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We explore an asymptotic behavior of entropies for sums of independent random

variables that are convolved with a small continuous noise.

1 Introduction

Let (Xn)n≥1 be independent, identically distributed (i.i.d.) random vectors in R
d with an

isotropic distribution, that is, with mean zero and an identity covariance matrix. By the

central limit theorem (CLT), given a random vector X in R
d, independent of all Xn’s, the

normalized sums

Zn = 1√
n

(X + X1 + · · · + Xn) (1)

are convergent weakly in distribution as n → ∞ to the standard normal random vector

Z with density

ϕ(x) = 1

(2π)d/2
e−|x|2/2, x ∈ R

d. (2)

Suppose that X has a finite 2nd moment and an absolutely continuous distribution, so

that Zn have some densities pn. A natural question of interest is whether or not this
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8058 S. G. Bobkov and A. Marsiglietti

property (i.e., the weak CLT) may be strengthened as convergence of entropies

h(Zn) = −
∫
Rd

pn(x) log pn(x) dx

to the entropy of the Gaussian limit Z. The usual entropic CLT corresponds to the i.i.d.

case with X = 0. Then, this CLT is known to hold, if and only if Zn have densities pn

with finite h(Zn) for some or equivalently all n large enough [2] (see also [1, 5, 14, 17–

19, 27]). What also seems remarkable, the presence of a small non-zero noise X/
√

n in

(1) may potentially enlarge the range of applicability of the entropic CLT. Here is one

observation in this direction in terms of the characteristic function

f (t) = E ei〈t,X〉, t ∈ R
d.

Theorem 1.1. If f is compactly supported, and X1 has a non-lattice distribution, then

h(Zn) → h(Z) as n → ∞. (3)

This convergence also holds for lattice distributions, if f is supported on the ball |t| ≤ T

for some T > 0 depending on the distribution of X1. One may take T = 1/β3, assuming

that the 3rd absolute moment

β3 = sup
|θ |=1

E | 〈X1, θ
〉 |3

is finite.

The assumption of compactness on the support of the characteristic function

of X requires its density p to be the restriction to R
d of an entire function on C

d of

exponential type by Paley–Wiener theorems (cf., e.g., [29]).

The entropic CLT (3) may equivalently be stated as the convergence

D(Zn||Z) =
∫
Rd

pn(x) log
pn(x)

ϕ(x)
dx → 0 (n → ∞)

for the Kullback–Leibler distance (also called relative entropy or an informational

divergence). It belongs to the family of so-called strong (informational) distances, which

dominate many other metrics that are used in usual CLT’s about the weak convergence of

probability distributions. As was mentioned to us by one of the referees, one immediate
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Entropic CLT for smoothed convolutions and associated entropy bounds 8059

consequence from (3) is the CLT for non-smoothed normalized sums with respect to the

Kantorovich transport distance W2 (cf. Remark 4.4 for details).

In general, the hypothesis on the support of f in Theorem 1.1 cannot be

removed, but may be weakened by involving more delicate properties related to the

location of zeros of the characteristic function. This may be seen from the following

characterization in one important example under mild regularity assumptions on f .

Theorem 1.2. Suppose that X1 has a uniform distribution on the discrete cube {−1, 1}d,

that is, with independent Bernoulli coordinates. Let the characteristic function f of X

satisfy

∫
Rd

|f (t)| dt < ∞,
∫
Rd

|f ′(t)|
‖t‖d−1

dt < ∞, (4)

where ‖t‖ denotes the distance from the point t to the lattice πZd. Then, the entropic

CLT (3) holds true, if and only if

f (πk) = 0 for all k ∈ Z
d, k 
= 0. (5)

The 2nd moment assumption on X guarantees that f has a bounded continuous

derivative f ′(t) = ∇f (t) with its Euclidean length |f ′(t)|. The assumption of integrability

of f in (4) requires the density of X to be continuous on R
d. In dimension d = 1,

the condition (4) is fulfilled, as long as both f and f ′ are in L1. If d ≥ 2, (4) is more

complicated, but is fulfilled, for example, under decay assumptions such as

|f (t)| ≤ c

((1 + |t1|) . . . (1 + |td|))α , |f ′(t)| ≤ c

((1 + |t1|) . . . (1 + |td|))α , (6)

holding for all t = (t1, . . . , td) ∈ R
d with some constants α > 1 and c > 0.

Although an information-theoretic meaning of the property (5) is not clear, it

is indeed connected with the entropy functional h(X). Namely, under the conditions

(4)-(5), it turns out that the entropy has to be non-negative. This is emphasized in the

next statement, where we drop the isotropy condition and extend the Bernoulli case to

arbitrary integer valued random vectors. As before, we assume that X is a continuous

random vector in R
d with finite 2nd moment, which is independent of all Xn’s.
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8060 S. G. Bobkov and A. Marsiglietti

Theorem 1.3. Let (Xn)n≥1 be a sequence of independent, integer valued random

vectors, whose components have variance one. Then

lim sup
n→∞

h(Zn) ≤ h(X) + h(Z).

In particular, if h(Zn) → h(Z) as n → ∞, then necessarily h(X) ≥ 0.

Actually, the independence assumption may further be weakened to the uncor-

relatedness (as explained in Theorem 5.3 at the end of these notes).

We do not discuss here possible applications of the last conclusion in

Theorem 1.3. Let us, however, stress that obtaining lower and upper bounds for the

differential entropy, under various hypotheses or for different classes of probability

distributions on the Euclidean space R
d, is in itself an important and self-sufficient

direction in information theory, which is motivated by many problems and is connected

with other areas. For example, applications of lower bounds to rate-distortion theory

and channel capacity were put forward in [23] (see also [12, 16, 22]). Let us also

mention Bourgain’s slicing problem in asymptotic geometric analysis, cf. [9]. As a

main conjecture, it states that for any convex body K in R
d there is a hyperplane H

such that the (d − 1)-dimensional volume of the slice H ∩ K is bounded away from zero

by a universal positive constant. It was shown in [6] that the latter may equivalently

be formulated as the property that if X is a random vector in R
d with an isotropic

log-concave distribution, then

h(X) ≥ −cd

with some universal constant c > 0. Besides this conjecture, the past few years have

seen a growing interest in the study of entropic inequalities as they shed new lights

on fundamental problems in convex geometry (cf., e.g., [7, 10, 11]). We refer to the

survey paper [21] for further details on the connections between entropic inequalities

and geometric and functional inequalities.

The paper is organized as follows. We start in Section 2 with general upper and

lower bounds on the Kullback–Leibler distance

D(X||Z) =
∫
Rd

p(x) log
p(x)

ϕ(x)
dx (7)
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Entropic CLT for smoothed convolutions and associated entropy bounds 8061

from the distribution of X to the standard normal law in terms of the L2-distance

� = ‖p − ϕ‖2 =
( ∫

Rd
(p(x) − ϕ(x))2 dx

)1/2

. (8)

Throughout, Z denotes a standard normal random vector in R
d, thus with density ϕ as

in (2) and with characteristic function

g(t) = E ei〈t,Z〉 =
∫
Rd

ei〈t,x〉 ϕ(x) dx = e−|t|2/2, t ∈ R
d.

As usual, the Euclidean space R
d is endowed with the canonical inner product 〈·, ·〉 and

the norm | · |. These bounds are applied in Section 3 to express the entropic CLT as

convergence of densities in L2. Theorems 1.1 and 1.2 (in a somewhat refined form) are

proved in Section 4. Using Proposition 3.1, the proofs employ recent results obtained in

[8] on local limit theorems with respect to the L2 and L∞-norms. Theorem 1.3 is proved

in Section 5, where we also discuss the connection between entropy bounds and the

entropic CLT.

2 General Bounds on Relative Entropy

Throughout this section, let X be a random vector in R
d with density p, and let � be

defined according to (8).

Proposition 2.1. Suppose that E |X|2 = d. If � ≤ 1/e, then

D(X||Z) ≤ cd � log
d+4

4 (1/�) (9)

with some constant cd > 0 depending on d only. Moreover, if supx p(x) ≤ M for some

constant M ≥ (2π)−d/2, then

D(X||Z) ≥ 1

2M
�2. (10)

First we collect a few elementary large deviation bounds.

Lemma 2.2. For any T ≥ 1,

(a)
∫
|x|≥T ϕ(x) dx ≤ 2d Td−2 e−T2/2;

(b)
∫
|x|≥T |x|2 ϕ(x) dx ≤ 2d Td e−T2/2.
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8062 S. G. Bobkov and A. Marsiglietti

Proof. Clearly, (a) follows from (b). To derive the 2nd bound, write

E |Z|2 1{|Z|≥T} =
∫

|x|≥T
|x|2 ϕ(x) dx = dωd

(2π)d/2

∫ ∞

T
rd+1 e−r2/2 dr, (11)

where ωd denotes the volume of the unit ball in R
d. Given c > 1, consider the function

u(T) =
∫ ∞

T
rd+1 e−r2/2 dr − cTd e−T2/2.

We have u(∞) = 0 and

u′(T) = (
(c − 1) T2 − cd

)
Td−1 e−T2/2.

Thus, u(T) is decreasing in some interval 0 ≤ T < T0 and is increasing in T ≥ T0.

Therefore, u(T) ≤ 0 for all T ≥ 1, if u(1) = 0, that is, for

c = √
e

∫ ∞

1
rd+1 e−r2/2 dr.

Using (11), we obtain

c = √
e

(2π)d/2

dωd
E |Z|2 1{|Z|≥1} ≤ √

e
(2π)d/2

ωd
,

so ∫
|x|≥T

|x|2 ϕ(x) dx = dωd

(2π)d/2

(
u(T) + cTd e−T2/2

)
≤ √

e d Td e−T2/2.

�

To get the upper bound (9), we also need to control the weighted quadratic tails

in terms of the L2-distance �.

Lemma 2.3. If E |X|2 = d, then for all T ≥ 1,

∫
|x|≥T

|x|2 p(x) dx ≤ 2T
d+4

2 � + 2d Td e−T2/2.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/21/8057/5721202 by U
niversity of M

innesota - Tw
in C

ities user on 04 M
arch 2021



Entropic CLT for smoothed convolutions and associated entropy bounds 8063

Proof. We have

∫
|x|≥T

|x|2 p(x) dx = d −
∫

|x|≤T
|x|2p(x) dx

=
∫

|x|≤T
|x|2 (ϕ(x) − p(x)) dx +

∫
|x|≥T

|x|2 ϕ(x) dx

≤
∫

|x|≤T
|x|2 |p(x) − ϕ(x)| dx +

∫
|x|≥T

|x|2 ϕ(x) dx.

The last integral is bounded by 2d Td e−T2/2. Also, by the Cauchy inequality,

(∫
|x|≤T

|x|2 |p(x) − ϕ(x)| dx
)2

≤
∫

|x|≤T
|x|4 dx

∫
Rd

(p(x) − ϕ(x))2 dx = dωd

d + 4
Td+4 �2,

where ωd is the volume of the unit ball in R
d. Here, dωd

d+4 < 4. �

Lemma 2.4. For all T ≥ 1,

D(X||Z) ≤ 2d Td−2 e−T2/2 + (2π)d/2
∫

|x|≤T
(p(x) − ϕ(x))2 e|x|2/2 dx

+ 2d − 1

2

∫
|x|≥T

|x|2 p(x) dx +
∫

|x|≥T
p log p dx. (12)

Proof. In definition (8), we split the integration into the two regions. Using the

inequality t log t ≤ (t − 1) + (t − 1)2, t ≥ 0, and applying the 1st bound of Lemma 2.2, we

have

∫
|x|≤T

p

ϕ
log

p

ϕ
ϕ dx ≤

∫
|x|≤T

(p

ϕ
− 1

)
ϕ dx +

∫
|x|≤T

(p

ϕ
− 1

)2
ϕ dx

=
∫

|x|≥T
(ϕ − p) dx +

∫
|x|≤T

(p − ϕ)2

ϕ
dx

≤ 2d Td−2 e−T2/2 −
∫

|x|≥T
p dx + (2π)d/2

∫
|x|≤T

(p(x) − ϕ(x))2 e|x|2/2 dx.

For the 2nd region |x| ≥ T, just write

∫
|x|≥T

p log
p

ϕ
dx =

∫
|x|≥T

p log p dx + d

2
log(2π)

∫
|x|≥T

p dx + 1

2

∫
|x|≥T

|x|2 p(x) dx.
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Combining these relations and noting that log(2π) < 2, we thus get

D(X||Z) ≤ 2d Td−2 e−T2/2 + (2π)d/2
∫

|x|≤T
(p(x) − ϕ(x))2 e|x|2/2 dx

+ (d − 1)

∫
|x|≥T

p(x) dx + 1

2

∫
|x|≥T

|x|2 p(x) dx +
∫

|x|≥T
p log p dx.

�

As a consequence, we obtain the following:

Lemma 2.5. For all T ≥ 1,

D(X||Z) ≤ (2d + 1) Td−1 e−T2/2 + (
(2π)d/2 + 1

)
eT2/2 �2 + d

∫
|x|≥T

|x|2 p(x) dx.

Proof. We use the notation a+ = max(a, 0). Subtracting ϕ(x) from p(x) and then

adding, one can write

∫
|x|≥T

p log p dx ≤
∫

|x|≥T
p(x) log+(p(x)) dx

≤
∫

|x|≥T
|p(x) − ϕ(x)| log+(p(x)) dx +

∫
|x|≥T

ϕ(x) log+(p(x)) dx.

Next, let us apply Cauchy’s inequality together with the bound (log+(t))2 ≤ 4e−2 t so

that to estimate the last integral from above by

( ∫
|x|≥T

ϕ(x)2 dx
)1/2( ∫

|x|≥T

(
log+(p(x))

)2 dx
)1/2

≤ 2

e

( ∫
|x|≥T

ϕ(x)2 dx
)1/2

.

Here, using the 1st bound of Lemma 2.2, we have

∫
|x|≥T

ϕ(x)2 dx = 1

(4π)d/2

∫
|y|≥T

√
2
ϕ(y) dy

≤ 2d

(4π)d/2
(T

√
2)d−2 e−T2

< Td−1e−T2
.

Therefore,

∫
|x|≥T

p log p dx ≤
∫

|x|≥T
|p(x) − ϕ(x)| log+(p(x)) dx + T

d−1
2 e−T2/2.
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To simplify, the last integrand may be bounded by

1

2
(p(x) − ϕ(x))2 + 1

2

(
log+(p(x))

)2 ≤ 1

2
(p(x) − ϕ(x))2 + 1

2
p(x),

so, ∫
|x|≥T

p log p dx ≤ 1

2
�2 + 1

2

∫
|x|≥T

p(x) dx + T
d−1

2 e−T2/2.

Using this estimate in (12) together with e|x|2/2 ≤ eT2/2 for |x| ≤ T, we get

D(X||Z) ≤ 2d Td−1 e−T2/2 + (2π)d/2 eT2/2
∫

|x|≤T
(p(x) − ϕ(x))2 dx

+ 2d − 1

2

∫
|x|≥T

|x|2p(x) dx + 1

2
�2 + 1

2

∫
|x|≥T

p(x) dx + T
d−1

2 e−T2/2.

�

Proof. of Proposition 2.1 Combining Lemma 2.5 with Lemma 2.3, we immediately get

D(X||Z) ≤ (2d2 + 2d + 1) Td e−T2/2 + (
(2π)d/2 + 1

)
eT2/2 �2 + 2d T

d+4
2 �.

To get (9), it remains to take here

T =
√

2 log(1/�) + d

2
log log(1/�).

For the lower bound (10), let us recall that D(X||Z) = h(Z) − h(X). By Taylor’s expansion,

for all t ≥ 0 and t0 > 0, there is a point t1 between t and t0 such that

t log t = t0 log t0 + (log t0 + 1)(t − t0) + (t − t0)2

2t1
.

Inserting t = p(x), t0 = ϕ(x), we obtain a measurable function t1(x) with values between

p(x) and ϕ(x), satisfying

p(x) log p(x) = ϕ(x) log ϕ(x) + (log ϕ(x) + 1) (p(x) − ϕ(x)) + (p(x) − ϕ(x))2

2t1(x)
.

Let us integrate this equality over x and use E |X|2 = d to get

−h(X) = −h(Z) + 1

2

∫
Rd

(p(x) − ϕ(x))2

t1(x)
dx.
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8066 S. G. Bobkov and A. Marsiglietti

Hence,

D(X||Z) = 1

2

∫
Rd

(p(x) − ϕ(x))2

t1(x)
dx.

It remains to use the assumptions p(x) ≤ M and ϕ(x) ≤ M, so that t1(x) ≤ M as well. �

3 Topological Properties of Relative Entropy

Applying Proposition 2.1 to a sequence of random vectors, we arrive at necessary and

sufficient conditions for the convergence in the Kullback–Leibler distance D in terms of

the L2-distances

�n = ‖pn − ϕ‖2 =
(∫

Rd
(pn(x) − ϕ(x))2 dx

)1/2

.

More precisely, we have the following:

Proposition 3.1. Let (Zn)n≥1 be a sequence of random vectors in R
d with densities pn.

Suppose that as n → ∞
(a) E |Zn|2 → d;

(b) �n → 0.

Then D(Zn||Z) → 0 or equivalently h(Zn) → h(Z) as n → ∞. Conversely, if pn are

uniformly bounded, then the conditions (a)–(b) are also necessary for the convergence in

D.

Before turning to the proof, let us recall a basic abstract definition of the

Kullback–Leibler distance (i.e., relative entropy). Let X and Y be random elements

in a measurable space 	 with distributions μ and ν, respectively. If μ is absolutely

continuous with respect to ν and has density h = dμ/dν, the relative entropy of μ with

respect to ν is defined as

D(X||Y) = D(μ||ν) =
∫

	

h log h dν =
∫

p log
p

q
dλ,

where in the last equality we assume that μ and ν have densities p and q with respect

to the dominating measure λ on 	, so that h = p/q (which is well-defined λ-almost

everywhere). This definition does not depend on the choice of λ, and one may always

take λ = μ + ν, for example. If μ is not absolutely continuous with respect to ν, one puts

D(X||Y) = D(μ||ν) = ∞. For basic properties of this functional, we refer an interested
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Entropic CLT for smoothed convolutions and associated entropy bounds 8067

reader to [15], and here only mention one well-known relation:

∫
	

g dμ ≤ D(μ||ν) + log
∫

	

eg dν.

It holds for any measurable function g on 	 for which the right-hand side is finite (this

relation easily follows from the elementary inequality xy ≤ x log x −x +ey, x ≥ 0, y ∈ R).

In the case where 	 = R
d with Lebesgue measure λ, and choosing g(x) = ε |x|2,

ε > 0, we have in particular

εE |X|2 ≤ D(X||Y) + log E eε |Y|2 .

If Y has a normal distribution, the last expectation is finite for some ε > 0. Therefore,

finiteness of D(X||Y) forces the random vector X in R
d to have a finite 2nd moment. One

can now introduce an affine invariant functional

D(X) = inf
Y

normal D(X||Y),

where the infimum is running over all absolutely continuous normal distributions on

R
d. Thus, D(X) represents the Kullback–Leibler distance from the distribution of X to the

class of all non-degenerate Gaussian measures on R
d. It is finite, only if the distribution

of X is absolutely continuous and has a finite 2nd moment, and then this infimum is

attained on the normal distribution with the same mean a = EX and covariance matrix

V as for X (cf., e.g., [3, Section 10.7]).

Our next step is to quantify the properties (a)–(b) from Proposition 3.1 in terms

of D(X||Z), where Z is a standard normal random vector in R
d. Denote by ϕa,V the density

of the normal law with these parameters, that is, let Y have density

ϕa,V(x) = 1

(2π)d/2
√

det(V)
exp

{
−1

2

〈
V−1(x − a), x − a

〉}
, x ∈ R

d,

so that D(X) = D(X||Y). By the definition, if X has density p, we have

D(X||Z) =
∫
Rd

p(x) log
p(x)

ϕ(x)
dx =

∫
Rd

p(x) log
p(x)

ϕa,V(x)
dx

− 1

2
log det(V) − 1

2
E

〈
V−1(X − a), X − a

〉
+ 1

2
E |X|2.
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8068 S. G. Bobkov and A. Marsiglietti

Simplifying, we obtain an explicit formula

D(X||Z) = D(X) + 1

2
|a|2 + 1

2

(
log

1

det
(V) + Tr(V) − d

)

= D(X) + 1

2
|a|2 + 1

2

d∑
i=1

(
log

1

σ 2
i

+ σ 2
i − 1

)
, (13)

where σ 2
i are eigenvalues of the matrix V (σi > 0). Note that all the terms on the right-

hand side are non-negative. This allows us to control the 1st two moments of X in terms

of D(X||Z). In particular, |a|2 ≤ 2 D(X||Z), so that the closeness of X to Z in relative

entropy implies the closeness of the means. To come to a similar conclusion about the

covariance matrices, consider the non-negative convex function

ψ(t) = log
1

t
+ t − 1, t > 0.

We have ψ(1) = ψ ′(1) = 0 and ψ ′′(t) = 1
t2 . If |t − 1| ≤ 1, by Taylor’s formula about the

point t0 = 1 with some point t1 between t and 1,

ψ(t) = ψ(1) + ψ ′(1)(t − 1) + ψ ′′(t1)
(t − 1)2

2
≥ (t − 1)2

8
.

For the values t ≥ 2, we have a linear bound log 1
t + t − 1 ≥ c(t − 1) with some constant

0 < c < 1. Namely, write the latter inequality as log t ≤ (1 − c)(t − 1), that is, u(s) =
log(1+s)

s ≤ 1 − c for s ≥ 1. As easy to check, the function u(s) is decreasing on the whole

positive axis, so u(s) ≤ log 2 in s ≥ 1. Hence, one may take c = 1 − log 2 > 1
8 , and thus

ψ(t) ≥ t−1
8 . The two bounds yield

ψ(t) ≥ 1

8
min{|t − 1|, |t − 1|2}, t > 0.

Let us summarize.

Lemma 3.2. Given a random vector X with mean a and covariance matrix V with

eigenvalues σ 2
i , we have

D(X||Z) ≥ D(X) + 1

2
|a|2 + 1

16

d∑
i=1

min
{|σ 2

i − 1|, (σ 2
i − 1)2}

.
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In particular, putting D = D(X||Z), we have

(a) |a|2 ≤ 2D;

(b) |σ 2
i − 1| ≤ 4

√
D + 16D for all i ≤ d;

(c) |E |X|2 − d | ≤ 4d
√

D + 16d D.

Here, the closeness of all σ 2
i to 1 may also be stated as closeness of V to the

identity d×d matrix Id in the (squared) Hilbert–Schmidt norm ‖V−Id‖2
HS = ∑d

i=1(σ 2
i −1)2.

These bounds have an application in the problem where one needs to determine whether

or not there is convergence in relative entropy for a sequence of random vectors.

Corollary 3.3. Given a sequence of random vectors Zn in R
d with means an and

covariance matrices Vn, the property D(Zn||Z) → 0 as n → ∞ is equivalent to the next

three conditions:

D(Zn) → 0; an → 0; Vn → Id.

Proof. of Proposition 3.1 First recall that

D(Zn||Z) = −h(Zn) + d

2
log(2π) + 1

2
E |Zn|2, h(Z) = d

2
log(2π) + d

2
.

Hence, if E |Zn|2 → d like in (a), then D(Zn||Z) → 0 ⇔ h(Zn) → h(Z). To show that the

conditions (a)–(b) are sufficient for the convergence in D, denote by fn the characteristic

functions of Zn. By the assumption and applying the Plancherel theorem,

�n = (2π)−d/2 ‖fn − g‖2 → 0

as n → ∞. Define the random vectors Z̃n = bnZn, where b2
n = d/E |Zn|2 (bn > 0), so that

E |Z̃n|2 = d. They have densities p̃n(x) = 1
bd

n
pn( x

bn
) with characteristic functions

f̃n(t) = E e
i
〈
t,Z̃n

〉
= fn(bnt), t ∈ R

d.

Using bn → 1 and applying the Plancherel theorem once more together with the triangle

inequality in L2, we then get

�̃n = (2π)−d/2 ‖f̃n − g‖2 = 1

(2πbn)d/2
‖fn(t) − g(t/bn)‖2

≤ 1

(2πbn)d/2
‖fn(t) − g(t)‖2 + 1

(2πbn)d/2
‖g(t/bn) − g(t)‖2

= 1

bd/2
n

�n + 1

(2πbn)d/2
‖g(t/bn) − g(t)‖2.
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Here, the last norm tends to zero, so, �̃n → 0. We are in position to apply the upper

bound (9) of Proposition 2.1 to X = Z̃n, which yields D(Z̃n||Z) → 0 and thus

D(Zn||Z) = D(Z̃n||Z) − d log bn + d

2
(b2

n − 1) → 0. (14)

Conversely, assuming that D(Zn||Z) → 0 and applying Corollary 3.3, we get the property

(a). Hence, b2
n = d/E |Zn|2 → 1, and D(Z̃n||Z) → 0 according to the formula (14). By the

assumption, p̃n are uniformly bounded, that is, p̃n(x) ≤ M with some constant M. We

are in position to apply the lower bound (10), which yields �̃n → 0 and therefore

�n = bd/2
n (2π)−d/2 ‖f̃n(t) − g(bnt)‖2 ≤ bd/2

n �̃n + bd/2
n (2π)−d/2 ‖g(t) − g(bnt)‖2 → 0. �

4 Proof of Theorems 1.1-1.2

From now on, let the random vectors Zn be defined as the normalized sums according

to (1). The proof of Theorem 1.1 is based on the following statement obtained in [8].

Lemma 4.1. ([8, Theorem 1.3]) There exists T > 0 depending on the distribution of

X1 with the following property. If f is supported on the ball |t| ≤ T, then the random

vectors Zn have continuous densities pn such that

‖pn − ϕ‖∞ = sup
x

|pn(x) − ϕ(x)| → 0 as n → ∞. (15)

If β3 is finite, one may take T = 1/β3. If X1 has a non-lattice distribution, T may be

arbitrary.

Recall that, in Theorems 1.1-1.2 we assume that E |X|2 < ∞, which implies

E |Zn|2 = 1
n E |X|2 + d → d as n → ∞. In addition, the uniform convergence (15) is

stronger than

‖pn − ϕ‖2 → 0 as n → ∞, (16)

since

‖pn − ϕ‖2
2 =

∫
Rd

(pn(x) − ϕ(x))2 dx

≤ ‖pn − ϕ‖∞
∫
Rd

|pn(x) − ϕ(x)| dx ≤ 2 ‖pn − ϕ‖∞.

By Proposition 3.1, both properties ensure that D(Zn||Z) → 0, and we obtain

Theorem 1.1.
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Now, let us turn to the Bernoulli case, that is, when X1 has a uniform distribution

on the discrete cube {−1, 1}d. Theorem 1.2 may slightly be refined in one direction by

weakening the condition (4). As before, ‖t‖ denotes the distance from the point t ∈ R
d to

the lattice πZd.

Theorem 4.2. Suppose that the characteristic function of X satisfies

f (πk) = 0 for all k ∈ Z
d, k 
= 0, (17)

together with ∫
Rd

|f (t)| |f ′(t)|
‖t‖d−1

dt < ∞. (18)

Then we have the entropic CLT, that is, D(Zn||Z) → 0 as n → ∞. Conversely, if the

entropic CLT holds together with∫
Rd

|f (t)| dt < ∞,
∫
Rd

|f ′(t)|
‖t‖d−1

dt < ∞, (19)

then f satisfies (17). In this case the uniform local limit theorem (15) takes place.

The point of the refinement is that (18) is weaker than (19), which is exactly the

condition (4) in Theorem 1.2. In dimension d = 1, (18) is fulfilled whenever f and f ′

are in L2 (by Cauchy’s inequality), that is, when the density p of the random variable X

satisfies ∫ ∞

−∞
(1 + x2) p(x)2 dx < ∞

(which holds automatically, if p is bounded). If d ≥ 2, (18) is fulfilled under the decay

assumptions (6) with a weaker parameter constraint α > 1
2 . This is the case, for example,

where X is uniformly distributed in the (solid) cube [−1, 1]d, while (19) does not hold. In

[8], it was shown that the properties (17)-(18) imply the L2-convergence of densities (16),

while (17) together with a stronger assumption (19) leads to the uniform convergence

(15). Hence, we can apply Proposition 3.1 to conclude that D(Zn||Z) → 0. It was also

shown there that the property (17) is fulfilled under the L2-convergence (16). In order

to arrive at a similar conclusion under an apriori weaker entropic CLT, we involve the

assumption (19) and prove here:

Lemma 4.3. Suppose that X1 has a uniform distribution on the discrete cube {−1, 1}d.

If the condition (19) is fulfilled, then Zn have uniformly bounded densities pn.
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Having this assertion, we therefore complete the proof of Theorem 4.2 and of

Theorem 1.2 by appealing to Proposition 3.1 once more.

Proof. of Lemma 4.3 Put v(t) = cos(t1) . . . cos(td) for t = (t1, . . . , td) ∈ R
d. By the

assumption (19), the characteristic functions

fn(t) = f
(

t√
n

)
vn

(
t√
n

)

are integrable. Hence, Zn have continuous densities given by the Fourier inversion

formula

pn(x) = 1

(2π)d

∫
Rd

e−i〈t,x〉fn(t) dt. (20)

Let us partition R
d into the cubes Qk = Q+πk, Q = [−π

2 , π
2 ]d, k ∈ Z

d, so that ‖t‖ = |t−πk|
for t ∈ Qk. Splitting the integration in (20), we can write

pn(x) = 1

(2π)d

∑
k∈Zd

In,k(x), In,k(x) = nd/2
∫

Qk

e−i〈t,x〉√n f (t)vn(t) dt.

Putting wk(t) = f (πk + t) and using the periodicity of the cosine function together with

the bound 0 ≤ cos(u) ≤ e−u2/2 for |u| ≤ π
2 , we have

|In,k(x)| ≤ nd/2Jn,k, Jn,k =
∫

Q
|wk(t)| e−n|t|2/2 dt.

By Taylor’s formula,

|f (πk + t) − f (πk)| ≤ |t|
∫ 1

0
|f ′(πk + ξt)| dξ , t ∈ R

d. (21)

Hence, changing the variable ξt = s, we get

∫
Q

|f (πk + t) − f (πk)| dt ≤
∫ 1

0

∫
Q

|f ′(πk + ξt)| |t| dξ dt

=
∫

Q

[
|f ′(πk + s)| |s|

∫ 1

2
π

‖s‖∞

dξ

ξd+1

]
ds ≤ cd

∫
Q

|f ′(πk + s)|
|s|d−1

ds

with some constant cd depending on d only, where ‖s‖∞ = maxk |sk| for s = (s1, . . . , sd) ∈
R

d. Hence,

πd |wk(0)| = πd |f (πk)| ≤
∫

Qk

|f (t)| dt + cd

∫
Qk

|f ′(t)|
‖t‖d−1

dt.
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The next summation over all k leads to

∑
k∈Zd

|wk(0)| =
∑

k∈Zd

|f (πk)| ≤ 1

πd

∫
Rd

|f (t)| dt + cd

πd

∫
Rd

|f ′(t)|
‖t‖d−1

dt < ∞, (22)

where we applied the assumption (19). Put

J̃n,k =
∫

Q
(|wk(t)| − |wk(0)|) e−n|t|2/2 dt.

By (21),

|wk(t)| ≤ |wk(0)| + |t|
∫ 1

0
|w′

k(ξt)| dξ .

Hence, again changing the variable ξt = s, and then ξ = √
n |s| 1

u , we get

J̃n,k ≤
∫

Q

∫ 1

0
|t| |w′

k(ξt)| e−n|t|2/2 dt dξ

=
∫

Q
|w′

k(s)| |s|
[∫ 1

2
π

‖s‖∞
ξ−d−1 e−n|s|2/2ξ2

dξ

]
ds

≤ n−d/2
∫

Q
|w′

k(s)| |s|−(d−1)

[∫ ∞

|s|√n
ud−1 e−u2/2 du

]
ds

≤ cd n−d/2
∫

Q

|w′
k(s)|

|s|d−1
e−n|s|2/2 ds

with some constant cd depending on the dimension, only. Performing summation over

all k, we get

nd/2
∑

k∈Zd

J̃n,k ≤ cd

∫
Rd

|f ′(t)|
‖t‖d−1

e−n ‖t‖2/2 dt ≤ cd

∫
Rd

|f ′(t)|
‖t‖d−1

dt.

Due to (22), with some other d-dependent constants

nd/2
∑

k∈Zd

Jn,k ≤ cd

∫
Rd

|f (t)| dt + cd

∫
Rd

|f ′(t)|
‖t‖d−1

dt < ∞,

and thus
∑

k∈Zd |In,k(x)| is bounded by a constant that does not depend on x. �

Remark 4.4. To better realize the meaning of Theorem 1.1, let us also comment on the

relationship between the entropic and transport CLTs. Given two random vectors X and
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Y in R
d with distributions μ and ν, respectively, the (quadratic) Kantorovich distance is

defined as

W2(μ, ν) = W2(X, Y) = inf
λ

(∫
Rd

∫
Rd

|x − y|2 dλ(x, y)

)1/2

,

where the infimum is running over all (Borel) probability measures λ on R
d × R

d with

marginals μ and ν. It represents a metric in the space M2(Rd) of all probability measures

on R
d with finite 2nd moment, which is closely related to the weak topology. More

precisely, given a sequence μn and a “point” ν in M2(Rd), the convergence W2(μn, ν) → 0

holds true as n → ∞ if and only if μn are weakly convergent to ν, that is,

∫
Rd

u(x) dμn(x) →
∫
Rd

u(x) dν(x)

for any bounded continuous function u on R
d, and

∫
Rd |x|2 dμn(x) → ∫

Rd |x|2 dν(x) (cf.,

e.g., [31, p. 212]).

When ν is the standard Gaussian measure on R
d, the relationship of W2 with

relative entropy was emphasized by Talagrand [30] who showed that

W2
2 (X, Z) ≤ 2D(X||Z)

holding for any random vector X in R
d with Z a standard normal random vector.

Returning to the setting of Theorem 1.1, define the normalized sums

Z′
n = Zn − 1√

n
X = 1√

n
(X1 + · · · + Xn).

By the classical CLT, the distributions μ′
n of Z′

n are weakly convergent to the Gaussian

limit ν. Since also E |Zn|2 = E |Z|2 = d, the above characterization of the convergence

in the space M2(Rd) ensures that W2(μ′
n, ν) → 0, which is a transport CLT. A similar

conclusion can also be made on the basis of Theorem 1.1. Indeed, choose for f a

characteristic function supported on a suitable small ball |t| ≤ T, so that D(Zn||Z) → 0,

by (3). Applying the Talagrand transport-entropy inequality, we get

W2
2 (Z′

n, Z) ≤ 2W2
2 (Zn, Z) + 2

n
E |X|2 ≤ 4D(Zn||Z) + 2

n
E |X|2 → 0.

A similar approach was used in [4] to study the rate of convergence in the one-

dimensional transport CLT under the 4th moment assumption.
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5 Entropy Bounds

Let (Xn)n≥1 be a sequence of integer valued random vectors in R
d, and let X be a

continuous random vector in R
d with finite 2nd moment, independent of this sequence.

As before, we define the normalized sums

Zn = 1√
n

(X + X1 + · · · + Xn).

As is well known, when the 2nd moment E |U|2 of a continuous random vector U in R
d is

fixed, its entropy is maximized on the normal distribution with the same 2nd moment

(cf., e.g., [13]). In the case of independent and isotropic Xn’s, we have E |Zn|2 = 1
n E |X|2 +

d → d as n → ∞. Hence, lim supn→∞ h(Zn) ≤ h(Z), where Z is a standard normal random

vector in R
d. The argument to derive a similar bound lim supn→∞ h(Zn) ≤ h(Z) + h(X) is

based on two elementary lemmas, which involve the discrete Shannon entropy

H(Y) = −
∑

k

pk log pk.

Here, Y is a discrete random vector taking at most countably many values, say yk, with

probabilities pk, respectively.

Lemma 5.1. Let X be a continuous random vector, and let Y be a discrete random

vector independent of X, both with values in the Euclidean space R
d. Then

h(X + Y) ≤ h(X) + H(Y).

Lemma 5.1 can be derived implicitly from the ideas of [28] about the entropy of

mixtures of discrete and continuous random variables. An explicit statement appears

in [32, Lemma 11.2] (see also [26]). We include a proof for completeness:

Proof. Denote by p the density of X and let pk = P{Y = yk} for some finite or infinite

sequence yk. Since X and Y are independent, X + Y has density

q(z) =
∑

k

pkp(z − yk).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/21/8057/5721202 by U
niversity of M

innesota - Tw
in C

ities user on 04 M
arch 2021



8076 S. G. Bobkov and A. Marsiglietti

We use the convention u log(u) = 0 if u = 0. Note that, if p(z − yk) = 0, then

pkp(z − yk) log
∑

i

pip(z − yi) = 0 = pkp(z − yk) log(pkp(z − yk)),

while in the case p(z − yk) > 0, we have

pkp(z − yk) log
∑

i

pip(z − yi)

= pkp(z − yk) log

⎛⎝pkp(z − yk) +
∑
i
=k

pip(z − yi)

⎞⎠
= pkp(z − yk)

[
log(pkp(z − yk)) + log

(
1 +

∑
i
=k pip(z − yi)

pkp(z − yk)

)]
≥ pkp(z − yk) log(pkp(z − yk)).

Hence, for all z,

pkp(z − yk) log
∑

i

pip(z − yi) ≥ pkp(z − yk) log(pkp(z − yk)).

We may therefore conclude that

h(X + Y) = −
∫
Rd

q(z) log q(z) dz

= −
∑

k

∫
Rd

pkp(z − yk) log
∑

i

pip(z − yi) dz

≤ −
∑

k

∫
Rd

pkp(z − yk) log(pkp(z − yk)) dz

= −
∑

k

pk

( ∫
Rd

p(z − yk) log pk dz +
∫
Rd

p(z − yk) log p(z − yk) dz
)

= h(X) + H(Y).
�

Let us note that a recent sharpening of Lemma 5.1 appears in [25, Theorem III.1],

where it is shown that

h(X + Y) ≤ h(X|Y) + TH(Y),

where h(X|Y) is the conditional entropy, reducing to h(X) on independence, and T is

the supremum of the total variation of the conditional densities from their “mixture

complements”, necessarily T ≤ 1.
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The following lemma is standard and has been used in several applications

(see [24]):

Lemma 5.2. For any integer valued random variable Y with finite 2nd moment,

H(Y) ≤ 1

2
log

(
2πe

(
Var(Y) + 1

12

))
. (23)

The proof of Lemma 5.2, that we include for completeness, also combines both

discrete and differential entropy:

Proof. Put pk = P{Y = k}, k ∈ Z. Consider a continuous random variable Ỹ with density

q defined to be

q(x) = pk if x ∈ (
k − 1

2 , k + 1
2

)
.

In other words,

q(x) =
∑

k

pk1
(k− 1

2 ,k+ 1
2 )

(x), x ∈ R.

Note that

EỸ =
∑

k

pk

∫ k+ 1
2

k− 1
2

x dx =
∑

k

pk

2

((
k + 1

2

)2 −
(
k − 1

2

)2)
=

∑
k

kpk = EY

and similarly

EỸ2 =
∑

k

pk

∫ k+ 1
2

k− 1
2

x2 dx = EY2 + 1

12
.

Hence, Var(Ỹ) = Var(Y) + 1
12 . Also,

h(Ỹ) = −
∫ ∞

−∞

∑
k

pk1
(k− 1

2 ,k+ 1
2 )

(x) log
∑

j

pj1(j− 1
2 ,j+ 1

2 )
(x) dx

= −
∑

k

pk

∫ k+ 1
2

k− 1
2

log pk dx = H(Y).

Now, since Gaussian distributions maximize the differential entropy for a fixed vari-

ance, we conclude that

H(Y) = h(Ỹ) ≤ 1

2
log

(
2πe Var(Ỹ)

) = 1

2
log

(
2πe

(
Var(Y) + 1

12

))
.

�
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We are now prepared to establish Theorem 1.3, in fact under somewhat weaker

assumptions.

Theorem 5.3. Given a sequence Xn = (Xn,1, . . . , Xn,d) of random vectors with values

in Z
d, independent of X, assume that for each k ≤ d, the components Xn,k, n ≥ 1, are

uncorrelated and have variance one. Then,

lim sup
n→∞

h(Zn) ≤ h(X) + h(Z).

Proof. Putting Sn = X1 + · · · + Xn and applying Lemma 5.1, we get

h(Zn) = h
(X + Sn√

n

)
= h(X + Sn) − d

2
log n

≤ h(X) + H(Sn) − d

2
log n.

Note that

Sn = (Sn,1, . . . , Sn,d), Sn,k = X1,k + · · · + Xn,k (1 ≤ k ≤ d).

By the well-known subadditivity of entropy along components of a random vector (an

abstract property on product spaces that is irrelevant to the independence assumption,

cf., e.g., [20]), we have

H(Sn) ≤ H(Sn,1) + · · · + H(Sn,d).

Here, the entropy functional on the left is applied to the d-dimensional random vector,

while on the right-hand side of this inequality we deal with one-dimensional entropies.

For each k ≤ d, the k-th component Sn,k of the random vector Sn represents the sum of n

uncorrelated integer valued random variables with variance one, so that Var(Sn,k) = n.

Hence, by (23) applied to Y = Sn,k, we have

H(Sn,k) ≤ 1

2
log

(
2πe

(
n + 1

12

))
= 1

2
log(2πen) + O(1/n),

and therefore

H(Sn) ≤ d

2
log(2πen) + O(1/n).

We conclude that

lim sup
n→∞

h(Zn) ≤ h(X) + d

2
log(2πe) = h(X) + h(Z).

�
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