—1) = 0, this means that
6 = 0 is the point of minimum of 7. Therefore, T(9) > 0,
that is, h(9) > —6? for all & € [—1, 1], giving the lower
bound in (I1.3).

Finally, to get the refinement (IL.4) in the region k > 4,
consider the function 7(0) = h(0) + %(92 for & > 0. Since
T(0) =0 and T'(#) = 0 — log(1 + 0) > 0, this function is
increasing. Therefore, T(0) > 0, that is, h(0) > —% 62 for all
0 >0. O

III. ELEMENTARY UPPER BOUNDS

We keep the same notations as before; in particular,

while
1— —¢n
P{W =k} = pr‘ql *T‘...]Jfl”q,lZ é

with summation over all 0-1 sequences ¢ = (&1,...,&,)
such that ¢; + --- + &, = k. Clearly, P{W = k} = 0 for
k > n. To eliminate this condition, one may always assume
that n is arbitrary, by extending the sequence (X1, ..., X,) to
(X1,...,Xy) in case n < k with p,y; =--- = px = 0. This
does not change the value of W.

First, let us consider the probability that W equals
k=0.

Lemma IIL1. Ifmax; p; < %, then

0<PZ=0}—P{W=0} < hhe "
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Proof. Expanding the function p — —log(l — p) near zero
according to the Taylor formula, write

n
PiW=0}=[]qgj=e"", (IIL.1)
j=1

where
|
S:Z; Jhe A=ptot
5=

Since 4; < (max; pj)s’2 J2 <2762 )5 for s > 2, we have

7(3
s < zzz = (4log2 —2)J» < Ao.  (IIL2)
Hence
P{Z=0}—-P(W=0=e*(1—e ) <e”5.

O

Note that the condition of Lemma III.1 is fulfilled, if 1 < %
In that case, the upper bound of the lemma may be reversed
up to a numerical factor, for example, in the form

P{Z =0} —P{W =0} > 047 Jre "
Moreover, one can show that
P(W=1}—-P{Z=1} > 0421, %,
and if 1 < 1/8, then also
17
P{Z=2}-P{W=2 — A
{ } =P } > 9 2e”

The value k = 2 turns out to be most essential for obtaining

lower bounds, since it immediately yields d(W, Z) > ¢/, and

DWI||Z) > ¢ (All—z)2 with some absolute constant ¢ > 0.
Returning to upper bounds, recall the notation

Ay = P{W =k} — P{Z = k).

In order to involve the values k > 1, we need the following:

Lemma IIL2. Ifmax; p; < %, then
Al < a(A+e—1)e (I1L.3)
Moreover, for any k > 2,
/1]( e/l -1 /lk_l /11(—2 )
& = 22 (5 + TR 2)!)e_ﬂ'
Proof. Denote by 7 the collection of all tuples ¢ = (¢, ..., &)

with integer components &; > 0 such ¢+ - -4+¢, = k, and let
J = {e € I : max; ¢; < 1}. Representing the Poisson random
variable Z ~ P, as Z = Z1 + --- + Z, with independent
summands Z; ~ P,,, we have that, forany k =0, 1, ...,

i~ PP
) .
oty Il

el . gy!
ecel 1 n

P(Z =k} =

Hence, we may start with the formula

e’ ZEI - > UV,

cel celJ

(I11.4)
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where
Us=pit..pi, Ve=gqy . g™
For a 0-1 sequence ¢ = (¢1,...,¢&,) € J, put
Le=¢1 p1+--+eéeupn.

By the Taylor formula,

o n
_ 1
vi=e% 5= E 5 E (1 —¢j) pj.
s=1 j=1

Similarly to (IIT.1)-(II1.2), we have

o0 n
1 N
Se=d=Lot - 2> (=2 p;
s=2 j=1
=A—L,+601,
with some 0 < @ < 1. Therefore,
Vo =elo 0% > 14 (L, —022) > 1+ L, — As.
Moreover, since L, < min(4, k), we have

eLL‘ -1 emin(i,k) —1

<
L. — min(4,k)

= Ck, 2>
which in turn implies
etV <elr <1 + ek 2 L.
The two bounds give L, — A < Ve —1< ¢k,7 L, so that
\Us — e* UsV;| < 22U +cx, U L,

Next, applying the multinomial formula, we have

A A
U, < = —
: ! ]
eel cel 81 k!
and
n
3 i i+1 & n
ZUsLs = Z Zei Pil . Plg 11p,g p,g:f .- 'pfl

celJ i=1 eeJ
n
:Zpiz z pit.. i 1pfl++11-~-PZ"
i=1 cel, gi=1
Z 2 (O Pz -1 s
= Tk-Dl T E-Dr
Thus,
ﬂ.k ikfl
DU = UsVe| < /12( +ck47). (IIL5)
celJ ( - 1)'

The remaining terms participating in P(Z = k) correspond
to the tuples ¢ € [ with max; ¢; > 2, which is only possible
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for k > 2. In that case, restricting for definiteness to the
constraint &, > 2, we have

&n

Z Py pn
|

el onz2 erl. .. &yl
oAy et
s ™! it o=k €1l . ep—1!
I ot
e mt (k—m)!
L m=—2 k—m
<Y, (,5"_ 21 u(;fr:i)!
m=2
ik72
= Pn 2y
Similarly, for any i = 1,...,n,
Z pf‘ .. .pf,” /Ik—z
el =2 el ..ep! T P, *—2)0

and summing over i < n, we get

Py pi

... Pn

2 T ar sk
E1:...En-

cel, max ¢;>2 1 n

lk—2
k —2)I"

It remains to combine this bound with the bound (III.5) and
apply both in (IIT.4). Then we finally obtain that

k /kal k=2

Akl < A 4 1 4 ~4. (116
Akl < Z(k'+ckﬂm+ {kzz}m)e . (I11.6)

If k =1, then c;; <e—1, and we arrive at the ﬁrst inequality
(II1.3). In the case k > 2, one may use ck,; < T and then
we arrive at the second inequality of the lemma. U

Note that when A < %, we also have ¢; ; <2 (y/e—1), and
then (II1.3) may be replaced with a slightly better bound

A1l < (A +2(e—1)e "

Combining Lemmas II.1-1II.2 (cf. (II.6)), we thus obtain
the following non-uniform bound on the deviations of A.

(I1L.7)

Proposition IIL.3. Ifmax; p; < 5, then, forall k > 0,

A

IV lzzP{k—stsk}.

The estimates obtained so far are sufficient to establish
Theorem 1.2 in the case 1 < % In fact, one may weaken
the latter condition to max; p; < %, as shown in the next
statement. To compare the lower and upper bounds, we add the
lower bound (I.7) of Harremoés, Johnson and Kontoyiannis.

Proposition IIL.4. Ifmax; p; < % then
1 /42 A2
“(22Y < bw)2) < WZ<C(),
() = pwiz) = 2w 2) = (5

5287

where C,, depends on A > ( as an increasing continuous function
with Co = 2. In particular, if . < , then

AW, Z) < 15 (%)2

Proof. Applying Lemmas III.1-I11.2, we get

1
et (W, Z) < 1+I(/1+e—1)2
o
k! ik A1 =22
+ ;zk( TO G +(k—2)!)’
where ¢; = ¢
this sum results in
o k! /12]( 2C,‘L /12](—1 C% /121{—2 2/12](—2
1;‘ /l_k(ld_2+k!(k— D! k=D12 " kl(k—2)!
2Ci 12k73 i2k74
+ 2)
k—DIk=2)! " (k—2)!
Xk o k—1
A A
=z—wmz———
k! (k1)
o0 — X k=2
k
el Z (k 1)'+ Z(k 2)

k=3 k=4

+2cAZk(k 2),+z (k —1)(k o

which is the same as

ﬂ.kl
3¢t —1— 2 +42¢; (¢! —l)+c22(k+l)
k=1
kl o ik72

+2cﬂz(k+2)—+2(k+1>(k+2)7

= 3¢ =1 =1 +2c; (" — 1)
244 2440427
+ 2cje” 1 e e’.

Multiplying by A2, this gives the desired inequality

P2 W,2) < €= 22+ (4+e—1+B;

with

B, =22 Be* —1—=2)+24(e" —1)°
+2Q4+ M)t @ —D)+Q+41+2%) e
= 1Q=1=2)=2041-222e +4(1+ 1)

It is easy to check that % B, > 0, so that this function and
hence C, are increasing in A, with Co = By = 2.

For the range 4 < % the term e — 1 appearing in the
definition of C; may be replaced with 2 (/e — 1) (according
to the inequality (IIL.7)), which leads to the constant Ci,2 =
TG +2(/e—1))+%—-2/e+6e<15 O
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IV. GENERATING FUNCTIONS

The probability function f(k) = P{Z = k} of the Poisson
random variable Z ~ P, satisfies the equation 1f(k — 1) =
kf (k) in integers k > 1, which immediately implies

AER(Z + 1) = E Zh(2)

for any function & on Z (as long as the expectations exist).
This identity was emphasized by Chen [4] who proposed to
consider an approximate equality

AER(X + 1) ~ EXh(X)

as a characterization of a random variable X being almost
Poisson with parameter A. This idea was inspired by a similar
approach of Charles Stein to problems of normal approxi-
mation on the basis of the approximate equality EA'(X) ~
E Xh(X).

Another natural approach to Poisson approximation is based
on the comparison of characteristic functions. Since the ran-
dom variables W and Z take non-negative integer values,
one may equivalently consider their associated generating
functions.

The generating function for the Poisson law P; with para-
meter 4 > 0 is given by

pw) =Ew” = > P{Z=klw
k=0

n
=D = [T er ™D, (IV.1)

j=1

which is an entire function of the complex variable w.
Correspondingly, the generating function for the distribution
of the random variable W = X; + --- + X, in (I.1) is

gw)=Ew" = D PW =k} w
k=0

=[]+ pjw), (IV.2)

J=1

which is a polynomial of degree n. Hence, the difference
between the involved probabilities may be expressed via the
contour integrals by the Cauchy formula

Ay = P{W =k} — P{Z = k)
_ / 0 e —p@)diw), V)

where , is the uniform probability measure on the circle
|w| = r of an arbitrary radius r > 0.

Note that for w = €'’ with real ¢, the generating functions
¢ and g turn into the characteristic functions of Z and W,
respectively. Hence, closeness of the distributions of these
random variables may be studied as a problem of closeness of
their generating functions on the unit circle.

Let us now describe first steps based on the applica-
tion of the formula (IV.3). Given complex numbers a;, b;

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

(1 < j <n), we have an identity

n
ar...an—bi...by = > (@ —bp[]bi]]a
j=1

I<j I>j

(IV.4)

with the convention that [],_; by = 1 for j = 1 and [],. ;
a; =1 for j = n. It implies

n n n
[Tai=T12s| = D t1aj =i [T 100l ]l
b=1 j=1

j=1 I<j  I>j

According to the product representations (IV.1)-(IV.2) to be
used in (IV.3), one should choose here a; = gq; + pjw and
b = ePi®=1 with |w| = r. Then

lajl < qj+ pjr < P,

Ibj| = ePiRew—1) < ePir=1) Iv.5)
Therefore

n

18w) —p(w)l < > laj —bj| [T e
=1 I#]
n
— A1) z laj —bjle PiC=D  (1v.6)
j=1

To estimate the terms in this sum, consider the function

1
Cu)y=14u-— et = —uz/ e (1—1)dt (IV.7)
0

of the complex variable u, where the Taylor integral formula
is applied in the second representation. If Reu < 0, then
u? | = |u|* exp{r Reu} < |ul?, so,

1
€@l = 5 ul®>, Reu <0O. (IV.8)

In particular, for u = pj(w — 1) with w = cosf +isinf, we
have

lw — 1)% = (cos@ — 1)* +sin? 0 = 2(1 — cosb),
hence |&(u)| < p? (1 —cos#), and (IV.6) yields

lg(w) — p(w)| < D" 1E(pj(w — 1))

j=1
n
<({1- cos@)Zp? < (1 —cosb) ;.
j=1

Integrating over the unit circle in (IV.3), we then arrive at the
uniform bound:

Proposition IV.1. We have

sup |P{W =k} —P{Z =k}| < Ja.
k>0

(IV.9)

This is a weakened variant of Le Cam’s bound
IP{W € A} —P{Z € A}| < 12,

specialized to the one-point sets A = {k}. In order to get a
similar bound with arbitrary sets, or develop applications to
stronger distances, we need sharper forms of (IV.9), with the
right-hand side properly depending on k.
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V. PROOF OF THEOREM 1.3

Applylng (IV4) with aj = qj + p]w and bj — ep_j(wfl)
in (IV.3), one may write this formula as

Ay = P(W=k}—P{Z=k} = ZTj(k),

V.1)
=1
for all k =0,1, ... with
0 = [ wta-op [[o]a dew. ~2)
lwl=r I<j I>j

where the integration is performed over the uniform proba-
bility measure u, on the circle |w| = r. Let us write w =
r(cos® +isinf), |0| < =, and estimate |T; (k)| by replacing
the integrand by its absolute value. Thus, using (IV.5), we get
that |7 (k)| does not exceed

7ty =t 11”01 [T + prol dasw)
w|=r

I<j I>j
j—1

- r*k/ aj = byl exp{(reost = 1) 3 i}
jwl=r

=1

n
< ] la+ piwl dur(w)
I=j+1
j—1

= 7k exp{(r—l)Zpl}/ laj — bjl
I=1 |wl=r

i—1
50
x eXp{ — 2r sin® 3 ZPZ} H g + piw| dpy(w).
=1 I=j+1
Here, in order to estimate |a; —b/|, let us return to the function

&(u) introduced in (IV.7), which we need at the values u; =
pj(w —1) with |w| =r.

Case 1: r > 1. Since Reu; < p;(r — 1), we have, for any
t €(0,1),

2 tuj 2 tReu;
|uje"/|:|uj| el e
2 pitr—1 2 pir—1
< Jujl? et < el D,
so, by (IV.7),

laj —bjl = |E@))| < %p? w =17 P10,
Case 2: 0 <r < 1. Then Reu; <0, so, by (IV.8),
laj —bj| = [Ew))| < %p?lw— 1%,
Since |w — 1|> = (r — 1)?> + 4r sin*(8/2), we therefore
obtain from (V.2) that

2
091 = 22 R (= 107 L) +4r2(), (V3)

where

J n
Rj(r) =exp{(r —1) sz} H (g1 + pir)

I=1 I=j+1

5289

forr > 1,

j—1 n
Rj(r) =exp{(r — 1)2171} H (g1 + pir)

I=1 I=j+1

forr <1, and

1 4
Ijm(r) = E/
-

I

I=j+1

i—1
0 m 0 <
sini’ exp{—erinZE ;pl}

lgi + pir €]

q1 + pir

deo.

In order to estimate the last integrals for m = 0 and m = 2,
let us first note that

lg1 + pire® 1> = g + p? r? 4+ 2pigir cos6

50
= (q + pir)* —4 qip; r sin? >

4qpir

0
— 2(1 = 27
= (q1 + pir) (1 @+ pir)? sin 2).

Hence, using 1 —x < e™* (x € R), we have

. . dqipir ., 0\12
H H (1 — 72 Sin 5)
=41 =741 (g1 + pir)

0 < qpir
< ex {—2sin2— 7},
P 2 1:2-:11 (@ + pir)?

i + pir e’
qi + pir

(V.4)

so that

| 6 \m .20
Iim(r) < E/_” 2‘ exp{—2yj(r) s1n2§} do

sin —

L [T m 2 2
< 52 /,,T 16| exp{—pyj(r)e }de. (V.5)

Here we applied the inequalities %t <sint<t(0=<t=<7%)
and used the notation

j—1 n
pi(r) =r (sz + >

I=1 I=j+1

qipi )
(@i + pir)?/”

Thus, we need to bound y; from below. If » > 1, then
q1 + pir <r, hence

>

I=j+1

qpir 1
(@ +pir)> ~r

n
>

I=j+1

This gives

n
> am

j—1
1

. > —
SCEEDIWEED:
=1 I=j+1

J—1 n J
1 1
=2 p+= D> (p=pD) =< 2 (=}
=1 =1 =1

1 j—1 1j71 1 i 1
— (r_;)Zp,-}-;Zp,z—f-;Z(Pl—Pzz)—;ijj
I=1 I=1 I=1

1
- (4 =22 —=qjpj).

v
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In case r < 1, we use g; + p;r < 1, implying that Applying these bounds in (V.3), we therefore obtain that
n G - Ar=+1  —k 2. 1
Z ¢ f]i-lplr)2 = Z qipi- 701 = o P o ((r_ b mm{l, v 2}
1=j41 TP I=j+1

2
+ %rmin{l,w(r)_%}),

where 6, = 1 in case r > 1 and J, = e for r < 1. Summing

Therefore in this range we have a similar lower bound, namely

yj(ry=r Z pi+r Z qipi Zl\)/:/ejbi o el (R, one cam esamare [l Hom
I=j+1
=r ipz +r Z(pz - P — ri(m - A= 20t (% o= 0t o))
=1 =1 I=1 n \/56772 r min {1, V,(r)*%}), (V.6)
= —rpj+ ’”ZPIZ + ’”Z(Pl - i) Now, letting » — 0 in the case k = 0, (V.6) leads to
> r(A—22—q;p))

Aol < # Jae™t < 3)ye,
Since gjp; < %, both lower bounds yield . . - . .
and we obtain the first inequality in (I.9). Letting r | 1 in the

20 = YO -5 v =mint 1 Gy, kRO

Jern? » »
As a result, (V.5) simplifies to [Ak] < G loe™ < 3lpe”,
_ T 2 which is the second inequality in (1.9).
. m m = 2
lim(r) = 2 ﬁ |6| exp{ 72 w(r)o } 0 But, if kK > 1, one may also use (V.6) with r = % and apply
zm met 2NV 5 the bound k! < e k<2 ek, ¢f. (IL1), giving
— Ve gy F [T et a, )
4 “2/v ) A1) ok (ﬁ) ot
The last integral may be extended to the whole real line, which k x

makes sense for large values of y(r), or one may bound the
exponential term in the integrand by 1, which makes sense for
small values of w(r). These two variants of bounds lead to

IA

A
ek fk), fk)= H"’_A'

5
To 51mp11fy the numerical constants, note that ;ef < 6.1

and gez 72 < 20.1. Recalling that w(r) = p for r = k/J,
we finally get the inequality (I1.10),

m

ya _m+l
Ijm(r)f\/zml//(r) 2

. m 2m+2 mil _
X min {\/EEK' P W(V) ;1} |Ag] < /12\/];]0(]{) (7 (%)2 min{l,pfé}
m+2 k
f4 - max{J_E|§|m 1} + 215 min{1,p72}). (V.7)
x min{l,z//(r)_Tl}, 0

where ¢ is a standard normal random variable. In particular,

VI. CONSEQUENCES OF THEOREM 1.3
we get the upper bounds

Under the natural requirement that 1, is bounded away from
Lio(r) < Ve min {1, y(r)~'/?}, J, the bound (V.7) on Ay = P(W = k} — P{Z = k} may be
2 simplified. As before, we use the notations
min {1, y(r)~/?}.

Ija(r) < L

A
fl)=P(Z=kl="e"
In view of g; 4 p;r < e"~DP!_ from the definition of R;(r) k!
we also have the bound

A=pit-tpn, ha=pi+o+pp

n
. _ _ Ar=1) )

Rj(r) = exp {(r DIZ:pl} =¢ Note that A, < 4 and recall that p = (1 — A3) min{%, T

=1
in case r > 1, while for r < 1 Corollary VL.1. If 25 < xA,0 < x < 1, then for any integer
k>0,

Ri) < exp =1 pif - X

£ A < L S® ((k_’l) +3)@max{(f)3 1} (VL1)
— =D (=) < A=D1, k= (1 —x)3 2 Y VYA '
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In particular, if k < 24, then

56 f (k) ((k —2)?
(1- K)% A
Itk > A > 1/2, we also have
49 1 (k)

()

(I —x)2

+3)'1

2
[Ak] < = (V1.2)

[Ak] < (VL3)

Proof. The assumption 4, < k4 ensures that
k A
= l - j‘ ' {_, _}.
p > ( K)/ min T

If 1 <k <KA(K=>1),then & < K?# and p > £k, so,
the right-hand side of (V.7) is bounded from above by

-2 k 3
vk £ (k) (7("1 )2\/(157”)]{+21;JW).

Choosing K = max{%, 1}, this expression does not exceed
the right-hand side of (VI.1). Thus, the inequality (I.10) yields
(VL.1), which in turn immediately implies (VI.2).

In case k = 0, we apply (1.9). Since @ +3>Afork =
0, the right-hand side of (I.10) is dominated by the right-hand
side of (VI.1). Thus, we obtain (VI.1) without any constraints
on k, and therefore (VI.2) holds true for all k < 2A.

In case k > 4, necessarily p > (1 — k) /Iz/k. Hence,
the right-hand side of (V.7) may be bounded from above by

Javk £ (k) (7 (k;l)2 N‘I/ETK 421 % : /13(1]‘73)

— K) 2
. ) 2 .
Using (I‘T‘)2 < % to bound the first term in the brackets and

]ZT < 2k to bound the second term (using A > %), we obtain

the bound (VI.3). O

[}

We are now prepared to extend Proposition II1.4 to larger
values of A under the assumption that 1>/4 is bounded away
from 1. The next assertion, when combined with Proposi-
tion 1.4, yields Theorem 1.2 with ¢ = 15 in case 4 < %
and ¢ = 56 - 10° in case A > %
Proposition VI.2. If . > § and J> < x/,x € (0, 1), then

1 () =pwin = 2oz =a(2) i

4\ 2

where ¢, = ¢ (1 — K)_3 with, for example, ¢ = 7 - 10°.

Proof. The leftmost lower bound in (VI.4) is added according

to (I.7) (using the Pinsker inequality, it also follows with some

constant from Barbour-Hall’s lower bound in Theorem 1.1).

Hence, it remains to show the rightmost upper bound in (VI1.4).
Write

00 2
2 _ k
(W, 2) = kEO 10

[24] 00
=S51+5% = ( )
ZO 2 )7
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In the range 0 < k < [2]], we apply the inequality (VI.2)
which gives

562 /(k—A)* (k — 1)2 22 5
Akf(l—xp( 7o ) (T )f(k)
Hence

562 (E(Z—-2)* E(Z — 1)? J2\2
51 < (1—K)3( 2z T8 +9)(7)'
Using the moment formula

EZ™ =0 +1)...(A+m—1),

we have E (Z — 1)2 = 1 and E (Z — 1)* = 34(1 +2), so that

1= s (5 419) (3)
— % ) (%)2

= 5! flx)3 (%)2 (V1.3)

with C; = 94080 (where we used the assumption 1 > % on
the last step).
In order to estimate Sz, we use the following elementary

bound
o))

when kd /(ko + )71 > 2

NICEL flko) (1= (VL6)

k=ko

which holds for any d =1, 2, ...
For the proof, write

o
Dk fk) = kG £ ko) (1401+0102+. . 461 ...On
k=ko

where

k d
ot m ) m=1,2,...

(9m:( s
ko+m—1 ko +m

Since the function (x + 1)1 x~¢ is decreasing in x > 0,
we have 1 > 01 > 6, > ... This gives

k) < ko) (1 + Z ).
k=ko

that is, (VI.6). In particular, for kg = [24]+ 1 and 4 > 8 (with
d =6),

(-5 (0 <-5(57)) <3

So, by (VL.6), and using [24]+ 1 < 1—87& for the chosen range
of 1, we have

> K FU) =31+ D f([241+ 1)

k=[2A]+1
<3.1-(174/8)° F([24] + 1).
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Hence, by (VL.3),

Sy =

I
2w
=[21]

2
< (1_@3 > (4) 5w
[22]4+1
Cy /12
< —= f([2A1+1
< o F@AED
with C; = 492 . 3.1 - (17/8)° < 685343. Asymptotically
with respect to large A, this bound is much better than (VI.4).

< ﬁlTk K=+ (£)F as in (IL5) with k = [24]+1
and using 24 < k <24+ 1, we have

fRA+1) < (e/4)*

(VLT

T

= 25— 8 (4)811_2 = ,1_12

%=1 - (1T—xy (&)2

As a result, we arrive at the desired upper bound in (VL.4).
Finally, let us estimate S> for the range % < 1 < 8.
Returning to (VIL.7), we have

492 X k\6
5 < WE(I) 73 £ k)

A - Cié(ﬁ)z
- (1-x)3 - (=x)yB\1/”

where C) = 492 SUp1_; -4 w(A), w(l) = A~*EZ°. Here
A+1...(4+5)
y(4) = VE = y1(Dy2(D)y3(4)
with y1 (1) =5+2+ 2, pyo(W) =T+ 2+ 2, y3() =143,
All these three functions are convex, while w3 is decreasing.
In addition, y/i(%) > wi(8) for i = 1,2. Hence y(1) <
w(3) = 11111 Tt follows that C, =497 1 1111 < 6239560,
and thus ¢ = Cy + C} is the resulting constant in (V1.4). [

This gives

2783 EZ°

Remark VI.3. Up to a numerical constant, the upper bound in
(VI.4) immediately implies an upper bound of Theorem I.1 in
case 1 > %, in view of the relation d(W, Z)2 < %D(W, Z).
Indeed, (V1.4) gives d(W, Z) < c¢xA2/4, provided that 1, <
xA. But, in the other case A, > k4, there is nothing to prove,
since d(W, Z) < 2. Note also that, for 1 < i’ the correct
upper bound on the total variation distance is of the form
d(W,Z) < Chiy. It may be obtained as a consequence of
Lemmas III.1-I11.2.

VII. UNIFORM BOUNDS. COMPARISON
WITH NORMAL APPROXIMATION

A different choice of the parameter r in the proof of
Theorem 1.3 may provide various uniform bounds in the
Poisson approximation, like in the next assertion. Using the
L (u)-norm with respect to the counting measure u on Z,
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let us focus on the deviations of the densities of W and Z and
the deviations of their distribution functions. These distances
are thus given by

MW, Z) = sup |P{W =k} —P{Z =k},
k>0

KW, Z) = sup |P{W <k} —P{Z < k}|.
k>0

Putting » = 1 in (V.6), we arrive at the next assertion which
sharpens Proposition IV.1.

Theorem VII.1. We have

2
MW,Z2) < ‘/26” Jymin {1, (4 — 12)"7}.

(VIL1)

This uniform bound is not new; with a non-explicit numeri-
cal factor, it corresponds to Theorem 3.1 in Cekanavicius [3],
p.53. For / < 1, this relation simplifies to

[ 2

MW, Z) < A2,

which cannot be improved (modulo a numerical factor) in
view of the lower bounds on |Ay| with &k = 0, 1,2 men-
tioned in Section III. We also have a similar bound for the
Kolmogorov distance, K (W, Z) < C/», which follows from
the upper bound for the stronger total variation distance as in
Theorem I.1.

When, however, / is large (and say all p; < %), one would
expect to achieve more accurate bounds when replacing the
Poisson approximation for Py by the normal law N (1, 1)
with mean A and variance A. Indeed, suppose, for example,
that p; = %, so that W has a binomial distribution with para-
meters (n, %), while the approximating Poisson distribution
has parameter A = n/2 with A1y = n/4. Here, (1.2) only
yields d(W, Z) ~ 1, which means that there is no Poisson
approximation with respect to the total variation! Nevertheless,
the approximation is still meaningful in a weaker sense in
terms of the Kolmogorov distance K, as well as in terms
of M. In this case, both Py and P, are almost equal to
N(Z,2), and the Berry-Esseen theorem provides a correct
bound K (W, Z) < Ln via the triangle inequality for K. Since
M < 2K (which holds true for all probability distributions
on Z), we also have M (W, Z) < -=. Note that this 1nequa11ty

also follows from Theorem VII. 1 Indeed, when 1, < E A,
(VIL.1) is simplified to

«/—ﬂiz

T3
2

MW, Z) <

(VIL.2)

which yields a correct order for growing n. Thus, the two
approaches are equivalent for this particular (i.i.d.) example.
To realize whether or not the normal approximation is
better or worse than the Poisson approximation in the general
non-i.i.d. situation (that is, with different p;’s), let us evaluate
the corresponding Lyapunov ratio in the central limit theorem
and apply the Berry-Esseen bound K (W, N;) < cL3, where
the random variable N, is distributed according to N(4, 4).
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Since Var(W) = Z?:l pjqj = A — A2, the Lyapunov ratio for
the sequence X1, ..., X, is given by

Ly=—— » E|X; —EX,
Var(W)2 Z
= Z(p gy < ——
=" 4 = T/
(1 — A2)} Y R
(note that 4+ < p;—i—q? < 1). Hence K(W, N;) < \/f_ig’ up

to some absolute constant ¢ > 0. A similar bound holds for
Z as well when representing W as the sum of n independent
Poisson random variables Z; with parameters p;. Namely, for
the sequence Z1, ..., Z,, we have

n
c c
pi = —

i ; TV
Therefore, K (Z, N;) < \% and hence, by the triangle inequal-
. c
ity, KW.2) = 77—
where 1y < % A, the normal approximation yields

Ly = E|Z; —IEZ|
Var(Z)2 Z

In particular, in a typical situation

MW, Z) <

N
with some absolute constant c. But, this bound is surprisingly
worse than (VIL.2) as long as 4, = o(4).

Consider as an example p; = 1/(2\/)) for j =1,...,
Then A ~ /n, Ao ~ logn, and we get M(W, Z)
cn—3/*logn in (VIL.2), while (VIL.3) only yields M(W, Z)
cn~/*. This example is also illustrative when comparing
Theorem 1.2 with (I.5). The first one provides a correct
asymptotic

(VIL3)

INIA S

log? n

DWW, Z) ~

(within absolute factors), while (I.5) only gives D(W, Z) < c.
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