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We present a short and elementary proof of the Ajtai–Komlós–Tusnády
(AKT) optimal matching theorem in dimension 2 via Fourier analysis and a
smoothing argument. The upper bound applies to more general families of
samples, including dependent variables, of interest in the study of rates of
convergence for empirical measures. Following the recent pde approach by
L. Ambrosio, F. Stra and D. Trevisan, we also adapt a simple proof of the
lower bound.

Given two samples (X1, . . . ,Xn) and (Y1, . . . , Yn) of independent random variables uni-
formly distributed on the unit square [0,1]2, the famous Ajtai–Komlós–Tusnády (AKT) op-
timal matching theorem [2] establishes that, with high probability,

inf
σ

1

n

n∑
k=1

|Xk − Yσ(k)| ∼
√

logn

n
.

Here the infimum is taken over all permutations σ of {1, . . . , n}, | · | is the Euclidean norm in
R

2, and A ∼ B means that A ≤ CB and B ≤ CA for some constant C > 0 independent of n

(≥ 2). The 1
n

normalization is for convenience with the further statements and formulations,
and for the purpose of this note, with high probability is simply translated by an equivalence
on the average

(1) E

(
inf
σ

1

n

n∑
k=1

|Xk − Yσ(k)|
)

∼
√

logn

n

(concentration arguments allowing for quantitative probabilistic estimates, cf. [3, 5]).
The AKT theorem is proved in [2] with combinatorial dyadic decompositions, where it

is also mentioned that the analogous statement with the Euclidean norm at the power p,
1 ≤ p < ∞, holds similarly. Further proofs, still based on the same principle, and with im-
proved conclusions, have been provided in [20, 21] or [29]. M. Talagrand [13, 27] undertook a
deep investigation of optimal matching with the tool of the ellipsoid theorem from the generic
chaining (majorizing measure) theory, with significant strengthenings and further, still open,
conjectures (cf. the monograph [28]). In particular, with this approach, he extended in [25]
the upper bound in (1) to samples with arbitrary distribution on [0,1]2 (which may be then
further extended to distributions on R

2 under moment conditions [31]). Grid matching corre-
sponding to p = ∞ has been investigated simultaneously [16, 22, 28].

For the specific uniform distribution, alternate approaches have been developed recently,
such as gravitational allocation in [14]. A major breakthrough is the investigation [3] by
L. Ambrosio, F. Stra and D. Trevisan who used pde methods towards exact asymptotics of
the optimal matching for p = 2.
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The optimal matching problem may be formulated similarly for samples on the cube
[0,1]d for any dimension d . The value d = 2 is actually known to be the critical and most
delicate one (see the discussion in [28]), since when d = 1 monotone rearrangement argu-
ments show that the order is 1√

n
(cf. [5]), while when d ≥ 3, easy tools produce the rate 1

n1/d ;
see, for example, [10] for some early achievements and [9, 12, 26] for recent more general
developments concerning d ≥ 3. We refer in particular to the latter [12] and to [28, 32] for
further bibliographical references on the topic of optimal matching.

The purpose of this note is to present an elementary Fourier analytic proof of the AKT
theorem (1), with in particular a very simple argument towards the upper bound, valid for
any underlying distribution on [0,1]2. While the use of Fourier transform is also the first step
in the Talagrand investigation [27, 28] (inspired from [8]), we replace the delicate generic
chaining analysis by a standard smoothing procedure.1 This smoothing procedure is also part
of the pde analysis developed in [3] towards exact asymptotics. We borrow from the latter
work [3] the Lusin approximation theorem of Sobolev functions towards a simplified proof
of the lower bound. The simplicity of the approach developed in this note allows for several
extensions, and should potentially be useful in the study of related issues. Some applications
of Fourier analysis and heat kernel smoothing in the study of Kantorovich metrics have been
proposed recently in [23].

The note is structured as follows. In Section 1, we reformulate the optimal matching the-
orem in suitable Kantorovich metrics adapted to Fourier analysis. Next, the main Fourier
analytic argument is developed, while in Section 3 the smoothing procedure is presented by
means of standard Gaussian kernel regularization. The proof of the upper bound in the AKT
theorem is then immediately deduced in Section 4, and shown to apply to more general sam-
ples, including dependent structures. In this formulation, the optimal matching problem is
part of the study of rates of convergence of empirical measures in Kantorovich metrics. Em-
pirical measures with nonrandom atoms are considered in Section 5, producing in particular
new instances of the AKT theorem. The lower bound is established in the next paragraph.
In the final Section 7, we derive more precise quantitative upper bounds taking care of the
dependence of the constants as the dimension d grows, essentially recovering some claims
from [24].

1. Kantorovich metric. To present the approach, it is convenient to recast the optimal
matching problem in terms of the Kantorovich metric W1. We mention, for example, [11, 18,
30] as standard references on the Kantorovich transport distances.

Given two probability measures μ and ν on the Borel sets of R
d with a first absolute

moment, the Kantorovich transport distance W1(μ, ν) between μ and ν is defined as

(2) W1(μ, ν) = inf
λ

∫
Rd

∫
Rd

|x − y|dλ(x, y),

where the infimum is running over all probability measures λ on R
d × R

d with respective
marginals μ and ν, and |x − y| represents the Euclidean distance between x, y ∈ R

d . It is a
standard consequence of the Birkhoff theorem on the extreme points of the set of bi-stochastic
matrices that whenever x1, . . . , xn, y1, . . . , yn are points in R

d , and μn = 1
n

∑n
k=1 δxk

, νn =
1
n

∑n
k=1 δyk

, then

W1(μ, ν) = inf
σ

1

n

n∑
k=1

|xk − yσ(k)|,

1Since the paper was made available, M. Talagrand gave its own presentation of this proof in the forthcoming
new edition of [28].
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connecting therefore with the optimal matching formulation. In particular, we will study and
state below the AKT results using this Kantorovich metric W1.

By the Kantorovich–Rubinstein theorem, the distance W1 has another description as

(3) W1(μ, ν) = sup
u

∣∣∣∣∫
Rd

u dμ −
∫
Rd

u dν

∣∣∣∣,
where the supremum is taken over all (real-valued) Lipschitz functions u on R

d with Lips-
chitz semi-norm ‖u‖Lip ≤ 1 with respect to the Euclidean distance on R

d .
The aim is to bound the distance W1(μ, ν) by means of Fourier analysis for probability

measures supported on a bounded set, say Qd = (−π,π ]d , which requires some additional
properties of u like periodicity. This is possible, at least when μ and ν are supported on a
smaller part of Qd . In that case, any Lipschitz map u on R

d can indeed be modified outside
the sub-cube to become periodic and to still be Lipschitz (thus not changing the difference of
the integrals in (3)).

As an alternate approach, one may consider a similar problem on the torus T
d = (S1)d

where S
1 = {z ∈ C; |z| = 1} denotes the unit circle on the complex plane, endowed with the

geodesic distance. The circle may be identified with the semi-open interval (−π,π ] with
metric

ρ(x, y) = min
{|x − y|,2π − |x − y|}, x, y ∈ (−π,π ],

via the isometric mapping U(x) = eix . In that case, Td should be identified with Qd with
metric

ρd(x, y) =
(

d∑
�=1

ρ(x�, y�)
2

)1/2

, x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Qd.

For probability measures μ and ν on Qd , the Kantorovich transport distance with respect to
ρd is defined similar to (2) as

(4) W̃1(μ, ν) = inf
λ

∫
Qd

∫
Qd

ρd(x, y) dλ(x, y).

The general Kantorovich–Rubinstein theorem holds true for the metric space (Qd,ρd) as well
(cf. [11, 18, 30]) and may be restated similar to (3): For any two Borel probability measures
μ and ν on Qd ,

(5) W̃1(μ, ν) = sup
u

∣∣∣∣∫
Qd

udμ −
∫
Qd

udν

∣∣∣∣,
where the supremum is taken over all (real-valued) maps u on Qd with Lipschitz semi-norm
‖u‖Lip ≤ 1 with respect to ρd . The 2π -periodic extension of any such function u satisfies
|u(x) − u(y)| ≤ dist(x − y,2πZd) for all x, y ∈ R

d . In particular, u is continuous on R
d and

has Lipschitz semi-norm at most 1 in the sense of the Euclidean distance. Conversely, any
2π -periodic function u on R

d with Euclidean Lipschitz semi-norm ‖u‖Lip ≤ 1 has
ρd -Lipschitz semi-norm at most 1 on Qd . Indeed, using the isometric map U , it is suffi-
cient to note that the Lipschitz property of a function on the torus is a local property, while
locally the difference between the geodesic and the Euclidean metrics is negligible. Thus, the
supremum in (5) may be taken over all 2π -periodic u on R

d with ‖u‖Lip ≤ 1 with respect to
the Euclidean distance.

It should also be clear that the supremum in the Kantorovich–Rubinstein representations
may be restricted to C∞-functions. Once u is 2π -periodic on R

d and 1-Lipschitz, that is,
‖u‖Lip ≤ 1, the convolutions

uε(x) = 1

(2πε2)d/2

∫
Rd

u(x + εy)e−|y|2/2ε2
dy, x ∈ R

d,
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of u with Gaussian densities represent 2π -periodic, C∞-smooth, and 1-Lipschitz functions
for any ε > 0. Since maxx |uε(x) − u(x)| ≤ dε → 0 as ε → 0, the function u in (5) may be
replaced with uε’s. A similar remark applies to the supremum in (3) as well.

Since ρd is dominated by the usual Euclidean distance, it follows from (2) and (4) that
W̃1 ≤ W1. On the other hand, W̃1(μ, ν) = W1(μ, ν) as long as both μ and ν are supported
on a smaller part of the cube Qd such as [0, π]d (suitable for the applications). In this case
all measures λ with marginals μ and ν have to be supported on [0, π]d × [0, π]d , and since
ρd(x, y) = |x − y| in this sub-cube, the right-hand sides of (2) and (4), and therefore the
right-hand sides of (3) and (5), do coincide.

It is a consequence of this analysis, together with elementary scaling, that we may investi-
gate the AKT theorem via the metric W̃1 described by (4) and (5). This observation will be
used implicitly throughout the exposition.

2. Fourier transform. For a probability measure μ on the cube Qd , its Fourier–Stieltjes
transform is defined as the multi-indexed sequence

fμ(m) =
∫
Qd

ei〈m,x〉 dμ(x), m ∈ Z
d,

where 〈m,x〉 = ∑d
�=1 m�x�, m = (m1, . . . ,md) ∈ Z

d , x ∈ (x1, . . . , xd) ∈ R
d , which deter-

mines μ in a unique way. Equivalently, fμ represents the characteristic function of a ran-
dom vector distributed according to μ, which is restricted to the lattice Z

d . Therefore, when
bounding various distances between two probability measures μ and ν on Qd , it is sufficient
to examine closeness of their Fourier transforms fμ and fν .

If a 2π -periodic function u on R
d is sufficiently smooth, one may expand it as an abso-

lutely convergent Fourier series

u(x) = ∑
m∈Zd

amei〈m,x〉, x ∈ R
d,

which can be differentiated term by term. Differentiating this equality with respect to the
�th coordinate, we have ∂�u(x) = i

∑
m∈Zd m�amei〈m,x〉, which, according to the Parseval

identity, yields

1

(2π)d

∫
Qd

∣∣∂�u(x)
∣∣2 dx = ∑

m∈Zd

m2
�|am|2.

Summing over � = 1, . . . , d ,

1

(2π)d

∫
Qd

∣∣∇u(x)
∣∣2 dx = ∑

m∈Zd

|m|2|am|2,

where |m|2 = 〈m,m〉. Moreover, if (additionally) u is 1-Lipschitz, the modulus |∇u| of its
gradient is everywhere less than or equal to 1, hence the left-hand side of the preceding is
bounded by 1 so that

(6)
∑

m∈Zd

|m|2|am|2 ≤ 1.

Now, by integration,∫
Qd

udμ −
∫
Qd

udν = ∑
m
=0

am

[
fμ(m) − fν(m)

]
.
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At this point, the analysis of [28] makes use of tools from the study of stochastic processes.
We follow a simpler direct route. Applying Cauchy’s inequality on the basis of (6), we arrive
at ∣∣∣∣∫

Qd
udμ −

∫
Qd

udν

∣∣∣∣2 ≤ ∑
m
=0

1

|m|2
∣∣fμ(m) − fν(m)

∣∣2.
Take then the supremum over all (sufficiently) smooth 2π -periodic Lipschitz functions u on
the left-hand side with ‖u‖Lip ≤ 1 to reach the following statement.

LEMMA 1. Given two probability measures μ and ν on Qd with Fourier–Stieltjes trans-
forms fμ and fν ,

W̃1(μ, ν)2 ≤ ∑
m
=0

1

|m|2
∣∣fμ(m) − fν(m)

∣∣2.
A similar inequality holds for W1(μ, ν) if μ and ν are supported on [0, π]d .

It could be mentioned that if μ and ν have respective smooth densities ϕ and ψ with
respect to dx, then

(7)
∑
m
=0

1

|m|2
∣∣fμ(m) − fν(m)

∣∣2 = 1

(2π)d

∫
Qd

∣∣∇(−
)−1(ϕ − ψ)
∣∣2 dx,

where, for a convergent Fourier series g = ∑
m∈Zd amei〈m,x〉 such that a0 = 0,

(−
)−1g = ∑
m
=0

1

|m|2 amei〈m,x〉.

The quantity on the right-hand side of (7) may be identified as an inverse Sobolev-type norm
(cf. [30]). In case one of the measures is the Lebesgue measure, for example, ν = dx, it may
be shown (see [15, 17, 19]) that

W̃2(μ, ν)2 = inf
λ

∫
Qd

∫
Qd

ρd(x, y)2 dλ(x, y) ≤ 4

(2π)d

∫
Qd

∣∣∇(−
)−1(ϕ − 1)
∣∣2 dx.

In this instance (ν = dx), the argument and upper bound developed next for the W̃1 distance
will therefore apply simultaneously to the quadratic Kantorovich distance W̃2, and thus to
the AKT theorem (1) for p = 2.

One negative issue about the inequality of Lemma 1 is that the sum therein may be diver-
gent. To settle the problem, one may use a smoothing operation by suitable convolutions of
μ and ν.

3. Smoothing. We make use of the simple Gaussian heat kernel smoothing, along the
line of what is developed in [3] (towards more ambitious aims), although other convolution
kernels might be used to this task.

On Qd , consider the heat kernel

pt(x) = 1

(2π)d

∑
m∈Zd

ei〈m,x〉−|m|2t , t > 0, x ∈ Qd.

In other words, pt is the density (with respect to the Lebesgue measure) of the probability
measure γt supported on Qd whose Fourier–Stieltjes transform is given by

fγt (m) = e−|m|2t , m ∈ Z
d .

In particular,
∫
Qd pt (x) dx = 1.
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If μ is a probability measure supported on Qd , the heat kernel smoothed (probability)
measure μt , t > 0, is defined as the convolution μ ∗ γt via the equality∫

Qd
g dμt =

∫
Qd

∫
Qd

g(x + y)pt (y) dy dμ(x)

holding for all 2π -periodic continuous functions g on R
d . Therefore, if fμ is the character-

istic function of μ, for every m ∈ Z
d ,

(8) fμt (m) =
∫
Qd

ei〈m,x〉 dμt(x) = e−|m|2t fμ(m).

The task is now to control the cost in regularization for the Kantorovich metric. If
u :Rd →R is 1-Lipschitz and 2π -periodic, consider∫

Qd
udμt −

∫
Qd

udμ =
∫
Qd

∫
Qd

[
u(x + y) − u(x)

]
pt(y) dy dμ(x).

Hence ∣∣∣∣∫
Qd

udμt −
∫
Qd

udμ

∣∣∣∣ ≤
∫
Qd

|y|pt(y) dy

and, taking the supremum over all such Lipschitz functions u,

W̃1(μ,μt) ≤
∫
Qd

|y|pt(y) dy ≤
(∫

Qd
|y|2pt(y) dy

)1/2
.

The decay as t → 0 of the expression on the right-hand side actually turns out to be of
the order of

√
t . To verify this claim, note that γt can be recognized as the product measure

whose marginals are the image of the Gaussian measure on the real line with mean zero and
variance 2t under the map

M(y) = y − 2πk, π(2k − 1) < y ≤ π(2k + 1), k ∈ Z.

Indeed, this map pushes forward any probability measure η on R to a probability measure
η̃ on (−π,π ]. By the construction, M(y) − y is a multiple of 2π , so fη̃(m) = fη(m) for all
m ∈ Z. In addition, |M(y)| ≤ |y| for all y ∈ R, so that∫ ∞

−∞
|y|2 dη̃(y) ≤

∫ ∞
−∞

|y|2 dη(y).

Choosing for η the centered Gaussian measure on the real line with variance 2t , we obtain in
this way the one-dimensional marginal measure with density pt on (−π,π ]. Moreover, as a
consequence of the preceding comparison along each coordinate,∫

Qd
|y|2pt(y) dy ≤

∫
Rd

|y|2 dη⊗d(y) = 2dt.

As a conclusion of this analysis, for any μ supported on Qd and any t > 0,

(9) W̃1(μ,μt) ≤ √
2dt.

We next combine the various steps. By the triangle inequality for W̃1 and (9), for any t > 0,

W̃1(μ, ν) ≤ W̃1(μt , νt ) + 2
√

2dt.

It remains to apply the Fourier bound from Lemma 1 to μt and νt which satisfy (8) to reach
the following conclusion.
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PROPOSITION 2. Given two probability measures μ and ν on Qd with Fourier–Stieltjes
transforms fμ and fν , for any t > 0,

W̃1(μ, ν) ≤
(∑

m
=0

1

|m|2 e−2|m|2t ∣∣fμ(m) − fν(m)
∣∣2)1/2

+ 2
√

2dt.

A similar inequality holds for W1(μ, ν) if μ and ν are supported on [0, π]d .

4. Application to the AKT theorem. This section describes the application of the pre-
ceding Fourier analytic approach to the upper bound in the AKT theorem. It actually applies
to a somewhat extended probabilistic setting, a form of which having already been empha-
sized in [25].

Namely, consider random variables X1, . . . ,Xn,Y1, . . . , Yn on some probability space
(�,A,P) with values in [0,1]d such that the couples (X1, Y1), . . . , (Xn,Yn) are pairwise
independent and, for every k = 1, . . . , n, Xk and Yk have the same distribution. Apply Propo-
sition 2 to the empirical measures μn = 1

n

∑n
k=1 δXk

and νn = 1
n

∑n
k=1 δYk

(supported on
[0,1]d ⊂ [0, π]d ) to get that, after averaging and use of Jensen’s inequality,

E
(
W1(μn, νn)

) ≤
(∑

m
=0

1

|m|2 e−2|m|2t
E

(∣∣fμn(m) − fνn(m)
∣∣2))1/2

+ 2
√

2dt

for any t > 0. Now, by the independence and equidistribution assumptions on the variables
X1, . . . ,Xn,Y1, . . . , Yn,

E
(∣∣fμn(m) − fνn(m)

∣∣2) ≤ 4

n

for every m ∈ Z
d , so that

(10) E
(
W1(μn, νn)

) ≤ 2√
n

(∑
m
=0

1

|m|2 e−2|m|2t
)1/2

+ 2
√

2dt.

From a (crude) comparison between series and integral, it should be clear without computa-
tions that, up to d-dependent factors,

(11) Sd(t) = ∑
m
=0

1

|m|2 e−2|m|2t ∼
∫
|x|≥1

1

|x|2 e−2t |x|2 dx ∼
∫ ∞

1
rd−3e−2tr2

dr.

For the small values of t > 0, the latter integral is of order 1 if d = 1, log(1
t
) if d = 2 and

t−(d/2)+1 if d ≥ 3. After optimization in t > 0 in (10), we thus conclude to the following
statement which covers the upper bound in the AKT theorem when d = 2, providing at the
same time the optimal rates for d = 1 and d ≥ 3.

THEOREM 3. Let X1, . . . ,Xn,Y1, . . . , Yn be random variables with values in [0,1]d
such that the couples (X1, Y1), . . . , (Xn,Yn) are pairwise independent and, for every
k = 1, . . . , n, Xk and Yk have the same distribution. For the empirical measures μn =
1
n

∑n
k=1 δXk

and νn = 1
n

∑n
k=1 δYk

associated to the samples (X1, . . . ,Xn) and (Y1, . . . , Yn),
it holds true that

E
(
W1(μn, νn)

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

O

(
1√
n

)
if d = 1,

O

(√
logn

n

)
if d = 2,

O

(
1

n1/d

)
if d ≥ 3.
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In the last Section 7, we develop a more careful analysis of the function Sd(t) of (11)
to reach more explicit quantitative bounds, in particular with respect to dependence as the
dimension d increases. Namely, Proposition 6 below with δ = 2√

n
yields the following quan-

titative statement of Theorem 3:

(12) E
(
W1(μn, νn)

) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2√
n

if d = 1,

10

√
1 + logn

n
if d = 2,

16
√

d

n1/d
if d ≥ 3.

The numerical constants are not sharp, but the order of growth as d → ∞ matches the first
order asymptotics of [24].

If the random variables X1, . . . ,Xn,Y1, . . . , Yn are independent and have the same law μ,
then by Jensen’s inequality

E
(
W1(μn, νn)

) ≥ E
(
W1(μn,μ)

)
since E(νn) = μ. The upper bounds of Theorem 3 and (12) thus apply to E(W1(μn,μ)). As
such, the conclusions enter the framework of rates of convergence for empirical measures.

As an example illustrating Theorem 3, one may consider two sequences

Xk(ω) = U(kω1 + ω2), Yk(ω) = V (kω1 + ω2), ω = (ω1,ω2) ∈ �,k ≥ 1,

defined for given 1-periodic Borel measurable functions U,V : [0,1] → [0,1]d on the square
� = [0,1] × [0,1], which we equip with the normalized Lebesgue measure P. As easy to
check, (Xk)k≥1 forms a strictly stationary sequence of pairwise independent random variables
(which, however, are not independent), and the same is true for (Yk)k≥1. If U and V have
equal distributions under the Lebesgue measure on [0,1], then Theorem 3 is applicable, so
that one can make the conclusion about the closeness of the associated empirical measures.

One may even further generalize Theorem 3 to the setting of weakly dependent random
variables. Recall that, given a probability space (�,A,P) and two σ -algebras A1,A2 ⊂ A,
the Rosenblatt coefficient, which quantifies the strength of dependence between A1 and A2,
is defined to be

α(A1,A2) = sup
{∣∣P(A1 ∩ A2) − P(A1)P(A2)

∣∣;A1 ∈A1,A2 ∈ A2
}
.

It is one of eight well-known measures of dependence (and the weakest one) which is used
in the theory of strong mixing conditions (cf. [6, 7]). Clearly,

α(A1,A2) = sup
∣∣Cov(ϕ,ψ)

∣∣,
where the supremum is running over all A1- and respectively A2-measurable functions ϕ and
ψ on � with values in [0,1]. If ϕ and ψ are complex-valued with |ϕ| ≤ 1 and |ψ | ≤ 1, then,
by the bilinearity of the covariance functional, Cov(ϕ,ψ) = E((ϕ − E(ϕ))(ψ − E(ψ))) is
bounded in absolute value by 16α(A1,A2).

In practice, one is given a sequence of σ -algebras Ak generated by random elements Zk ,
k ≥ 1, defined on the same probability space �, with which one associates the characteristics

α(�) = sup
|j−k|≥�

α(Aj ,Ak), � ≥ 1.

Repeating the arguments in the proof of Theorem 3, we have:
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COROLLARY 4. Let Zk = (Xk,Yk), k ≥ 1, be random variables with values
in [0,1]d × [0,1]d such that Xk and Yk have the same distribution for every k ≥ 1. If the
associated mixing sequence α(�), � ≥ 1, is summable, then the asymptotic bounds of Theo-
rem 3 remain to hold for the empirical measures μn = 1

n

∑n
k=1 δXk

and νn = 1
n

∑n
k=1 δYk

.

Indeed, for every m ∈ Z
d ,

E
(∣∣fμn(m) − fνn(m)

∣∣2) = 1

n2

n∑
j,k=1

Cov
(
ei〈m,Xj 〉 − ei〈m,Yj 〉, ei〈m,Xk〉 − ei〈m,Yk〉)

≤ 4

n
+ 64

n2

∑
1≤j 
=k≤n

α
(|j − k|)

= 4

n
+ 128

n2

n−1∑
�=1

(n − �)α(�)

≤ 4

n
+ 128

n

n−1∑
�=1

α(�).

It therefore remains to apply Proposition 2 as for Theorem 3.

5. Empirical measures with nonrandom atoms. As another application of the preced-
ing approach, fix a collection of points in the unit cube [0,1]d , say x1, . . . , xN , N ≥ 2. One
may use various selections of indices to construct (deterministic) empirical measures with
atoms at xj (repetition of the points in the sequence is allowed). Namely, for 1 ≤ n ≤ N , let
Gn denote the collection of all subsets τ of {1, . . . ,N} of cardinality |τ | = n equipped with
the uniform probability measure πn. With every τ ∈ Gn, we associate an “empirical” measure

μτ = 1

n

∑
j∈τ

δxj
,

which may be treated as a random measure on the probability space (Gn,πn). The goal is to
show that most of μτ ’s are concentrated around the average measure

(13) μ = Eπn(μτ ) =
∫
Gn

μτ dπn(τ ) = 1

N

N∑
j=1

δxj

as long as n is large (in the sense of the distance W1). For simplicity, we skip the parameter
N since interest in the final estimates is concerned with the dependence with respect to the
growing n, while N may be arbitrarily large. To this aim, consider the functional

Lu(τ) =
∫
Gn

u(x) dμτ (x) = 1

n

∑
j∈τ

u(xj ), τ ∈ Gn,

associated to a given complex-valued function u on the cube [0,1]d . As is easy to check,

Varπn(L) = Eπn

(∣∣L −Eπn(L)
∣∣2) = N − n

2nN2(N − 1)

N∑
i,j=1

∣∣u(xi) − u(xj )
∣∣2.

If |u| ≤ 1, it follows that Varπn(Lu) ≤ 2
n

. Since the Fourier–Stieltjes transform fμτ (πm)

corresponds to Lu(τ) with u(x) = eiπ〈m,x〉, the analysis of the preceding section may be
developed in the same way. Together with the more quantitative estimates from Proposition 6
below, the following corollary holds true.
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COROLLARY 5. Given a collection of points x1, . . . , xN in [0,1]d , for any integer
1 ≤ n ≤ N , the empirical measures μτ satisfy

Eπn

(
W1(μτ ,μ)

) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

n
if d = 1,

8

√
1 + log(2n)

n
if d = 2,

13
√

d

n1/d
if d ≥ 3.

Note in particular that if N = 2n,

Eπn

(
W1(μτ ,μ)

) = 1

2n
E

(
inf

n∑
k=1

|xik − xjk
|
)
,

where the averaging on the right is performed over all choices of indices
1 ≤ i1 < · · · < in ≤ 2n, while the infimum is taken over all permutations j1, . . . , jn of the
remaining integers in the set {1, . . . ,2n} \ {i1, . . . , in}.

In fact, the preceding corollary easily implies Theorem 3 specialized to the i.i.d. case. This
is achieved by averaging (13) over x1, . . . , x2n according to the product measure μ⊗2n for a
fixed probability distribution μ on [0,1]d . Actually, the argument extends to more general
classes. Namely, if the joint distribution of the random vectors X1, . . . ,X2n with values in
[0,1]d is invariant under permutations of the indices, then for the empirical measures μn =
1
n

∑n
k=1 δXk

and μ the distribution of X1, E(W1(μn,μ)) is controlled as in Corollary 5.

6. Lower bound. While the AKT upper bound may be extended to families of samples
with arbitrary (compactly supported) distributions, it is well known (cf. e.g., [4, 28]) that the
lower bound requires distributions with enough regularity, for example, absolutely continuous
with respect to Lebesgue measure. A pde proof of the lower bound in the AKT theorem has
been provided recently in the paper [3], relying on a somewhat heavy analysis involving in
particular Riesz transform bounds. We extract here the necessary argument in our framework
via a simple fourth moment computation, thereby producing a rather mild proof.

Let X1, . . . ,Xn,Y1, . . . , Yn, on a probability space (�,A,P), be independent with uniform
distribution dμ = dx

(2π)d
on Qd . For any t > 0, contractivity of the Kantorovich metric shows

that

W̃1(μn, νn) ≥ W̃1(μn,t , νn,t ).

This is actually immediate from the definition of W̃1 and the heat kernel regularization since∫
Qd

udμn,t −
∫
Qd

udμ =
∫
Qd

[∫
Qd

u(x + y)dμn(x) −
∫
Qd

u(x + y)dμ(x)

]
pt(y) dy

and
∫
Qd pt (y) dy = 1.

From here, the principle of the proof will be to lower bound, by the Kantorovich–
Rubinstein theorem, W̃1(μn,t , νn,t ) by

1

α

∣∣∣∣∫
Qd

udμn,t −
∫
Qd

udνn,t

∣∣∣∣
for a well chosen α-Lipschitz function u (i.e., ‖u‖Lip ≤ α). This function u will be con-
structed from the absolutely convergent random Fourier series

h(x) = ∑
m
=0

1

|m|2 e−|m|2t
(

1

n

n∑
k=1

[
ei〈m,Xk〉 − ei〈m,Yk〉])e−i〈m,x〉, x ∈ R

d .
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This equality defines a 2π -periodic, real-valued, C∞-smooth function, whose Laplacian


h(x) = − ∑
m
=0

e−|m|2t
(

1

n

n∑
k=1

[
ei〈m,Xk〉 − ei〈m,Yk〉])e−i〈m,x〉

represents the multiple Fourier series for the density of νn,t − μn,t (with respect to the
Lebesgue measure on Qd ). Hence, the integration by parts formula for a smooth 2π -periodic
function v :Rd →R yields

(14)
∫
Qd

v dμn,t −
∫
Qd

v dνn,t = −
∫
Qd

v
hdμ =
∫
Qd

〈∇h,∇v〉dμ.

For α > 0, denote then by u : Qd → R the α-Lipschitz Lusin extension of h on the torus
(Qd,ρd) such that

(15) μ
({h 
= u}) ≤ K

α2

∫
Qd

|∇h|2 dμ,

where K > 0 only depends on d ([1], cf. Lemma 5.1 in [3]). Hence, as announced, by the
Kantorovich–Rubinstein theorem,

W̃1(μn, νn) ≥ W̃1(μn,t , νn,t ) ≥ 1

α

∣∣∣∣∫
Qd

udμn,t −
∫
Qd

udνn,t

∣∣∣∣.
We next carefully investigate the difference

∫
Qd udμn,t − ∫

Qd udνn,t , decomposing the
integrals over the set E = {h 
= u} and its complement. Namely, by (14),∫

Qd
udμn,t −

∫
Qd

udνn,t =
∫
Qd

〈∇h,∇u〉dμ

=
∫
Qd

|∇h|2 dμ −
∫
E
〈∇h,∇h − ∇u〉dμ.

In this step, it is used, as a version of Sard’s lemma, that
∫
Ec〈∇h,∇h − ∇u〉dμ = 0 since

∇(h − u) = 0 on the level set Ec = {h − u = 0}. Hence, after integration,

(16) αE
(
W̃1(μn, νn)

) ≥ E

(∫
Qd

|∇h|2 dμ

)
−E

(∣∣∣∣∫
E
〈∇h,∇h − ∇u〉dμ

∣∣∣∣).

The two expectations on the right-hand side of this inequality are examined separately.
First, since the Xk,Yk’s are independent and uniformly distributed on Qd ,

E

(∫
Qd

|∇h|2 dμ

)
= ∑

m
=0

1

|m|2 e−2|m|2t 1

n2E

(∣∣∣∣∣
n∑

k=1

[
ei〈m,Xk〉 − ei〈m,Yk〉]∣∣∣∣∣

2)

= 1

n

∑
m
=0

2

|m|2 e−2|m|2t .

Denote by c(n, t) this quantity (that is 2
n
Sd(t) in the notation of (11)), where t = t (n) ∈ (0,1)

will be specified.
Turning to the second term on the right-hand side of (16), note first that since u is

α-Lipschitz, ∣∣∣∣∫
E
〈∇h,∇h − ∇u〉dμ

∣∣∣∣ ≤
∫
E

|∇h|2 dμ + α

∫
E

|∇h|dμ.
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Taking expectation, by the use of the Cauchy–Schwarz and Hölder inequalities for the product
measure P⊗ μ,

E

(∣∣∣∣∫
E
〈∇h,∇h − ∇u〉dμ

∣∣∣∣)

≤ [
E

(
μ(E)

)]1/2
[
E

(∫
Qd

|∇h|4 dμ

)]1/2
+ α

[
E

(
μ(E)

)]3/4
[(

E

∫
Qd

|∇h|4 dμ

)]1/4
.

Now, by the Lusin approximation (15),

E
(
μ(E)

) ≤ K

α2 c(n, t).

Setting d(n, t) = E(
∫
Qd |∇h|4 dμ), we have therefore obtained at this stage that

αE
(
W̃1(μn,μ)

) ≥ c(n, t) − 1

α

(
Kc(n, t)

)1/2
d(n, t)1/2

− 1√
α

(
Kc(n, t)

)3/4
d(n, t)1/4.

(17)

The final task is now to suitably evaluate d(n, t), before optimization of the choice of
α > 0. By the triangle inequality,

d(n, t) ≤ 8E
(∫

Qd
|∇h̃|4 dμ

)
,

where h̃(x) = ∑
m bme−i〈m,x〉 with

bm = 1

|m|2 e−|m|2t
(

1

n

n∑
k=1

ei〈m,Xk〉
)

for m 
= 0 and b0 = 0. It holds that∣∣∇h̃(x)
∣∣2 = − ∑

m1,m2∈Zd

〈m1,m2〉bm1bm2e
−i〈m1+m2,x〉

and ∫
Qd

|∇h̃|4 dμ = ∑〈m1,m2〉bm1bm2〈m3,m4〉bm3bm4,

where the sum is taken over m1,m2,m3,m4 ∈ Z
d such that m1 + m2 + m3 + m4 = 0. Now

E(bm1bm2bm3bm4) = 1

|m1|2|m2|2|m3|2|m4|2 e−(|m1|2+|m2|2+|m3|2+|m4|2)t

× 1

n4

n∑
k1,k2,k3,k4=1

E
(
ei〈m1,Xk1 〉ei〈m2,Xk2 〉ei〈m3,Xk3 〉ei〈m4,Xk4 〉).

Since the relevant indices satisfy m� 
= 0, � = 1,2,3,4, and m1 +m2 +m3 +m4 = 0, the last
expectation is nonzero, equal to 1, only if k1 = k2 = k3 = k4 or if⎧⎪⎪⎨⎪⎪⎩

k1 = k2, k3 = k4 and m1 + m2 = 0, m3 + m4 = 0,

k1 = k3, k2 = k4 and m1 + m3 = 0, m2 + m4 = 0,

k1 = k4, k2 = k3 and m1 + m4 = 0, m2 + m3 = 0.
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These respective contributions yield the upper bound

E

(∫
Qd

|∇h̃|4 dμ

)
≤ 1

n3

∑ 1

|m1||m2||m3||m4|e
−(|m1|2+|m2|2+|m3|2+|m4|2)t

+ 3

n2

∑
m1,m3 
=0

1

|m1|2|m3|2 e−2(|m1|2+|m3|2)t

= e(n, t) + 3

4
c(n, t)2,

where the first sum on the right-hand side is over all m1,m2,m3,m4 ∈ Z
d \ {0}.

It is easily seen that, for 0 < t ≤ 1
2 ,

e(n, t) = 1

n3

(∑
m
=0

1

|m|e
−|m|2t

)4
∼ 1

n3

(
1

t (d−1)/2

∫ ∞
√

t
rd−2e−r2

dr

)4

while (recall (11))

c(n, t) ∼ 1

n

1

t (d−2)/2

∫ ∞
√

2t
rd−3e−r2

dr.

In the following, take d = 2. Hence e(n, t) is of the order of 1
n3t2 and c(n, t) of the order of

1
n

log(1
t
). Choosing t = t (n) = 1

2
√

n
(e.g.,), e(n, t) is negligible with respect to the square of

(18) cn = c
(
n, t (n)

) ∼ logn

n
.

So for this choice of t = t (n), for some constant K ′ > 0,

(19) d
(
n, t (n)

) = E

(∫
Qd

|∇h|4 dμ

)
≤ K ′c2

n.

The argument may now be concluded via optimization in α > 0. Implementing the pre-
ceding estimate (19) on d(n, t (n)) in (17), it follows that

αE
(
W̃1(μn, νn)

) ≥ cn − 1

α
(Kcn)

1/2(
K ′c2

n

)1/2 − 1√
α

(Kcn)
3/4(

K ′c2
n

)1/4
.

For the choice of α = β
√

cn with β > 0 large enough, it follows that

E
(
W̃1(μn, νn)

) ≥ c
√

cn ∼
√

logn

n

by (18). This is therefore the expected lower bound in the AKT theorem (1).
To conclude, it should be mentioned that in dimension one, the lower bound of the order

of 1√
n

is easily achieved via the monotone representation

W1(μn, νn) =
∫ 1

0

1

n

∣∣∣∣∣
n∑

k=1

(1{Xk≤x} − 1{Yk≤x})
∣∣∣∣∣dx

for independent uniform random variables X1, . . . ,Xn,Y1, . . . , Yn on [0,1] (cf. [5]). Hence

E
(
W1(μn, νn)

) ≥ 1

n
E

(∣∣∣∣∣
n∑

k=1

(Xk − Yk)

∣∣∣∣∣
)

from which the claim follows by convergence of moments in the central limit theorem.
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When d ≥ 3, a standard argument (cf. e.g., [10]) goes as follows: for independent random
variables X1, . . . ,Xn with common uniform distribution μ on [0,1]d . By the Kantorovich–
Rubinstein representation (3) of W1,

W1(μn,μ) ≥
∫
[0,1]d

dist
(
x, {X1, . . . ,Xn})dμ(x).

Let C�, � = 1, . . . , n, be a partition of [0,1]d into n cubes with length of order 1
n1/d , so that

E
(
W1(μn,μ)

) ≥
n∑

�=1

E

(∫
C�

dist
(
x, {X1, . . . ,Xn})dμ(x)

)
.

If D� is the collection of cubes surrounding C�, then P(∀k = 1, . . . , n;Xk /∈ D�) ≥ c for some
c > 0 only depending on d . As a result,

E
(
W1(μn,μ)

) ≥
n∑

�=1

c

n1/d
μ(C�) = c

n1/d
.

7. Quantitative bounds. In this last section, we briefly investigate quantitative bounds,
in particular with respect to dependence on the dimensional constant d in the main statement
(Theorem 3) in the form of (12). We somewhat expand the framework to cover at the same
time Corollary 5.

PROPOSITION 6. Let μ and ν be two random probability measures on the cube [0,1]d
such that their characteristic functions satisfy E(|fμ(πm) − fν(πm)|2) ≤ δ2 for all m ∈ Z

d

for some 0 ≤ δ ≤ 2. Then

E
(
W1(μ, ν)

) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δ if d = 1,

5δ

√
1 + log

(
4

δ2

)
if d = 2,

10
√

dδ2/d if d ≥ 3.

This proposition applied with μ = μn, ν = νn and δ = 2√
n

in the setting of Section 4

yields (12). Applied to μ = μτ , ν = Eπn(μτ ) and δ =
√

2
n

in the setting of Section 5, it yields
Corollary 5.

PROOF. Using the homogeneity of the distance W1, one may equivalently formulate
Proposition 6 for random measures μ and ν supported on the cube [0, π]d as

E
(
W1(μ, ν)

) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
πδ if d = 1,

5πδ

√
1 + log

(
4

δ2

)
if d = 2,

10π
√

dδ2/d if d ≥ 3,

under the assumption that

E
(∣∣fμ(m) − fν(m)

∣∣2) ≤ δ2 for all m ∈ Z
d .

That is, the resulting inequalities for measures supported on the standard cube [0,1]d rather
than on [0, π]d are obtained with numerical factors divided by π .
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Given thus two random measures μ and ν on some probability space (�,A,P) supported
on the cube [0, π]d satisfying the latter, averaging the inequality of Proposition 2 yields for
every t > 0,

(20) E
(
W1(μ, ν)

) ≤ δ

( ∑
|m|>0

1

|m|2 e−2|m|2t
)1/2

+ 2
√

2dt.

The task is therefore to suitably optimize in t > 0.
First note that when d = 1, the smoothing operation is actually not needed and we may

simply take t → 0 to get that

E
(
W1(μ, ν)

) ≤ π√
3
δ ≤ πδ.

Let us then examine more specifically the cases d = 2 and d ≥ 3 analyzing the sum

S̃d(t) = Sd

(
t

2

)
= ∑

|m|>0

1

|m|2 e−|m|2t , t > 0.

The function S̃d(t) is decreasing in t > 0, vanishing at infinity, and

(21) Td(t) = −S̃′
d(t) = ∑

|m|>0

e−|m|2t = (
1 + T1(t)

)d − 1.

In view of the monotonicity of the function x → e−tx2
for x > 0, we have

∞∑
m=2

e−m2t ≤
∫ ∞

1
e−tx2

dx = 1√
2t

∫ ∞
√

2t
e−y2/2 dy ≤

√
π

2
√

t
e−t .

Hence, for any t > 0,

T1(t) = ∑
m∈Z\{0}

e−m2t = 2e−t + 2
∞∑

m=2

e−m2t ≤
(

2 +
√

π

t

)
e−t .

Putting a = √
t and b = (2

√
t + √

π)e−t , it holds that

td/2[(
1 + T1(t)

)d − 1
] ≤ (a + b)d − ad

=
d−1∑
�=0

(
d

�

)
a�bd−�

≤ (2
√

t + √
π)d

d−1∑
�=0

(
d

�

)
e−(d−�)t

≤ 2d(2
√

t + √
π)de−t .

Hence, from (21),

Td(t) ≤ 2d

(
2 +

√
π√
t

)d

e−t .

It follows that, in the range t ≥ π , Td(t) ≤ 6de−t and thus

S̃d(t) =
∫ ∞
t

Td(s) ds ≤ 6de−t ≤ 6de−π .
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On the other hand, if t ≤ π , then

Td(t) ≤ 2d

(
3
√

π√
t

)d

e−t ≤ (6
√

π)dt−d/2

so that, in the case d ≥ 3,

S̃d(t) = S̃d(π) +
∫ π

t
Td(s) ds

≤ 6de−π + 2(6
√

π)dt1−(d/2)

≤ 36
(
e−π + 2π

)(36π

t

)(d/2)−1

while for d = 2,

S̃2(t) = S̃2(π) +
∫ π

t
T2(s) ds ≤ 36e−π + 36π log

(
π

t

)
.

Let us now return to (20) which states that for any t > 0,

E
(
W1(μ, ν)

) ≤ δ

√
S̃d(2t) + 2

√
2dt.

When d ≥ 3, choose t = 18πδ4/d which is less than or equal to π
2 whenever δ2/d ≤ 1

6 in
which case

E
(
W1(μ, ν)

) ≤ 6
(√

e−π + 2π + 2
√

πd
)
δ2/d

≤ 6
(√

e−π + 2π
√

d/3 + 2
√

πd
)
δ2/d

≤ 30
√

dδ2/d .

On the other hand W1(μ, ν) ≤ π
√

d for all probability measures μ and ν supported on
[0, π]d so that if δ2/d ≥ 1

6 , the latter inequality is still true. A similar analysis in the case
d = 2 yields that

E
(
W1(μ, ν)

) ≤ 14δ

√
1 + log

(
4

δ2

)
.

The proof of the proposition is therefore complete. �
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