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n) is obtained for the distance in total
variation between the Poisson distribution and the distribution of the number of fixed
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1 Introduction

Complex networks attract increasing attention of researchers in various fields of
science. In the last years, numerous network models have been proposed. With
the uncertainty and the lack of regularity in real-world networks, these models
are usually random graphs. Random graphs were first defined by Paul Erdős and
Alfred Rényi in their 1959 paper “On RandomGraphs” (see [10]) and independently
by Gilbert in [12]. The suggested models are closely related: there are n isolated
vertices, and every possible edge occurs independently with probability p : 0 <

p < 1. It is assumed that there are no self-loops. Later, the models were generalized.
A natural generalization of the Erdös–Rényi random graph is that the equal edge
probabilities are replaced by probabilities depending on the vertex weights. Vertices
with high weights are more likely to have more neighbors than vertices with small
weights. Vertices with extremely high weights could act as the hubs observed in
many real-world networks.

The following generalized random graph (GRG) model was first introduced by
Britton et al.; see [5]. Let V = {1, 2, .., n} be the set of vertices and Wi > 0 be the
weight of vertex i, 1 ≤ i ≤ n. The edge probability of the edge between any two
vertices i and j , for i �= j , is equal to

pij = WiWj

Ln + WiWj

(1)

and pii = 0 for all i ≤ n. Here, Ln = ∑n
i=1 Wi denotes the total weight of all

vertices. The weightsWi, i = 1, 2, ..., n can be taken to be deterministic or random.
If we take all Wi − s as the same constant Wi ≡ nλ/(n − λ) for some 0 ≤ λ < n,

it is easy to see that pij = λ/n for all 1 ≤ i < j ≤ n. That is, the ErdHos–Rényi
random graph with p = λ/n is a special case of the GRG.

There are many versions of the GRG, such as Poissonian random graph
(introduced by Norros and Reittu in [19] and studied by Bhamidi et al. [3]), rank-
1 inhomogeneous random graph (see [4]), random graph with given prescribed
degrees (see [8]), and Chung–Lu model of heterogeneous random graph (see [7]).
The Chung–Lu model is the closest to the model of generalized random graph. Two
vertices i and j are connected with probability pij = WiWj/Ln and independently
of other pairs of vertices, where W = (W1,W2, ...,Wn) is a given sequence. It is
necessary to assume that W 2

i ≤ Ln, for all i. Under some common conditions (see
[15]), all of the abovementioned versions of the GRG are asymptotically equivalent,
meaning that all events have asymptotically equal probabilities. The updated review
on the results about these inhomogeneous random graphs can be seen in Chapter 6
in [21].

One of the problems that arise in real networks of various nature is the spread of
the virus. In [6], the authors proposed an approach called nonlinear dynamic system
(NLDS) for modeling such processes. Consider a network of n vertices represented
by an undirected graph G. Assume an infection rate β > 0 for each connected edge
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that is connected to an infected vertex and a recovery rate of δ > 0 for each infected
individual. Define the epidemic threshold τ as a value such that

β/δ < τ ⇒ infection dies out over time

β/δ > τ ⇒ infection survives and becomes an epidemic.

τ is related to the adjacency matrix A of the graph. The matrix A = [aij ] is an
n × n symmetric matrix defined as aij = 1 if vertices i and j are connected by
an edge and aij = 0 otherwise. Define a walk of length k in G from vertex v0 to
vk to be an ordered sequence of vertices (v0, v1, ..., vk), with vi ∈ V , such that vi

and vi+1 are connected for i = 0, 1, ..., k − 1. If v0 = vk, then the walk is closed.
A closed walk with no repeated vertices (with the exception of the first and last
vertices) is called a cycle. For example, triangles, quadrangles, and pentagons are
cycles of length three, four, and five, respectively. In the following, the cycle will be
denoted by the first k vertices, without specifying the vertex vk, which is the same
as v0: (v0, v1, ..., vk−1).

In Theorem 1 in [6], it has been stated that τ is equal to 1/λ1, where λ1 is the
largest eigenvalue of the adjacency matrix A. The following lower bound for λ1(A)

was shown in [20]

λ1(A) ≥ 6	 + √
36	2 + 32e3/n

4e
,

where n, e, and 	 are the number of vertices, edges, and triangles in G, resp.
Moreover, using information about the cycle numbers of higher orders, one can
get more precise upper bounds for τ .

In [13], the central limit theorems were proved for the total number of edges
in GRG. There are also many results on asymptotic properties of the number of
triangles in homogeneous cases. For example, for the ErdHos–Rényi random graph,
the upper tails for the distribution of the triangle number had been studied in [2, 9,
14, 16]. Recently, in [18], it was shown for GRG model that asymptotic distribution
of the triangle number converges to a Poisson distribution under strong assumption
that the vertex weights are bounded random variables.

A lot of real-world networks such as social or computer networks in the Internet
(see, e.g. [11]) follow a so-called scale-free graph model; see Chapter 1 in [21]. In
Chapter 6, in [21], it was shown that when the vertex weights have approximately a
power-law distribution, the GRG model leads to scale-free random graph.

In the present paper, we prove not only the convergence, but we get the
convergence rate of order O(1/

√
n) for the distance in total variation between the

Poisson distribution and the distribution of the number of fixed size cycles in GRG
with random vertex weights. The weights are assumed to be independent identically
distributed random variables which have a power-law distribution. The proof is
based on the Chen–Stein approach and on the derived properties of the ratio of the
sum of squares of random variables and the sum of these variables. These properties
can be applied to other asymptotic problems related to GRG.



112 S. G. Bobkov et al.

The main results are formulated in Sect. 2. For their proofs, see Sect. 4. Section 3
contains auxiliary lemmas, some of which are of independent interest.

2 Main Results

Let {1, 2, ..., n} be the set of vertices and Wi be a weight of vertex i : 1 ≤ i ≤ n.

The probability of the edge between vertices i and j is defined in (1). Let Wi,

i = 1, 2, ..., n, be independent identically distributed random variables distributed
as a random variable W . For k ≥ 3, denote by I (k) the set of potential cycles of
length k. We have that the number of elements in I (k) is equal to (n)k/(2k), where
(n)k = n(n − 1)...(n − k + 1) is the number of ways to select k distinct vertices
in order, and the factor 1/(2k) appears since, for k > 2, a permutation of k vertices
corresponds to a choice of a cycle in I (k) together with a choice of any of two
orientations and k starting points. For example, all six cycles {1, 3, 4}, {3, 4, 1},
{4, 1, 3}, {4, 3, 1}, {1, 4, 3}, and {3, 1, 4} are, in fact, one cycle of length 3. For
α ∈ I (k), let Yα be the indicator that α occurs as a cycle in GRG. For example,
P(Y{1,3,4} = 1) = p13p34p41.

For any integer-valued nonnegative random variables Y and Z, denote the total
variation distance between their distributions L(Y ) and L(Z) by

‖ L(Y ) − L(Z) ‖≡ sup‖h‖=1|Eh(Y ) − Eh(Z)|, (2)

where h is any real function defined on {0, 1, 2, ...} and ‖ h ‖≡ supm≥0 |h(m)|.
For k ≥ 3, put Sn(k) = ∑

α∈I (k) Yα , that is, Sn(k) is the number of cycles of
length k. Let Zk be a random variable having Poisson distribution with parameter
λ(k) = (EW 2/EW)k/(2k).

Theorem 1 For any k ≥ 3, one has

‖ L(Sn(k)) − L(Zk) ‖= O(n−1/2), (3)

provided that

P(W > x) = o(x−2k−1), as x → +∞. (4)

Remark 1 Relation (3) holds under condition that W has power-law distribution.
The condition on the tail behavior of the distribution of W can be replaced by
stronger moment condition: the finiteness of expectation EW 2k+1.

Remark 2 Recently in [18], the convergence in distribution of the number of
triangles Sn(3) in a generalized random graphs to the Poisson random variable
Z3 was proved by method of moments under assumption that the vertex weights
Wi -s are bounded random variables. In Theorem 1, we have used the Chen–
Stein approach; see, e.g., [1] and [2]. This allows us not only to extend the
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Fig. 1 Histogram of the number of triangles in GRG with 2000 vertices. The distribution of vertex
weights Wi ∼ Uni(10, 15), forall i ≤ 2000. The number of realizations is 500
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Fig. 2 Q–Q plot for the number of triangles in GRG with 2000 vertices and the Poisson variable
Pois(338.72). Wi ∼ Uni(10, 15), forall i ≤ 2000. The number of realizations is 500

convergence result to cycles of any fixed length k but also to get the rate of
convergence. Moreover, we replace the assumption about the boundness of Wi -s
with the condition thatWi has a power-law distribution. As we noted in Introduction,
this condition better matches real-world networks.

Figures 1 and 2 illustrate the results of Theorem 1, with the example of the
number of triangles distribution.
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The next results are not directly connected with number of cycles in GRG. They
are an important part of the proof of Theorem 1. At the same time, the results are of
independent interest. They describe the asymptotic properties of ratio of a sum of
the squares of n i.i.d. random variables and a sum of these random variables. These
properties can be applied to other asymptotic problems related to GRG.

Given i.i.d. positive random variables X,X1, . . . , Xn, define the statistics

Tn = X2
1 + · · · + X2

n

X1 + · · · + Xn

.

Assume that X has a finite second moment, so that, by the law of large numbers,
with probability one

lim
n→∞ T

p
n =

(
EX2

EX

)p

for any p ≥ 1. Here, we describe the tail-type and moment-type conditions which
ensure that this convergence also holds on average.

Theorem 2 Given an integer p ≥ 2, the convergence

lim
n→∞ET

p
n = (EX2/EX)p (5)

is equivalent to the tail condition

P{X ≥ x} = o(x−p−1) as x → ∞. (6)

Moreover, if P{X ≥ x} = O(x−p−3/2) as x → ∞, then

ET
p
n − (EX2/EX)p = O(n−1/2) (7)

The finiteness of the moment EXp+1 is sufficient for (5) to hold, while the finiteness
of the moments EXq is necessary for any real value 1 ≤ q < p + 1.

Let Mn = max1≤i≤n Xi. For p ≥ 2, define

R
(p)
n = T

p
n M2

n/(X1 + X2 + ... + Xn). (8)

By the law of large numbers, R
(p)
n → 0 as n → ∞ a.s., under mild moment

assumptions. The next theorem gives the order of convergence of ER
(p)
n to zero

under tail-type and moment-type conditions.

Theorem 3 Given an integer p ≥ 2, if P(X ≥ x) = O(x−p−7/2) as x → +∞,

then

ER
(p)
n = O(n−1/2). (9)
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When p > 8 and EXp+4 is finite, the rate can be improved to

ER
(p)
n = O(n−(p−2)/(p+4)). (10)

Moreover, if E eεX < ∞ for some ε > 0, then

ER
(p)
n = O

( (logn)2

n

)
. (11)

3 Auxiliary Lemmas

Lemma 1 Let Sn = η1 + · · · + ηn be the sum of independent random variables
ηk ≥ 0 with finite second moment, such that ESn = n and Var(Sn) = σ 2n. Then,
for any 0 < λ < 1, one has

P{Sn ≤ λn} ≤ exp

{

− (1 − λ)2

2
[
σ 2 + maxk (Eηk)2

] n

}

. (12)

Proof We use here the standard arguments. Fix a parameter t > 0. We have

E e−tSn ≥ e−λtn
P{Sn ≤ λn}.

Every function uk(t) = E e−tξk is positive and convex and admits Taylor’s
expansion near zero up to the quadratic form, which implies that

uk(t) ≤ 1 − t Eξk + t2

2
Eξ2k ≤ exp

{
− t Eξk + t2

2
Eξ2k

}
.

Multiplying these inequalities, we get

E e−tSn ≤ exp
{

− tn + bt2

2

}
, b =

n∑

k=1

Eξ2k .

The two bounds yield

P{Sn ≤ λn} ≤ exp
{

− (1 − λ)nt + bt2/2
}
,

and after optimization over t (in fact, t = 1−λ
b

n), we arrive at the exponential bound

P{Sn ≤ λn} ≤ exp
{

− (1 − λ)2

2b
n2

}
.
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Note that

b = Var(Sn) +
n∑

k=1

(Eξk)
2 ≤

(
σ 2 + max

k
(Eξk)

2
)

n,

and (12) follows. 
�
For further lemmas, we need additional notation.
Denote by F(x) = P{X ≤ x} (x ∈ R) the distribution function of the random

variable X, and put

εq(x) = xq (1 − F(x)), x ≥ 0, q > 0.

Raising the sum Un = X2
1 + · · · + X2

n to the power p with n ≥ 2p, we have

U
p
n =

∑
X2

i1
. . . X2

ip
, (13)

where the summation is performed over all collections of numbers i1, . . . , ip ∈
{1, . . . , n}. For r = 1, . . . , p, we denoted by C(p, r) the collection of all tuples
γ = (γ1, . . . , γr ) of positive integers such that γ1 + · · · + γr = p. For any γ ∈
C(p, r), there are n(n − 1) . . . (n − r + 1) sequences Xi1 , . . . , Xip with r distinct
terms that are repeated γ1, . . . , γr times, resp. Therefore, by the i.i.d. assumption,

ET
p
n =

p∑

r=1

n(n − 1) . . . (n − r + 1)

np

∑

γ∈C(p,r)

Eξn(γ ), (14)

where

ξn(γ ) = X
2γ1
1 . . . X

2γr
r /(

1

n
Sr + 1

n
Sn,r )

p

and

Sr = X1 + · · · + Xr, Sn,r = Xr+1 + · · · + Xn.

In the following lemmas, without loss of generality, let EX = 1.

Lemma 2 For the boundedness of the sequence ET
p
n , it is necessary that the

moment EXp be finite. Moreover, for the particular collection γ = (p) with r = 1,
we have

Eξn(γ ) ≥ 2−p np
EXp 1{X≥n}. (15)
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Proof Since ξn(γ ) = X
2p
1 /( 1

n
X1 + 1

n
Sn,1)

p, applying Jensen’s inequality, we get

Eξn(γ ) ≥ EX1

X
2p
1

( 1
n

X1 + 1
n
ESn,1 Sn,1)p

= E
X2p

( 1
n

X + n−1
n

)p
≥ 2−p np

EXp 1{X≥n}.


�
In the sequel, we use the events

An,r =
{
Sn,r ≤ n − r

2

}
and Bn,r =

{
Sn,r >

n − r

2

}
. (16)

By Lemma 1, whenever n ≥ 2p, for some constant c > 0 independent of n,

P(An,r ) ≤ e−c(n−r) ≤ e−cn/2. (17)

Lemma 3 If EXp is finite, then Eξn → (EX2)p as n → ∞, where

ξn = X2
1 . . . X2

p/(
1

n
Sp + 1

n
Sn,p)p. (18)

Proof Using X1 . . . Xp ≤ S
p
p , we have ξn ≤ S

2p
p /( 1

n
Sn)

p ≤ np S
p
p . Hence,

E ξn 1An,p ≤ np
E S

p
p P(An,p) = o(e−cn) (19)

for some constant c > 0 independent of n. Here, we applied (17) with r = p and
Lemma 2 which ensures that E S

p
p < ∞. Further, ξn 1Bn,p ≤ 2pX2

1 . . . X2
p.Hence,

the random variables ξn 1Bn,p have an integrable majorant. Since also ξn →
X2
1 . . . X2

p (the law of large numbers) and 1Bn,p → 1 a.s. (implied by (17)), one
may apply the Lebesgue dominated convergence theorem, which gives Eξn1Bn →
(EX2)p. Together with (19), we get Eξn → (EX2)p. 
�
Lemma 4 If the moment EXp is finite, then for any γ = (γ1, . . . , γr ) ∈ C(p, r),

E ξn(γ ) = 4p
E

X
2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p
+ o(1).
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Proof Using an elementary bound X
2γ1
1 . . . X

2γr
r ≤ (X1 + · · · + Xr)

2γ1+···+2γr =
S
2p
r and applying Jensen’s inequality, we see that ξn(γ ) ≤ np S

p
r ≤ np rp−1 (X

p

1 +
· · · + X

p
r ). Hence,

Eξn(γ ) 1An,r ≤ np rp−1
r∑

k=1

EX
p

k 1An,r = np rp
EXp

P(An,r ) = o(e−c′n).

(20)

On the other hand, on the set Bn,r , there is a point-wise bound

ξn(γ ) 1Bn,r ≤ X
2γ1
1 . . . X

2γr
r

( 1
n

Sr + n−r
2n )p

≤ 4p X
2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p
. (21)


�
Our task is reduced to the estimation of the expectation on the right-hand side of

(21). Let us first consider the shortest collection γ = (p) of length r = 1.

Lemma 5 Under the condition (6),

E
X

2p
1

( 1
n

X1 + 1)p
= o(np−1). (22)

In addition, if P{X ≥ x} = O(x−q) for some real value q in the interval p < q <

2p, then

E
X

2p
1

( 1
n

X1 + 1)p
= O(n2p−q). (23)

Proof We have

E
X

2p
1

( 1
n

X1 + 1)p
= E

X
2p
1

( 1
n

X1 + 1)p
1{X1≥n} + E

X
2p
1

( 1
n

X1 + 1)p
1{X1<n}

≤ np
EXp 1{X≥n} + EX2p 1{X<n}.

In view of (6), to derive (22), it remains to be bound to the last expectation by
o(np−1). Integrating by parts and assuming that x = n is the point of continuity of
F(x), we have, using εp+1(x) → 0 as x → ∞,

EX2p 1{X<n} = −n2p (1 − F(n)) + 2p
∫ n

0
x2p−1 (1 − F(x)) dx

≤ 2p
∫ n

0
xp−2 εp+1(x) dx = o(np−1), (24)
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For the second assertion (23), we similarly have

2p
∫ n

0
x2p−1−q εq(x) dx = O(n2p−q),

EXp 1{X≥n} = O(np−q) + p

∫ ∞

n

xp−q−1 εq(x) dx = O(np−q).


�
Lemma 6 Let γ = (γ1, . . . , γr ) ∈ C(p, r), 2 ≤ r ≤ p − 1. Under (6), we have

E
X

2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p
= o(np−r−1 logn). (25)

Proof If all γi ≤ p/2, there is nothing to prove, since then

E
X

2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p
≤ EX

2γ1
1 . . .EX

2γr
r ≤ (EXp)r .

In the other case, suppose for definiteness that γ1 is the largest number among
all γis. Necessarily, γ1 > p/2 and γi < p/2 for all i ≥ 2. Since Sr < n implies
X1 < n, we similarly have

E
X

2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p
1{Sr<n} ≤ (EXp)r−1

EX2γ1 1{X<n}.

To bound the last expectation, note that r − 1 ≤ γ2 + · · · + γr < p/2, so that
p ≥ 2r − 1. Hence, if x = n is the point of continuity of F(x), similarly to (24), we
get

EX2γ1 1{X<n} ≤ 2γ1

∫ n

0
x2γ1−p−2 εp+1(x) dx. (26)

But since γ1 ≤ p − r + 1,
∫ n

1
x2γ1−p−2 εp+1(x) dx ≤

∫ n

1
xp−2r εp+1(x) dx = o(np−2r+1), (27)

if p ≥ 2r or p ≤ 2r − 2, which is even stronger than the rate o(np−r−1). In the
remaining case p = 2r −1, the last integral is o(logn). This proves (25) for the part
of the expectation restricted to the set Sr < n, that is,

E
X

2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p
1{Sr<n} = o(np−r−1 logn). (28)
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Note that the logarithmic term cannot be removed in the special situation where
p = 3, r = 2, γ1 = 2, and γ2 = 1, in which case the last integral in (27) becomes∫ n

1 x−1 ε4(x) dx.
Turning to the expectation over the complementary set Sr ≥ n, introduce the

events

�i =
{
Xi ≥ max

j �=i
Xj

}
, i = 1, . . . , r.

On every such set, Xi ≤ Sr ≤ rXi . In particular, Sr ≥ n implies Xi ≥ n/r . Hence,
together with (28), (25) would follow from the stronger assertion

E
X

2γ1
1 . . . X

2γr
r

X
p

i

1{Xi≥n}∩�i = o(n−r−1) (29)

with an arbitrary index 1 ≤ i ≤ r .

Case 1 i ≥ 2. If we fix any values X1 = x1 and Xi = xi , then the expectation with
respect to Xj , j �= i, in (29) will yield a bounded quantity (since the p-moment is
finite). Hence, (29) is simplified to

EX
2γ1
1 X

2γi−p

i 1{Xi≥n}∩{Xi≥X1} = o(n−r−1). (30)

Here, the expectation over X1 may be carried out and estimated similarly to (26),
by replacing n with xi . Namely,

EX
2γ1
1 1{X1≤xi} ≤ 2γ1

∫ xi

0
x2γ1−p−2 εp+1(x) dx = δ(xi) x

2γ1−p
i

with some δ(xi) → 0 as xi → ∞ (this assertion may be strengthened when 2γ1 −
p = 1). Hence, the expectation in (30) is bounded by

EX
2γi+2γ1−2p
i δ(Xi) 1{Xi≥n} ≤ δn EX

2γi+2γ1−2p
i 1{Xi≥n}

= δn n2γi+2γ1−2p (1 − F(n)) + ciδn

∫ ∞

n

x2γi+2γ1−2p−1 (1 − F(x)) dx

= o(n2γi+2γ1−3p−1) + ciδn

∫ ∞

n

x2γi+2γ1−3p−2 εp+1(x) dx

= o(n2γi+2γ1−3p−1),

where δn = supx≥n δ(x) → 0. To obtain (30), it remains to check that 2γi + 2γ1 −
3p − 1 ≤ −r − 1. And indeed, since p = γi + γ1 + ∑

j �=i,1 γj ≥ γi + γ1 + (r − 2),
the desired relation would follow from 2 (p − (r − 2)) − 3p − 1 ≤ −r − 1, that is,
p + r ≥ 4 (which is true).
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Case 2 i = 1. If we fix any value X1 = x1, the expectation with respect to Xj ,
j �= 1, will yield a bounded quantity (since the p-moment is finite). Hence, (29) is
simplified to

EX2γ1−p 1{X≥n} = o(n−r−1).

Here, the expectation may be estimated similarly. Namely,

EX2γ1−p 1{X≥n} =
∫ ∞

n

x2γ1−p dF(x)

= o(n2γ1−2p−1) +
∫ ∞

n

x2γ1−2p−2 εp+1(x) dx = o(n2γ1−2p−1).

It remains to be seen that 2γ1 − 2p − 1 ≤ −r − 1. Again, since γ1 ≤ p − (r − 1),
the latter would follow from 2(p − r + 1) − 2p − 1 ≤ −r − 1, which is the same
as r ≥ 2. 
�

We now consider the lemmas which enable us to get a bound for ER
(p)
n ; see (8).

Without loss of generality, let EX = 1 and n ≥ 2p.
Introduce additional notation: Mn,r = maxr<i≤n Xiand (1 ≤ r ≤ p).

Recall that there is the representation (13) but instead of (14) we write now

ER
(p)
n =

p∑

r=1

n(n − 1) . . . (n − r + 1)

np+1

∑

γ∈C(p,r)

E ηn(γ )M2
n, (31)

where

ηn(γ ) = X
2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1
n

Sn,r )p+1
.

In order to bound the expectations on the right-hand side of (31), we use again
the events An,r and Bn,r ; see (16). From elementary inequalities Mn ≤ Sn and

X
2γ1
1 . . . X

2γr
r ≤ (X1 + · · · + Xr)

2γ1+···+2γr ≤ S
2p
n ,

it follows that ηn(γ )M2
n ≤ np+1 S

p+1
n ≤ 2pnp+1 (S

p+1
r + S

p+1
n,r ), implying

E ηn(γ ) M2
n 1An,r ≤ 2pnp+1

(
E S

p+1
r P(An,r) + ES

p+1
r E S

p+1
n,r 1An,r

)
. (32)

Here, by Lemma 1 with λ = 1/2 and using n − r ≥ 1
2 n, we have

P(An,r) ≤ exp
{

− 1

16 b2
n
}
, b2 = EX2. (33)
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Also, assuming that the moment EXp+2 is finite and applying the Hölder inequality
with exponents (p + 2)/(p + 1) and p + 2, one may bound the last expectation in
(32) as

E S
p+1
n,r 1An,r ≤ (

E S
p+2
n,r

) p+1
p+2 (P(An,r))

1
p+2 .

By Jensen inequality, E S
p+2
n,r ≤ rp+1

EXp+2. Applying this in (32), the inequality
(33) yields an exponential bound

E ηn(γ ) M2
n 1An,r ≤ e−cn (34)

with some constant c > 0 which does not depend on n.
As for the set Bn,r , we use on it a point-wise upper bound

ηn(γ ) ≤ 2p+1 X
2γ1
1 . . . X

2γr
r /( 1

n
Sr + 1)p+1.Onemay also useMn ≤ Mr +Mn,r ≤

Sr +Mn,r , implying, by Jensen’s inequality,M2
n ≤ (r +1) (X2

1 +· · ·+X2
r +M2

n,r ).

It gives

E ηn(γ ) M2
n 1Bn,r ≤ 2p+1(r + 1)

r∑

k=1

E
X

2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p+1
X2

k

+ 2p+1(r + 1)
r∑

k=1

E
X

2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p+1
EM2

n,r (35)

Without an essential loss, the last expectation EM2
n,r may be replaced with EM2

n .
The second last expectation was considered in Lemmas 5–6 under the condition (6),
which holds as long as the moment EXp+1 is finite. The third last expectation in
(35), due to an additional factor X2

k , dominates the second last and needs further
consideration under stronger moment assumptions. Recalling (34) and returning to
(31), let us summarize in the following statement.

Lemma 7 If the moment EXp+2 is finite, then

cER
(p)
n ≤ e−cn + max

1≤k≤r
max

γ∈C(p,r)

1

np−r+1 E
X

2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p+1
X2

k

+ max
γ∈C(p,r)

1

np−r+1 E
X

2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p+1
EM2

n (36)

with some constant c > 0 which does not depend on n ≥ 2p.

In order to obtain polynomial bounds for the expectations in (36) under suitable
moment or tail assumptions, we need to develop corresponding analogs of Lem-
mas 5–6. We will consider separately the cases r = 1, r = p, and 2 ≤ r ≤ p − 1
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under the tail condition

P{X ≥ x} = O(1/xp+α) as x → ∞, (37)

where α > 0 is a parameter. It implies that the moments EXq are finite for all q <

p + α and is fulfilled as long as the moment EXp+α is finite. Put ε(x) = xp+α (1−
F(x)), where F denotes the distribution function of the random variable X.

Lemma 8 Under (37) with 1 < α ≤ p + 2,

E
X

2p
1

( 1
n

X1 + 1)p+1
= O(np−α+2). (38)

Moreover, for any index 1 ≤ k ≤ r ,

E
X

2p
1

( 1
n

X1 + 1)p+1
X2

k = O(np−α+2 logn). (39)

Proof The expectation in (38) is equal to and satisfies

E
X

2p
1

( 1
n

X1 + 1)p+1
1{X1≥n} + E

X
2p
1

( 1
n

X1 + 1)p+1
1{X1<n}

≤ np+1
EXp−1 1{X≥n} + EX2p 1{X<n}

Similarly to (24), we get

EX2p 1{X<n} ≤ 2p
∫ n

0
xp−α−1 ε(x) dx = O(np−α),

provided that α < p. In the case α = p, the last integral is bounded by O(logn). In
addition,

EXp 1{X≥n} = O(np−α) + p

∫ ∞

n

xp−α−1 εq(x) dx = O(np−α).

This proves (38) for α ≤ p. If p < α ≤ p + 2, then (38) holds automatically, since
then 2p < p + α and therefore the expectation in (38) does not exceed the finite
moment EX

2p
1 , while the right-hand side is bounded away from zero.

For the second assertion, one may assume that k = 1, in which case the
expectation in (39) is equal to and satisfies

E
X

2p+2
1

( 1
n

X1 + 1)p+1
= E

X
2p+2
1

( 1
n

X1 + 1)p+1
1{X1≥n} + E

X
2p+2
1

( 1
n

X1 + 1)p+1
1{X1<n}

≤ np+1
EXp+1 1{X≥n} + EX2p+2 1{X<n}.
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Here, similarly to the previous step, if α < p + 2,

EX2p+2 1{X<n} ≤ 2p
∫ n

0
xp−α+1 ε(x) dx = O(np−α+2).

In the case α = p + 2, the last integral is bounded by O(logn). In addition,

EXp+1 1{X≥n} = O(n−α+1) + p

∫ ∞

n

x−α ε(x) dx = O(n−α+1).


�
Lemma 9 If the moment EX4 is finite, then

E
X2
1 . . . X2

p

( 1
n

Sp + 1)p+1
= O(1).

Moreover, for any index 1 ≤ k ≤ p,

E
X2
1 . . . X2

p

( 1
n

Sp + 1)p+1
X2

k = O(1).

This statement is clear. The last expectation does not exceed EX4 (EX2)p−1

which is finite and does not depend on n.

Lemma 10 Let γ = (γ1, . . . , γr) ∈ C(p, r), 2 ≤ r ≤ p. Under the condition (37)
with 2 < α ≤ 4, for any index 1 ≤ k ≤ r ,

E
X

2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p+1
X2

k = O(np−r−α+4). (40)

Proof One may reformulate (40) as the statement

E
X

2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p+1
= O(np−r−α+4) (41)

in which γ = (γ1, . . . , γr) ∈ C(p + 2, r). If all γi ≤ p+2
2 , there is nothing to prove,

since then

E
X

2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p+1
≤ EX

2γ1
1 . . .EX

2γr
r ≤ (EXp+2)r .



Rate of Convergence to the Poisson Law of the Numbers of Cycles in GRG 125

In the other case, we repeat the arguments used in the proof of Lemma 6. Suppose
for definiteness that γ1 is the largest number among all γis. Necessarily, γ1 >

p+2
2 ,

and therefore, γi <
p+2
2 for all i ≥ 2. Since Sr < n ⇒ X1 < n, we similarly have

E
X

2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p+1
1{Sr<n} ≤ (EXp+2)r−1

EX2γ1 1{X<n}. (42)

To bound the last expectation, note that, if x = n is the point of continuity of
F(x),

EX2γ1 1{X<n} = −n2γ1 (1 − F(n)) + 2γ1

∫ n

0
x2γ1−1 (1 − F(x)) dx

≤ 2γ1

∫ n

0
x2γ1−1−p−α ε(x) dx.

But since γ1 ≤ p − r + 3 (which follows from γ1 + γ2 + · · · + γr = p + 2 and
γi ≥ 1), we have

∫ n

1
x2γ1−p−α−1 εp+α(x) dx ≤

∫ n

1
xp−2r−α+5 ε(x) dx.

The last integral grows at the desired rate O(np−r−α+4) as the worst case, if and
only if p − 2r − α + 5 ≤ p − r − α + 3, that is, r ≥ 2 (which is true). Thus,

EX2γ1 1{X<n} = O(np−r−α+4)

In view of (42), this proves (41) for the part of the expectation restricted to the set
Sr < n, that is,

E
X

2γ1
1 . . . X

2γr
r

( 1
n

Sr + 1)p+1
1{Sr<n} = O(np−r−α+4). (43)

Here, the worst situation is attained in the case r = 2, γ1 = p + 1, γ2 = 1.
Turning to the expectation over the complementary set Sr ≥ n, introduce the

events

�i =
{
Xi ≥ max

j �=i
Xj

}
, i = 1, . . . , r.

On every such set, Xi ≤ Sr ≤ rXi . In particular, Sr ≥ n implies Xi ≥ n/r . Hence,
together with (43), (41) would follow from the inequality

E
X

2γ1
1 . . . X

2γr
r

X
p+1
i

1{Xi≥n}∩�i = O(n−r−α+3) (44)
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with an arbitrary index 1 ≤ i ≤ r .

Case 1 i ≥ 2. If we fix any values X1 = x1 and Xi = xi , then the expectation
with respect to Xj , j �= i, in (44) will yield a bounded quantity (since the (p + 2)
moment is finite). Hence, (44) is simplified to

EX
2γ1
1 X

2γi−p−1
i 1{Xi≥n}∩{Xi≥X1} = O(n−r−α+3). (45)

Here, the expectation over X1 may be estimated similarly to the previous step, by
replacing n with xi . Recall that γ1 >

p+2
2 and hence 2γ1 ≥ p + 3.

Case 1.1 2γ1 > p + α. Then, we have

EX
2γ1
1 1{X1≤xi} ≤ 2γ1

∫ xi

0
x2γ1−1−p−α ε(x) dx ≤ Cx

2γ1−p−α

i

with some constant C > 0. Hence, up to a constant, the expectation in (44) is
bounded by

EX
2γi+2γ1−2p−α−1
i 1{Xi≥n} =

∫ ∞

n

x2γi+2γ1−2p−α−1 dF(x)

= n2γi+2γ1−2p−α−1 (1 − F(n))

+ci

∫ ∞

n

x2γi+2γ1−2p−α−2 (1 − F(x)) dx

= O(n2γi+2γ1−3p−2α−1)

+ci

∫ ∞

n

x2γi+2γ1−3p−2α−2 ε(x) dx

= O(n2γi+2γ1−3p−2α−1).

To obtain (45), it remains to check that 2γi + 2γ1 − 3p − 2α − 1 ≤ −r − α + 3.
And indeed, since

p = γi + γ1 +
∑

j �=i,1

γj ≥ γi + γ1 + (r − 2),

the desired relation would follow from 2 (p− (r −2))−3p−2α−1 ≤ −r −α +3,
that is, p + r ≥ α (which is true since α ≤ 4 while p, r ≥ 2).
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Case 1.2 2γ1 ≤ p + α. Then, EX
2γ1
1 1{X1≤xi} ≤ EXp+α which is bounded in xi ,

and the expectation in (44) does not exceed up to a constant

EX
2γi+2γ1−p−1
i 1{Xi≥n} =

∫ ∞

n

x2γi+2γ1−p−1 dF(x)

= n2γi+2γ1−p−1 (1 − F(n))

+ci

∫ ∞

n

x2γi+2γ1−p−2 (1 − F(x)) dx

= O(n2γi+2γ1−2p−α−1)

+ci

∫ ∞

n

x2γi+2γ1−2p−α−2 ε(x) dx

= O(n2γi+2γ1−2p−α−1).

To obtain (45), it remains to check that

2γi + 2γ1 − 2p − α − 1 ≤ −r − α + 3.

And indeed, by (45), the desired relation would follow from 2 (p − (r − 2)) − 2p −
α − 1 ≤ −r − α + 3, that is, r ≥ 0.

Case 2 i = 1. If we fix any value X1 = x1 in (44), the expectation with respect to
Xj , j �= 1, yields a bounded quantity. Hence, (44) is simplified to

EX2γ1−p−1 1{X≥n} = O(n−r−α+3).

We have

EX2γ1−p−1 1{X≥n} =
∫ ∞

n

x2γ1−p−1 dF(x)

= n2γ1−p−1 (1 − F(n))

+(2γ1 − p − 1)
∫ ∞

n

x2γ1−p−2 (1 − F(x)) dx

= O(n2γ1−2p−α−1) +
∫ ∞

n

x2γ1−2p−α−2 ε(x) dx

= O(n2γ1−2p−α−1).

It remains to be seen that 2γ1−2p −α−1 ≤ −r −α +3, that is, 2γ1+ r ≤ 2p +4.
But this follows from p + 2 = γ1 + · · · + γr ≥ γ1 + (r − 1) ≥ γ1 + r

2 . 
�
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4 Proofs of Main Results

Proof of Theorem 1 Fix k ≥ 3. In the following, we omit k in notation when it is
not necessary. So we write Sn = Sn(k), λ = λ(k), Z = Zk, and I = I (k). We say
that a random variable V has a mixed Poisson distribution with mixing distribution
F when, for every integer m ≥ 0,

P(V = m) = E

(

e−
 
m

m!
)

,

where 
 is a random variable with distribution F.

Put 
 = ∑
α∈I EW1,W2,...,WnYα.

We have for any real function h : {0, 1, 2, ...} → R

|Eh(Sn) − Eh(Z)| ≤ E|EW1,...,Wnh(Sn) − EW1,...,Wnh(V )| + |Eh(V ) − Eh(Z)|.
(46)

For each α ∈ I , define Bα ≡ {β ∈ I : α and β have at least one edge in common}.
Put

b1 =
∑

α∈I

∑

β∈Bα

pαpβ,

where pα = EW1,...,WnYα :

b2 =
∑

α∈I

∑

α �=β∈Bα

pαβ,

where pαβ = EW1,...,WnYαYβ.

Note that, for any α ∈ I and β ∈ I \ Bα, the cycles α and β may have joint
vertices but they do not have any edge in common. Therefore, for such α and
β, the random variables Yα and Yβ are conditionally independent given weights
W1, ...,Wn. Thus, by Theorem 1 in [2], proved with the Chen–Stein method and
relations (2) and (46), we get

‖ L(Sn(k)) − L(Z) ‖� E(b1 + b2) + |E
 − λ(k)|, (47)

where we write here and in the following that An � Bn or An � Bn when there
exists a positive constant c not depending on n such that An ≤ cBn or An ≥ cBn.

For random variables b1 and b2, we get, cf. (14), by the i.i.d. assumption and
simple inequality for positive c and d : 2cd ≤ c2 + d2

E(b1 + b2) �
2k∑

p=k+2

p−1∑

r=k

n(n − 1) . . . (n − r + 1)

np

∑

γ∈C(p,r)

Eψn(γ ), (48)
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where

ψn(γ ) = W
2γ1
1 . . .W

2γr
r /(

1

n
Lr + 1

n
Ln,r )

p

and

Lr = W1 + · · · + Wr, Ln,r = Wr+1 + · · · + Wn.

For example, we have minimal values p = k + 2 and r = k + 1 for the cycles
α = (1, 2, . . . , k) and β = (1, 2, . . . , k − 1, k + 1). Then,

Epαβ � EW 4
1 W 2

2 . . .W 2
k−1W

2
k W 2

k+1/L
k+2
n .

We have maximal values p = 2k and r = k for the cycle α = (1, 2, . . . , k). Then,

Ep2
α ≤ EW 4

1 . . .W 4
k /L2k

n .

Lemmas 4 and 6 and inequality (48) under condition (4) imply

E(b1 + b2) = o

(
logn

n

)

. (49)

Now, we construct an upper bound for the last summand in (47).
It is clear that

E
 ≤ 1

2k
E

(
(W 2

1 + · · · + W 2
n )k

Lk
n

)

. (50)

On the other hand, note that for a positive a and positive sequence {xi}, i =
1, 2, . . . k, we have (see, e.g., Lemma 8 in [17])

k∏

i=1

1

a + xi

≥ 1

ak
−

∑k
i=1 xi

ak+1 .

Therefore, by the i.i.d. assumption, we get

E
 ≥ 1

2k
E

(
(W 2

1 + · · · + W 2
n )k

Lk
n

)

−c1

k−1∑

r=1

n(n − 1) . . . (n − r + 1)

nk

∑

γ∈C(k,r)

Eψn(γ )

− c2

n

∑

γ∈C(k+1,k)

E

(
W

2γ1
1 . . .W

2γr
r

(Ln/n)k+1

)

, (51)

where c1 and c2 do not depend on n.
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Combining Lemmas 4 and 6 and relations (7), (47), (49), (50), and (51), we finish
the proof of Theorem 1. 
�
Proof of Theorem 2 We split the proof of the theorem into several steps. Without
loss of generality, let EX = 1.

Necessity By Lemma 3, for the convergence ET
p
n → (EX2)p, it is necessary that

all summands in (14) with r < p should be vanishing at infinity. In particular,
for the shortest tuple γ with r = 1 as in Lemma 2, it should be required that
n1−p

E ξn(γ ) → 0 as n → ∞. Hence, from the inequality (15), it follows that

EXp 1{X≥n} = o(1/n).

This relation may be simplified in terms of the tails of the distribution of X.
Indeed, EXp 1{X≥n} ≥ np

P{X ≥ n}, so that the property (6) is necessary for
the convergenceET

p
n → (EX2)p.

Sufficiency and Rate of Convergence First, note that the condition (6) ensures
that the moment EXp is finite. For the convergence part of Theorem 2, we apply
Lemmas 4–6, which imply that Eξn(γ ) = o(np−r ) for any collection γ =
(γ1, . . . , γr ) with r < p. It remains to take into account Lemma 3 about the longest
tuple γ̃ = (1, . . . , 1) of length r = p and to recall the representation (14).

Turning to the rate of convergence, first, note that by Lemmas 4 and 6, for any
γ ∈ C(p, r) with 2 ≤ r ≤ p − 1,

n(n − 1) . . . (n − r + 1)

np
Eξn(γ ) = o

( logn

n

)
(52)

For the shortest tuple γ = (p) with r = 1, we apply Lemma 5 with q = p + 3
2 and

thus assume that P{X ≥ x} = O(x−p− 3
2 ). Together with Lemma 4, this gives

n

np
Eξn(γ ) = O

( 1√
n

)
. (53)

Note that with this tail hypothesis, necessarily, EXβ < ∞ for any β < p + 3
2 . Since

p ≥ 2, we have that the third moment EX3 is finite. Applying both (52) and (53) in
the representation (14) and using (20), we thus obtain that

ET
p
n = Eξn1Bn,p + O(1/

√
n), (54)

with ξn defined in (18).
An asymptotic behavior of the last expectation in (54) remains to be studied.

Note that 1
n

Sn ≥ 1
n

Sn,p ≥ 1
2 on the set Bn,p as long as n ≥ 2p. Applying the

Taylor formula, we use an elementary inequality |x−p − 1| ≤ p 2p+1 |x − 1| for
x ≥ 1

2 . In particular, on the set Bn,p, one has
∣
∣
∣( 1n Sn)

−p − 1
∣
∣
∣ ≤ p 2p+1

∣
∣
∣ 1n Sn − 1

∣
∣
∣.
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This gives

∣
∣ξn − X2

1 . . . X2
p

∣
∣ 1Bn,p ≤ p 2p+1 X2

1 . . . X2
p

∣
∣
∣1 − 1

n
Sp − 1

n
Sn,p

∣
∣
∣

≤ p 2p+1 X2
1 . . . X2

p

∣
∣
∣1 − 1

n
Sn,p

∣
∣
∣ + p 2p+1

n
X2
1 . . . X2

p Sp,

so, taking the expected values,

∣
∣Eξn1Bn,p − EX2

1 . . . X2
p 1Bn,p

∣
∣ ≤ p 2p+1 (EX2)p E

∣
∣
∣1 − 1

n
Sn,p

∣
∣
∣

+ p 2p+1

n
(EX2)p−1

EX3.

In view of (17),

EX2
1 . . . X2

p 1Bn,p = EX2
1 . . . X2

p + e−cn = (EX2)p + o(e−cn).

for some constant c > 0. Recalling (20), we thus get that

∣
∣Eξn − (EX2)p

∣
∣ ≤ p 2p+1 (EX2)p E

∣
∣
∣1 − 1

n
Sn,p

∣
∣
∣

+ p 2p+1

n
(EX2)p−1

EX3 + o(e−cn).

Finally,

E

∣
∣
∣
1

n
Sn,p − 1

∣
∣
∣ = 1

n
E |Sn,p − n| ≤ 1

n
E |Sn,p − (n − p)| + p

n

≤ 1

n

√
Var(Sn,p) + p

n
≤ 1√

n

√
EX2 + p

n
.

It remains to refer to (54). 
�
Proof of Theorem 3 Let us apply Lemmas 8–10 in the inequality (36). Using the
bounds for the cases r = 1, r = p, and 2 ≤ r ≤ p − 1 and assuming that (37) is
fulfilled for an integer p ≥ 2 and a real number 2 < α ≤ 4, they imply that

ER
(p)
n ≤ e−cn +

( 1

nα−2 + 1

n
+ 1

nα−3

)
+

( logn

nα−2 + 1

n
+ logn

n2

)
EM2

n,

where the constant c > 0 does not depend on n. To simplify, we have to assume that
α ≥ 3 leading to

cERn ≤ 1

nα−3 + logn

n
EM2

n . (55)
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The last expectation in (55) may also be estimated in a polynomial way. Namely,
since, for any q ≥ 2, one has M2

n ≤ (X2
1 + · · · + X

q
n)2/q, we get, by Jensen’s

inequality,

EM2
n ≤ (EX

q
1 + · · · + EX

q
n)

2
q = n

2
q (EXq)

2
q .

Therefore, choosing 2 < q < p + α to be sufficiently close to p + α and using
α = 7/2, from (55), we obtain (9).

When EXp+4 is finite, we get (10).
At last, to prove (11), note that the finiteness of the exponential moment of X is

actually equivalent to the family of moment bounds (EXq)1/q ≤ cq, for q ≥ 1,
which for q ≥ 2 give

EM2
n ≤ E (X

q

1 + · · · + X
q
n)2/q ≤ (EX

q

1 + · · · + EX
q
n)2/q ≤ (cq)2 n2/q.

Choosing here q to be of order logn, we arrive at EM2
n ≤ C (logn)2 with a constant

C independent of n. Applying this bound in (55) with α = 4, we then obtain the
much better rate as in (11). 
�
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