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For normalized sums Zn of i.i.d. random variables, we explore necessary
and sufficient conditions, which guarantee the normal approximation with
respect to the Rényi divergence of infinite order. In terms of densities pn of
Zn, this is a strengthened variant of the local limit theorem taking the form
supx(pn(x) − ϕ(x))/ϕ(x) → 0 as n → ∞.

1. Introduction. Strict sub-Gaussianity. Let X be a random variable with density p.
The Rényi divergence of order α > 0 or the relative α-entropy of its distribution with respect
to the standard normal law with density ϕ(x) = 1√

2π
exp(−x2/2) is given by

(1.1) Dα(p‖ϕ) = 1

α − 1
log

∫ ∞
−∞

(
p

ϕ

)α

ϕ dx.

A closely related functional is the Tsallis distance

(1.2) Tα(p‖ϕ) = 1

α − 1

[∫ ∞
−∞

(
p

ϕ

)α

ϕ dx − 1
]
.

Since Tα = 1
α−1 [e(α−1)Dα − 1], both distances are of a similar order, when they are small.

Hence, approximation problems in Dα and Tα are equivalent. Moreover, as the function α →
Dα is nondecreasing, the convergence in Dα is getting stronger for growing indexes α.

Let us recall that, for the region 0 < α < 1, Dα is topologically equivalent to the total
variation distance between the distribution of X and the standard normal law. For α = 1, we
obtain the Kullback–Leibler distance

D(p‖ϕ) =
∫ ∞
−∞

p log
p

ϕ
dx,

also called the informational divergence or the relative entropy. It is finite if and only if X

has a finite second moment and finite Shannon’s entropy. But the range α > 1 leads to much
stronger Rényi/Tsallis distances. For example, the finiteness of Dα(p‖ϕ) requires that X is
sub-Gaussian, that is, the moments E ecX2

should be finite for small c > 0. One important
particular case α = 2 in this hierarchy corresponds to the Pearson χ2-distance T2 = χ2. For
various properties and applications of these distances, we refer an interested reader to [8, 15,
19, 21, 31, 32].

The study of the convergence in the central limit theorem (CLT) with respect to Dα and
the associated problem of Berry–Esseen bounds have a long and rich history. Let us remind
several results in this direction about the classical model of normalized sums

Zn = (X1 + · · · + Xn)/
√

n
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of i.i.d. random variables (Xk)k≥1. We will treat them as independent copies of a random
variable X, assuming that it has mean zero and variance one.

The convergence Dα(pn‖ϕ) → 0 as n → ∞ holds true for 0 < α < 1, as long as Zn have
densities pn for large n. This is due to the corresponding result by Prokhorov [29] about the
total variation distance. The stronger property D(pn‖ϕ) → 0 in terms of relative entropy was
studied by Barron [4] who showed that the condition D(pn‖ϕ) < ∞ for some n is necessary
and sufficient for the entropic CLT. The asymptotic behavior of such distances under higher-
order moment assumptions, including Edgeworth-type expansions in powers of 1/n, has been
studied in [6]. It is worthwhile mentioning that this convergence is monotone with respect to
n; cf. Artstein, Ball, Barthe and Naor [2] and Madiman and Barron [22]. See also [3] and [7]
for various entropic bounds in the non-i.i.d. case.

The range α > 1 was treated in detail in [8]. It was shown there that Dα(pn‖ϕ) → 0 as
n → ∞, if and only if Dα(pn‖ϕ) is finite for some n, and if X admits the following sub-
Gaussian bound on the Laplace transform:

(1.3) E etX < eα∗t2/2, t ∈ R (t 	= 0),

where α∗ = α
α−1 . In that case, we have an equivalence Dα ∼ Tα ∼ α

2 χ2. These results have
been extended to the multidimensional setting as well.

For indexes α → ∞ in (1.3), we arrive at the following characterization.

THEOREM 1.1. Assume that Dα(pn‖ϕ) < ∞ for every α > 1 with some n = nα . For
the convergence Dα(pn‖ϕ) → 0 for all α, it is necessary and sufficient that E exp{tX} ≤
exp{t2/2} for all t ∈ R.

The last inequality describes an interesting class of probability distributions, which appear
naturally in many mathematical problems. More generally, one says that a random variable X

with mean zero is strictly sub-Gaussian, or its distribution is strictly sub-Gaussian (regardless
of whether or not it has a density), if the inequality

(1.4) E etX ≤ eσ 2t2/2, t ∈R,

holds with constant σ 2 = Var(X), which is then best possible. Note that, when saying that X

is sub-Gaussian (with mean zero), one means that (1.4) holds with some σ 2.
This class was apparently first introduced in an explicit form by Buldygin and Kozachenko

in [12] under the name “strongly sub-Gaussian” and then analyzed in more details in their
book [13]. Recent investigations include the work by Arbel, Marchal and Nguyen [1] provid-
ing some examples and properties and by Guionnet and Husson [17]. In the latter paper, (1.4)
appears as a condition for the validity of large deviation principles for the largest eigenvalue
of Wigner matrices with the same rate function as in the case of Gaussian entries.

A simple sufficient condition for the strict sub-Gaussianity was given by Newman in terms
of location of zeros of the characteristic function f (z) = E eizX, z ∈ C (which is extended,
by the sub-Gaussian property, from the real line to the complex plane as an entire function
of order at most 2). As was stated in [23], X is strictly sub-Gaussian, as long as f (z) has
only real zeros in C (a detailed proof was later given in [13]). Such probability distributions
form an important class denoted by L, introduced and studied by Newman in the mid 1970s in
connection with the Lee–Yang property, which naturally arises in the context of ferromagnetic
Ising models; cf. [23–26]. This class is rather rich; it is closed under infinite convergent
convolutions and under weak limits. For example, it includes Bernoulli convolutions, and
hence convolutions of uniform distributions on bounded symmetric intervals.

Some classes of strictly sub-Gaussian distributions outside L have been recently discussed
in [10]. It was shown that (1.4) continues to hold for symmetric distributions under the weaker
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requirement that all zeros of f (z) with Re(z) > 0 lie in the cone |Arg(z)| ≤ π
8 (which is sharp

when f has only one zero in the positive octant). In that case, if X is not normal, the inequality
(1.4) may be sharpened as follows: For any t0 > 0, there is c = c(t0), 0 < c < σ 2 = Var(X),
such that

(1.5) E etX ≤ ect2/2, |t | ≥ t0.

In general, this separation-type property is however not necessary for the strict sub-
Gaussianity. It turns out ([10]) that there exists a large class of strictly sub-Gaussian dis-
tributions with mean zero and variance one, for which the Laplace transform has the form

E etX = �(t) et2/2, t ∈ R,

where �(t) is a periodic function with some period h > 0 and such that �(t) ≤ 1 for all
t ∈ R. Hence, �(kh) = 1 for all k ∈ Z, so that (1.4) becomes an equality for infinitely many
points t .

2. Main results for the convergence in D∞. Thus, the strict sub-Gaussianity appears as
a necessary condition for the convergence in all Dα and, therefore, in D∞, which according
to (1.1) is given by the limit

D∞(p‖ϕ) = lim
α→∞Dα(p‖ϕ) = ess supx log

(
p(x)/ϕ(x)

)
.

Although the Tsallis distance of infinite order may not be defined similarly as a limit of (1.2),
we make the convention that

T∞(p‖ϕ) = ess supx

p(x) − ϕ(x)

ϕ(x)
.

Then T∞ = eD∞ − 1 like for the Tsallis distance of finite order, so that convergence in D∞
and T∞ are equivalent. In particular, in the setting of the normalized sums Zn, the CLT
D∞(pn‖ϕ) → 0 is equivalent to the assertion that Zn have densities pn such that

(2.1) sup
x

pn(x) − ϕ(x)

ϕ(x)
→ 0 as n → ∞.

The purpose of this paper is to give necessary and sufficient conditions for this variant of
the CLT in terms of the Laplace transform L(t) = E etX . Consider the log-Laplace transform
K(t) = logL(t) (which is a convex, smooth function) and the associated function

A(t) = 1

2
t2 − K(t), t ∈ R.

As before, suppose that (Xk)k≥1 are independent copies of the random variable X with mean
EX = 0 and variance Var(X) = 1. We assume that:

(1) Zn has density pn with T∞(pn‖ϕ) < ∞ for some n = n0;
(2) X is strictly sub-Gaussian, that is, A(t) ≥ 0 for all t ∈ R.

THEOREM 2.1. For the convergence T∞(pn‖ϕ) → 0, it is necessary and sufficient that
the following two conditions are fulfilled:

(a) A′′(t) = 0 for every point t ∈ R such that A(t) = 0;
(b) lim supk→∞ A′′(tk) ≤ 0 for every sequence tk → ±∞ such that A(tk) → 0 as k → ∞.
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The conditions a) − b) may be combined as limA(t)→0 max(A′′(t),0) = 0, which is kind
of continuity of A′′ with respect to A.

Note added in proof: This combined condition can be strengthened to limA(t)→0 A′′(t) = 0.
It will be proved when extending Theorem 2.1 to the multivariate case in a forthcoming paper
[11].

Under the separation property (1.5), the condition b) is fulfilled automatically, while
the equation A(t) = 0 has only one solution t = 0. But near zero, due to the strict sub-
Gaussianity, A(t) = O(t4) and A′′(t) = O(t2). Hence, the condition a) is fulfilled as well,
and we obtain the CLT with respect to D∞. In particular, it is applicable to the class L of
Newman described above. In fact, for this conclusion, (1.5) may further be weakened to

(2.2) sup
|t |≥t0

[
e−t2/2

E etX]
< 1 for all t0 > 0.

In this case, one can additionally explore the rate of convergence.

THEOREM 2.2. Let X be a nonnormal random variable with Var(X) = 1 satisfying (2.2).
If T∞(pn‖ϕ) < ∞ for some n, then

(2.3) T∞(pn‖ϕ) = O

(
1

n
(logn)3

)
as n → ∞.

Furthermore, specializing Theorem 2.1 to the case where the Laplace transform contains
a periodic component, we have the following.

THEOREM 2.3. Suppose that the function �(t) = L(t) e−t2/2 is h-periodic for a smallest
value h > 0. For the convergence T∞(pn‖ϕ) → 0 as n → ∞, it is necessary and sufficient
that, for every 0 < t < h,

(2.4) �(t) = 1 ⇒ � ′′(t) = 0.

Moreover, if the equation �(t) = 1 has no solution in 0 < t < h, then the relation (2.3) about
the rate of convergence continues to hold.

For an illustration (cf. Section 9 for more details), consider random variables X with
�(t) = 1 − c sin4 t , where the parameter c > 0 is small enough. In this case, �(t) is π -
periodic and all conditions in Theorem 2.3 are fulfilled. Hence, the CLT for T∞ does hold
with rate as in (2.3). On the other hand, in a similar π -periodic example

�(t) = 1 − c
(
1 − 4 sin2 t

)2 sin4 t,

the condition (2.4) is violated at the point t = π/6, so there is no CLT. Thus, the continuity
condition of A′′ with respect A in Theorem 2.1 may or may not be fulfilled in general in the
class of strictly sub-Gaussian distributions.

Returning to the convergence property (2.1), it should be emphasized that it is not possi-
ble to put the absolute value sign in the numerator (this will be clarified in Section 4). The
situation is of course different, when one considers the supremum over bounded increasing
intervals. For example, under suitable moment assumptions (cf. [27, 28]), it follows from
Edgeworth expansions for densities that

sup
|x|≤c

√
logn

|pn(x) − ϕ(x)|
ϕ(x)

→ 0 as n → ∞.

The proof of Theorem 2.1 is given in Section 8, with preliminary developments in Sec-
tions 3–7. Its application to the periodic case is discussed in Section 9. What is unusual in
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our approach is that the proof does not use in essence the tools from Complex Analysis (as
one ingredient, we establish a uniform local limit theorem for bounded densities with a quan-
titative error term). However, in the study of rates of convergence with respect to T∞, we
employ an old result by Richter [30] in a certain refined form on the asymptotic behavior of
ratios pn(x)/ϕ(x). This result is discussed in Section 10, where we also include the proof
of Theorems 2.2–2.3 (for the rate of convergence). In the last section, we describe several
examples of probability distributions satisfying the condition 1), needed for applicability of
Theorems 2.1–2.2.

3. Semigroup of shifted distributions (Esscher transform). Let X be a sub-Gaussian
random variable with density p. Here and in the sequel, the sub-Gaussianity is understood
as the property that E ecX2

< ∞ for some c > 0 (which is equivalent to (1.4) with some σ 2

when X has mean zero).
Then the Laplace transform, or the moment generating function

(Lp)(t) = L(t) = E etX =
∫ ∞
−∞

etxp(x) dx

is finite for all complex numbers t and represents an entire function in the complex plane.
Hence, the log-Laplace transform

(Kp)(t) = K(t) = logL(t) = logE etX, t ∈ R,

represents a convex, C∞-smooth function on the real line.

DEFINITION 3.1. Introduce the family of probability densities

(3.1) Qhp(x) = 1

L(h)
ehxp(x), x ∈ R,

with parameter h ∈ R. We call the distribution with this density the shifted distribution of X

at step h.
The early history of this well-known and popular transform goes back to 1930s. In actuarial

science, following Esscher [16], the density Qhp is commonly called the Esscher transform
of p. Other names “conjugate distribution laws,” “the family of distribution laws conjugate
to a system” were used by Khinchin [20] in the framework of statistical mechanics. See also
Daniels [14] who applied this transform to develop asymptotic expansions for densities. In
this paper, we prefer to use a different terminology as in Definition 3.1 in order to emphasize
the following important fact: For the standard normal density ϕ(x), the shifted normal law
has density Qhϕ(x) = ϕ(x + h).

A remarkable property of the transform (2.1) is the semigroup property

Qh1(Qh2p) = Qh1+h2p, h1, h2 ∈ R.

Let us also mention how this transform acts under rescaling. Given λ > 0, the random
variable λX has density pλ(x) = 1

λ
p(x

λ
) with Laplace transform (Lpλ)(t) = L(λt). Hence,

Qhpλ(x) = 1

(Lpλ)(h)
ehxpλ(x) = 1

λ
(Qλhp)

(
x

λ

)
.

This identity implies that the maximum-of-density functional M(X) = M(p) = ess supxp(x)

satisfies

(3.2) M(Qhpλ) = 1

λ
M(Qλhp).

The transform Qh is also multiplicative with respect to convolutions.
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PROPOSITION 3.2. If independent sub-Gaussian random variables have densities
p1, . . . , pn, then for the convolution p = p1 ∗ · · · ∗ pn, we have

(3.3) Qhp = Qhp1 ∗ · · · ∗ Qhpn.

PROOF. It is sufficient to compare the Laplace transforms of both sides in (3.3). The
Laplace transform of p is given by Lp(t) = (Lp1)(t) . . . (Lpn)(t). Hence, the Laplace trans-
form of Qhp is given by

(LQhp)(t) =
∫ ∞
−∞

etxQhp(x) dx = 1

(Lp)(t)

∫ ∞
−∞

e(t+h)xp(x) dx

= (Lp)(t + h)

(Lp)(t)
=

n∏
k=1

(Lpk)(t + h)

(Lpk)(t)
=

n∏
k=1

(LQhpk)(t). �

The formula (3.1) in Definition 3.1 may be written equivalently as

p(x) = L(h) e−xhQhp(x) = e−xh+K(h)Qhp(x),

or
p(x)

ϕ(x)
= √

2π e
1
2 (x−h)2− 1

2 h2+K(h)Qhp(x).

Introduce the function

(3.4) (Ap)(h) = A(h) = 1

2
h2 − K(h),

which allows to reformulate the strict sub-Gaussianity via the inequality A(h) ≥ 0 for all h

(under the assumptions EX = 0, Var(X) = 1). Thus,

(3.5)
p(x)

ϕ(x)
= √

2π e
1
2 (x−h)2−A(h)Qhp(x).

We will use this representation to bound the ratio on the left-hand side for the densities pn

of the normalized sums

(3.6) Zn = X1 + · · · + Xn√
n

of independent copies of the random variable X with density p. In order to apply (3.5) to pn

instead of p, put xn = x
√

n, hn = h
√

n. Note that in terms of L = Lp, K = Kp and A = Ap,
we may write

(Lpn)(t) = L(t/
√

n)n = enK(t/
√

n),

(Kpn)(t) = nK(t/
√

n),

(Apn)(hn) = 1

2
h2

n − (Kpn)(hn) = n

2
h2 − nK(h) = nA(h).

Therefore, the ratio (3.5) being applied with (xn, hn) becomes the following.

PROPOSITION 3.3. Putting xn = x
√

n, hn = h
√

n (x,h ∈ R), we have

(3.7)
pn(x

√
n)

ϕ(x
√

n)
= √

2π e
n
2 (x−h)2−nA(h)Qhnpn(xn).

This equality is useful, if we are able to bound the factor Qhnpn(xn) uniformly over all x

for a fixed value of h as stated in the following corollary.
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COROLLARY 3.4. For all x,h ∈R,

(3.8)
pn(x

√
n)

ϕ(x
√

n)
≤ √

2π e
n
2 (x−h)2−nA(h)M(Qh

√
npn).

REMARK 3.5. Since the function K is convex, it follows from the definition (3.4) that
A′′(h) ≤ 1 for all h ∈ R. As a consequence, this function satisfies a differential inequality

(3.9) A′(h)2 ≤ 2A(h), h ∈ R,

if A(h) ≥ 0 for all h ∈ R. For a short proof (proposed by the referee), one may apply the
Taylor formula

0 ≤ A(h + x) = A(h) + A′(h)x + 1

2
A′′(h1)x

2

≤ A(h) + A′(h)x + 1

2
x2, x ∈ R,

holding for some point h1 in the segment with endpoints h and h + x. Minimizing the right-
hand side over all x leads to (3.9).

4. Maximum of shifted densities. In order to bound the last term in (3.8), suppose that
the distribution of X has a finite Rényi distance of infinite order to the standard normal law.
This means that the density of X admits a pointwise upper bound

(4.1) p(x) ≤ cϕ(x), x ∈R (a.e.)

for some constant c. Note that its optimal value is c = 1 + T∞(p‖ϕ). In that case, one may
control the maximum of densities of shifted distributions

M(Qhp) = ess supxQhp(x).

Indeed, (4.1) implies that, for any x ∈ R,

Qhp(x) = 1

L(h)
exhp(x) ≤ cexh−x2/2

L(h)
√

2π
≤ ceh2/2

L(h)
√

2π
= c√

2π
eA(h),

where L = Lp and A = Ap. Thus,

(4.2) M(Qhp) ≤ c√
2π

eA(h).

However, it is useless to apply this bound directly to the densities pn of the normalized
sums Zn as in (3.6), since then the right-hand side of (4.2) will contain the parameter cn = 1+
T∞(pn‖ϕ). Instead, we use a semiadditive property of the maximum-of-density functional,
which indicates that

M(X1 + · · · + Xn)
−2 ≥ 1

2

n∑
k=1

M(Xk)
−2

for all independent random variables Xk having bounded densities; cf. [5] or [9]. If all Xk are
identically distributed and have density p, this relation yields

M
(
p∗n) ≤

√
2/nM(p)

for the convolution nth power of p. Applying Proposition 3.2 together with (4.2), we then
have

M
(
Qhp

∗n) ≤
√

2/nM(Qhp) ≤
√

2/n
c√
2π

eA(h).
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On the other hand, since p∗n(x) = 1
λ
pn(

x
λ
) with λ = √

n, one may apply the identity (3.2):

M
(
Qhp

∗n) = 1√
n

M(Qh
√

npn).

Hence,

M(Qh
√

npn) ≤ c√
π

eA(h).

Let us now return to Corollary 3.4 and apply this bound to get that

pn(x
√

n)

ϕ(x
√

n)
≤ c

√
2 e

n
2 (x−h)2−(n−1)A(h),

recalling that c = 1 + T∞(p‖ϕ). In particular, with h = x this yields the following.

PROPOSITION 4.1. Let pn denote the density of Zn constructed for n independent copies
of a sub-Gaussian random variable X whose density p has finite Rényi distance of infinite
order to the standard normal law. Then, for almost all x ∈R,

(4.3)
pn(x

√
n)

ϕ(x
√

n)
≤ c

√
2 e−(n−1)A(x).

COROLLARY 4.2. If additionally EX = 0, Var(X) = 1 and X is strictly sub-Gaussian,
then

T∞(pn‖ϕ) ≤ √
2

(
1 + T∞(p‖ϕ)

) − 1.

Thus, the finiteness of the Tsallis distance T∞(p‖ϕ) for a strictly sub-Gaussian random
variable X with density p ensures the boundedness of T∞(pn‖ϕ) for all normalized sums
Zn.

If A(x) is bounded away from zero, the inequality (4.3) shows that pn(x
√

n)/ϕ(x
√

n) is
exponentially small for growing n. In particular, this holds for any nonnormal random vari-
able X satisfying the separation property (2.2). Then we immediately obtain the following.

COROLLARY 4.3. Suppose that X has a density p with finite T∞(p‖ϕ). Under the con-
dition (2.2), for any τ0 > 0, there exist A > 0 and δ ∈ (0,1) such that the densities pn of Zn

satisfy

(4.4) pn(x) ≤ Aδnϕ(x), |x| ≥ τ0
√

n.

In particular,

lim inf
n→∞ sup

x∈R
|pn(x) − ϕ(x)|

ϕ(x)
≥ 1.

Therefore, one cannot hope to strengthen the Tsallis distance by introducing a modulus sign
in the definition of the distance.

Since (2.2) does not need be true in general, Proposition 4.1 will be applied outside the set
of points where A(x) is bounded away from zero. More precisely, for a parameter a > 0 and
n ≥ 2, define the critical zone

(4.5) An(a) = {
h > 0 : A(h) ≤ a/(n − 1)

}
.

From (4.3), it follows that

(4.6)
pn(x

√
n)

ϕ(x
√

n)
≤ c

√
2 e−a, x /∈ An(a).
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If a is large, this bound may be used in the proof of the CLT with respect to the distance
T∞ restricted to the complement of the critical zone. As for this zone, the bound (4.3) is not
appropriate, and we need to return to the basic representation from Proposition 3.3. To study
the last term Qhnpn(xn) in (3.7) for x ∈ An(a), one may apply a variant of the local limit
theorem, using the property that the density Qhnpn has a convolution structure. However, in
order to justify this application, we should first explore the behavior of moments of densities
participating in the convolution.

5. Moments of shifted distributions. For a sub-Gaussian random variable X with den-
sity p, denote by X(h) a random variable with density Qhp (h ∈ R). It is sub-Gaussian, and
its Laplace and log-Laplace transforms are given by

Lh(t) ≡ EetX(h) = L(t + h)

L(h)
,

Kh(t) ≡ logLh(t) = K(t + h) − K(h).

(5.1)

Furthermore, it has mean and variance

mh ≡ EX(h) = L′(h)

L(h)
= K ′(h),

σ 2
h ≡ Var

(
X(h)

) = L′′(h)L(h) − L′(h)2

L(h)2 = K ′′(h).

The last equality shows that necessarily K ′′(h) > 0 for all h ∈ R. Indeed, otherwise the ran-
dom variable X(h) would be a constant a.s.

The question of how to bound the standard deviation σh from below relies upon certain fine
properties of the density p and the behavior of the function A(h) = 1

2h2 − K(h), introduced
in (3.4). As before, suppose that the distribution of X has finite Rényi distance of infinite
order to the standard normal law, so that

(5.2) p(x) ≤ cϕ(x), x ∈R,

with c = 1 + T∞(p‖ϕ). Then one may control the maximum M(X(h)) = ess supxph(x) of
densities of shifted distributions, using (4.2):

Qhp(x) ≤ c√
2π

eA(h).

For a lower bound, we employ a well-known general relation

M(ξ)2 Var(ξ) ≥ 1

12
(where the equality is attained for the uniform distribution on a bounded interval). Let us
provide the following simple argument, assuming without loss of generality that a random
variable ξ has finite variance and a density with M(ξ) = 1. Then the function

H(x) = P{|ξ −Eξ | ≥ x}
is absolutely continuous, and its Radon–Nikodym derivative satisfies H ′(x) ≥ −2 a.e. in
x > 0. Since H(0) = 1, we get H(x) ≥ 1 − 2x for all x ≥ 0 and, therefore,

Var(ξ) = 2
∫ ∞

0
xH(x)dx ≥ 2

∫ 1/2

0
x(1 − 2x)dx = 1

12
.

Applying this to ξ = X(h) and combining the two bounds, we obtain that

1√
12

≤ M
(
X(h)

)
σh ≤ cσh√

2π
eA(h).

Thus we arrive at the following.
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LEMMA 5.1. Under the condition (5.2), for all h ∈ R,

(5.3) σh ≥
√

π

6c2 e−A(h).

Since σh > 0, one may consider the normalized random variables

(5.4) X̂(h) = X(h) −EX(h)√
Var(X(h))

= X(h) − mh

σh

.

By (5.1), they have the moment generating function

E etX̂(h) = E exp
{

t

σh

(
X(h) − mh

)}

= exp
{
− t

σh

K ′(h)

}L(h + t
σh

)

L(h)

and the log-Laplace transform

(5.5) K̂h(t) = K

(
h + t

σh

)
− K(h) − t

σh

K ′(h).

In order to estimate (5.5) from above, assume that K(h) ≤ 1
2h2, that is, A(h) ≥ 0 for all h.

For h ∈ An(a), the definition (4.5) implies that

K(h) ≥ 1

2
h2 − a

n − 1
,

and hence

K̂h(t) ≤ 1

2

(
h + t

σh

)2
− 1

2
h2 + a

n − 1
− t

σh

K ′(h)

= 1

2

(
t

σh

)2
+ a

n − 1
+ t

σh

(
h − K ′(h)

)
.

(5.6)

Here, the term h − K ′(h) = A′(h) can be estimated by virtue of the inequality (3.9), which
gives ∣∣h − K ′(h)

∣∣2 ≤ 2A(h) ≤ 2a

n − 1
and

|t |
σh

∣∣h − K ′(h)
∣∣ ≤ 1

2

(
t

σh

)2
+ 1

2

∣∣h − K ′(h)
∣∣2

≤ 1

2

(
t

σh

)2
+ a

n − 1
,

where we used ab ≤ 1
2a2 + 1

2b2 (a, b ∈ R). It follows from (5.6) that

K̂h(t) ≤
(

t

σh

)2
+ 2a

n − 1
.

Here, the right-hand side is bounded for sufficiently small |t | and sufficiently large n. One
may require, for example, that n ≥ 4a + 1 and |t | ≤ 1√

2
σh, in which case K̂h(t) ≤ 1, so that

E e|t |X̂(h) ≤ E etX̂(h) +E e−tX̂(h) ≤ 2e.

Using x3e−|t |x ≤ (3
e
)3 |t |−3 (x ≥ 0), this gives E |X̂(h)|3 ≤ 2e(3

e
)3 |t |−3. One can summarize

in the following statement.
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LEMMA 5.2. If the Laplace transform of a sub-Gaussian random variable X is such that
A(h) ≥ 0 for all h ∈ R, then for all h ∈ An(a) with n ≥ 4a + 1, we have

E eσh|X̂(h)|/√2 < 2e.

As a consequence,

E
∣∣X̂(h)

∣∣3 ≤ Cσ−3
h

up to some absolute constant C > 0.

6. Local limit theorem for bounded densities. Before we can apply the representation
(3.7), in the next step we need to establish a uniform local limit theorem with a quantita-
tive error term. Let (Xk)k≥1 be independent copies of a random variable X with EX = 0,
Var(X) = 1, β3 = E|X|3 < ∞, which has a bounded density. Then the normalized sums Zn

have bounded continuous densities pn for all n ≥ 2 satisfying

sup
x

∣∣pn(x) − ϕ(x)
∣∣ = O

(
1√
n

)
(n → ∞).

See, for example, [27, 28]. Let us quantify the error O-term in terms of β3 and the maximum
of density M = M(X).

LEMMA 6.1. With some positive absolute constant C, we have

(6.1) sup
x

∣∣pn(x) − ϕ(x)
∣∣ ≤ C

M2β3√
n

.

PROOF. Since M ≥ 1/
√

12 and β3 ≥ 1, while M(pn) ≤ √
2M for all n (cf. Section 4),

we may assume that n ≥ 4.
Denote by f (t) the characteristic function of X. By the boundedness assumption, the

characteristic functions

fn(t) = E eitZn = f (t/
√

n)n, t ∈ R,

are integrable for all n ≥ 2. Indeed, by the Plancherel theorem,∫ ∞
−∞

∣∣f (t)
∣∣n dt ≤

∫ ∞
−∞

∣∣f (t)
∣∣2 dt = 2π

∫ ∞
−∞

p(x)2 dx ≤ 2πM.

Hence, one may apply the Fourier inversion formula to represent the densities of Zn as

pn(x) = 1

2π

∫ ∞
−∞

e−itxfn(t) dt, x ∈ R.

Using a similar representation for the normal density, we get

∣∣pn(x) − ϕ(x)
∣∣ ≤ 1

2π

∫ ∞
−∞

∣∣fn(t) − et2/2∣∣dt.

As is well known (cf., e.g., [28], p. 109),

∣∣fn(t) − et2/2∣∣ ≤ 16
β3√
n
|t |3e−t2/3, |t | ≤

√
n

4β3
,

which yields ∫
|t |≤

√
n

4β3

∣∣fn(t) − et2/2∣∣dt ≤ Cβ3√
n
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with some absolute constant C. As for large values of |t |, it was shown in [9], page 145, that
for any ε ∈ (0,1] and n ≥ 4,∫

|t |≥ε

∣∣f (t)
∣∣n dt ≤ 4πM√

2n
exp

{−nε2/
(
5200M2)}

.

This gives∫
|t |≥

√
n

4β3

∣∣fn(t)
∣∣dt = √

n

∫
|t |≥ 1

4β3

∣∣f (t)
∣∣n dt ≤ 4πM√

2
exp

{−c0n/
(
β2

3M2)}
.

Since M is bounded away from zero, a similar estimate holds true for the normal character-
istic function as well. As a result, we arrive at

∣∣pn(x) − ϕ(x)
∣∣ ≤ C0

(
β3√
n

+ M exp
{−c0n/

(
β2

3M2)})

with some positive absolute constants C0 and c0, Using e−x < x−1/2 (x > 0), the second
term in the brackets is dominated by the first one up to the multiple of M2. Hence, the above
estimate may be simplified to (6.1). �

7. Local limit theorem for shifted densities. An application of Lemma 6.1 to the nor-
malized sums of independent copies of random variables X̂(h) defined in (5.4) leads to the
following refinement of the representation (3.7) from Proposition 3.3, when the point x be-
longs to the critical zone A(x) ≤ a

n−1 . Define

vx = x − mx

σx

= x − K ′(x)

σx

= A′(x)

σx

,

where we recall that mx = K ′(x) and σ 2
x = K ′′(x).

LEMMA 7.1. If the Laplace transform of a sub-Gaussian random variable X with finite
constant c = 1 + T∞(p‖ϕ) is such that A(h) ≥ 0 for all h ∈ R, then for all x ∈ An(a) with
n ≥ 4(a + 1), we have

(7.1)
pn(x

√
n)

ϕ(x
√

n)
= 1

σx

e−nA(x)−nv2
x/2 + Bc4

√
n

,

where B = Bn(x) is bounded by an absolute constant.

PROOF. Let us return to the term Qhnpn in (3.7) with hn = h
√

n. By Proposition 3.2,
this density has a convolution structure. Recall that, for any random variable X with density
p = pX ,

QhpλX(x) = 1

λ
(Qλhp)

(
x

λ

)
.

Using this notation, pn = pSn/
√

n in terms of the sum Sn = X1 + · · · + Xn. Hence, with
λ = 1/

√
n,

Qhnpn(x) = √
n (QhpSn)(x

√
n) = √

n (Qhp) ∗ · · · ∗ (Qhp)(x
√

n),

where we applied Proposition 3.2 in the last step. By the definition, Qhp is the density of the
random variable X(h). Hence, Qhnpn(x) represents the density for the normalized sum

Zn,h ≡ (
X1(h) + · · · + Xn(h)

)
/
√

n,



CLT FOR RÉNYI DIVERGENCE 465

assuming that Xk(h) are independent. Introduce the normalized sums

(7.2) Ẑn,h ≡ (
X̂1(h) + · · · + X̂n(h)

)
/
√

n

for the shifted distributions (5.4), that is, with Xk(h) = mh + σhX̂k(h). Thus,

Zn,h = mh

√
n + σhẐn,h.

Denote by p̂n,h the density of Ẑn,h. Then the density of Zn,h is given by

pn,h(x) = 1

σh

p̂n,h

(
x − mh

√
n

σh

)
, x ∈R.

At the points xn = x
√

n as in (3.7), we therefore obtain that

Qhnpn(xn) = pn,h(xn) = 1

σh

p̂n,h

(
x − mh

σh

√
n

)
.

Consequently, the equality (3.7) may be equivalently stated as

pn(x
√

n)

ϕ(x
√

n)
= √

2π e
n
2 (x−h)2−nA(h) 1

σh

p̂n,h

(
x − mh

σh

√
n

)
.

In particular, for h = x, we get

(7.3)
pn(x

√
n)

ϕ(x
√

n)
= √

2πe−nA(x) 1

σx

p̂n,x(vx

√
n).

We are now in a position to apply Lemma 6.1 to the sequence X̂k(x) and write

(7.4) p̂n,x(z) = ϕ(z) + B
β3(x)M(x)2

√
n

, z ∈ R,

where the quantity B = Bn(z) is bounded by an absolute constant, β3(x) = E|X̂(x)|3 and
M(x) = M(X̂(x)). The latter maximum can be bounded by virtue of the upper bound (4.2):

M
(
X̂(x)

) = σxM
(
X(x)

) = σxM(Qxp) ≤ cσx√
2π

eA(x).

In this case, (7.4) may be simplified with a new B to

p̂n,x(z) = ϕ(z) + Bc2 β3(x)σ 2
x√

n
e2A(x).

Inserting this in (7.3) with z = vx

√
n, again with a new B we arrive at

pn(x
√

n)

ϕ(x
√

n)
= 1

σx

e−nA(x)−nv2
x/2 + Bc2 β3(x)σx√

n
e−(n−2)A(x).

To further simplify, assume that x ∈ An(a) with n ≥ 4(a + 1). Then, by Lemmas 5.1–5.2,
β3(x) ≤ Cσ−3

x , while σ−1
x ≤ 2ceA(x). Hence,

β3(x)σx e−(n−2)A(x) ≤ 4Cc2e−(n−4)A(x) ≤ 4Cc2. �
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8. Proof of Theorem 2.1. Recall that the assumptions (1)–(2) stated before Theorem 2.1
are necessary for the convergence T∞(pn‖ϕ) → 0 as n → ∞. For simplicity, we assume that
n0 = 1, that is, X is a strictly sub-Gaussian random variable with mean zero, variance one
and with finite constant c = 1 + T∞(p‖ϕ). In particular, the function

A(x) = 1

2
x2 − K(x)

is nonnegative on the whole real line.
Sufficiency part. The critical zones An(a) = {x ∈ R : A(x) ≤ a

n−1} were defined for a
parameter a > 0 and n ≥ 2. Choosing a = log(1/ε) for a given ε ∈ (0,1), we have by (4.6),

(8.1) sup
x /∈An(a)

pn(x
√

n)

ϕ(x
√

n)
≤ c

√
2ε.

In the case x ∈ An(a) with n ≥ 4(a + 1), the equality (7.1) is applicable and implies

sup
x∈An(a)

pn(x
√

n)

ϕ(x
√

n)
≤ sup

x∈An(a)

1

σx

+ O

(
1√
n

)
,

where we recall that σ 2
x = K ′′(x). Using (8.1), we conclude that

1 + T∞(pn‖ϕ) ≤ sup
x∈An(a)

1

σx

+ c
√

2ε + O

(
1√
n

)
.

Thus, a sufficient condition for the convergence T∞(pn‖ϕ) → 0 as n → ∞ is that, for any
ε ∈ (0,1),

lim sup
n→∞

sup
x∈An(log(1/ε))

σ−2
x ≤ 1.

Equivalently, we need to require that lim infn→∞ infx∈An(a) K
′′(x) ≥ 1 for any a > 0, that is,

lim sup
n→∞

sup
x∈An(a)

A′′(x) ≤ 0.

Since A(x) = O(1/n) on every set An(a), the above may be written as the following conti-
nuity condition:

(8.2) lim
A(x)→0

max
(
A′′(x),0

) = 0.

Necessity part. To see that the condition (8.2) is also necessary for the convergence in T∞,
let us return to the representation (7.1). Assuming that T∞(pn‖ϕ) → 0, it implies that for any
a > 0,

(8.3) lim sup
n→∞

sup
x∈An(a)

1

σx

exp
{
−n

(
A(x) + 1

2
v2
x

)}
≤ 1,

where vx = A′(x)/σx . Recall that

A′(x)2 ≤ 2A(x), σ−2
x ≤ 6

π
c2eA(x)

(cf. Remark 3.5 and Lemma 5.1). Hence,

v2
x ≤ 2A(x)

σ 2
x

≤ 12

π
c2e2A(x)A(x) ≤ 12c2A(x),



CLT FOR RÉNYI DIVERGENCE 467

assuming that x ∈ An(a) with a ≤ 1/2 and n ≥ 2 in the last step. Since nA(x) ≤ 2a on the
set An(a) and c ≥ 1, it follows that

A(x) + 1

2
v2
x ≤ 7 c2A(x) ≤ 14c2

n
a.

Thus, (8.3) implies that

lim sup
n→∞

sup
x∈An(a)

1

σx

≤ e14 c2a, 0 < a ≤ 1/2.

Therefore, for all n ≥ n(a),

inf
x∈An(a)

K ′′(x) ≥ e−30 c2a.

Since a may be as small as we wish, we conclude that, for any ε > 0, there is δ > 0 such that
A(x) ≤ δ ⇒ K ′′(x) ≥ 1 − ε, or A(x) ≤ δ ⇒ A′′(x) ≤ ε. But this is the same as (8.2). �

One wide class of strictly sub-Gaussian distributions with mean zero and variance one is
described in terms of the Laplace transform L(t) = E etX via the potential requirement (2.2),
that is,

(8.4) L(t) ≤ (1 − δ) et2/2

for all t0 > 0 and |t | ≥ t0 with some δ = δ(t0), δ ∈ (0,1). In this case, the log-Laplace trans-
form and the A-function satisfy

K(t) ≤ 1

2
t2 + log(1 − δ), A(t) ≥ − log(1 − δ).

Hence, the approach A(t) → 0 is only possible when t → 0. But, for strictly sub-Gaussian
distributions, we necessarily have A(t) = O(t4) and A′′(t) = O(t2) near zero. Therefore, the
condition (8.2) is fulfilled.

COROLLARY 8.1. If a random variable X with mean zero, variance one and finite dis-
tance T∞(p‖ϕ) satisfies the separation property (8.4), then T∞(pn‖ϕ) → 0 as n → ∞.

9. Characterization in the periodic case. Examples. Let us apply Theorem 2.1 to the
Laplace transforms L(t) with

(9.1) �(t) = L(t) e−t2/2 = E etXe−t2/2, t ∈ R,

being periodic, with some period h > 0. Suppose that EX = 0, Var(X) = 1, and assume that:

(1) Zn has density pn for some n = n0 such that T∞(pn‖ϕ) < ∞;
(2) X is strictly sub-Gaussian, that is, L(t) ≤ et2/2, or equivalently �(t) ≤ 1 for all t ∈ R.

PROOF OF THEOREM 2.3 (FIRST PART). We need to show that the convergence
T∞(pn‖ϕ) → 0 is equivalent to the assertion that, for every 0 < t < h,

(9.2) �(t) = 1 ⇒ � ′′(t) = 0.

First, note that due to �(t) being analytic, the equation �(t) = 1 has finitely many so-
lutions in the interval [0, h] only, including the points t = 0 and t = h (by the periodicity).
Hence, the condition (b) in Theorem 2.1 may be ignored, and we obtain that T∞(pn‖ϕ) → 0
as n → ∞, if and only if

(9.3) A′′(t) = 0 for every point t ∈ [0, h] such that A(t) = 0.
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Here, one may exclude the endpoints, since A′′(0) = A′′(h) = 0, by the strict sub-Gaussianity
and periodicity. As for the interior points t ∈ (0, h), note that A(t) = − log�(t) has the
second derivative

A′′(t) = � ′(t)2 − � ′′(t)�(t)

�(t)2 = −� ′′(t)

at every point t such that �(t) = 1 (in which case � ′(t) = 0 due to the property � ≤ 1). This
shows that (9.3) is reduced to the condition (9.2). �

In order to describe examples illustrating Theorem 2.3, let us start with the following.

DEFINITION. We say that the distribution μ of a random variable X is periodic with
respect to the standard normal law, with period h > 0, if it has a density p(x) such that the
function

q(x) = p(x)

ϕ(x)
= dμ(x)

dγ (x)
, x ∈ R,

is periodic with period h, that is, q(x + h) = q(x) for all x ∈ R.

Here, q represents the density of μ with respect to the standard Gaussian measure γ . We
denote the class of all such distributions by Fh, and say that X belongs to Fh. Let us briefly
collect and recall without proof several observations from [10] on this interesting class of
probability distributions (cf. Sections 10–13).

PROPOSITION 9.1. If X belongs to Fh, then X is sub-Gaussian, and the function �(t) in
(9.1) is h-periodic. It may be extended to the complex plane as an entire function. Conversely,
if �(t) for a sub-Gaussian random variable X is h-periodic, then X belongs to Fh, as long
as the characteristic function f (t) of X is integrable.

Since

f (t) = L(it) = �(it) e−t2/2,

the integrability assumption in the reverse statement is fulfilled, as long as �(z) has order
smaller than 2, that is, when |�(z)| = O(exp{|z|ρ}) as |z| → ∞ for some ρ < 2.

The periodicity property is stable under convolutions: The normalized sums Zn belong to
Fh

√
n, as long as X belongs to Fh.

This class contains distributions whose Laplace transform has the form L(t) = �(t) et2/2,
where � is a trigonometric polynomial. More precisely, consider functions of the form

�(t) = 1 − cP (t), P (t) = a0 +
N∑

k=1

(
ak cos(kt) + bk sin(kt)

)
,

where ak , bk are given real coefficients, and c ∈ R is a nonzero parameter.

PROPOSITION 9.2. If P(0) = 0 and |c| is small enough, then L(t) represents the Laplace
transform of a sub-Gaussian random variable X with density p(x) = q(x)ϕ(x), where q(x)

is a nonnegative trigonometric polynomial of degree at most N .

Necessarily q is bounded, so that T∞(p‖ϕ) < ∞.
As for the requirement that P(0) = a0 + a1 + · · · + aN = 0, it guarantees that∫ ∞

−∞ p(x)dx = 1. In order to apply Theorem 2.3, there are two more constraints coming
from the assumption that EX = 0 and EX2 = 1.
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COROLLARY 9.3. Suppose that the polynomial P(t) satisfies:

(1) P(0) = P ′(0) = P ′′(0) = 0;
(2) P(t) ≥ 0 for 0 < t < h, where h is the smallest period of P .

If c > 0 is small enough, then L(t) represents the Laplace transform of a strictly sub-
Gaussian random variable X. Moreover, if P(t) > 0 for 0 < t < h, then T∞(pn‖ϕ) → 0
as n → ∞.

In terms of the coefficients of the polynomial, the moment assumptions P ′(0) = P ′′(0) = 0
are equivalent to

∑N
k=1 kbk = ∑N

k=1 k2ak = 0. The assumption (2) implies that 0 < �(t) ≤ 1,
and if P(t) > 0 for 0 < t < h, then the equation �(t) = 1 has no solution in this interval.

EXAMPLE 9.4. Consider the transforms of the form

(9.4) L(t) = (
1 − c sinm(t)

)
et2/2

with an arbitrary integer m ≥ 3, where |c| is small enough. Then EX = 0, EX2 = 1, and the
cumulants of X satisfy γk(X) = 0 for all 3 ≤ k ≤ m − 1.

Moreover, if m ≥ 4 is even, and c > 0 is small enough, the random variable X with the
Laplace transform (9.4) is strictly sub-Gaussian. Hence, the conditions in Corollary 9.3 are
met, and we obtain the statement about the Rényi divergence of infinite order. In the case
m = 4, (9.4) corresponds to

P(t) = sin4 t = 1

8

(
3 − 4 cos(2t) + cos(4t)

)
.

EXAMPLE 9.5. Put

(9.5) P(t) = (
1 − 4 sin2 t

)2 sin4 t.

Then P(t) = O(t4), implying that P(0) = P ′(0) = P ′′(0) = 0. Note that �(t) = 1 − cP (t)

is π -periodic, and h = π is the smallest period, although

�(0) = �(t0) = �(π) = 1, t0 = π/6.

As we know, if c > 0 is small enough, then L(t) = 1−c�(t) represents the Laplace transform
of a strictly sub-Gaussian random variable X. In this case, the last assertion in Corollary 9.3
is not applicable. Thus, the property that h is the smallest period for a periodic function �(t)

such that 0 ≤ �(t) ≤ 1 and �(h) = 1 does not guarantee that 0 < �(t) < 1 for 0 < t < h.
Nevertheless, all assumptions of Theorem 2.3 are fulfilled for sufficiently small c > 0 with

h = π , and we may check the condition (9.2). In this case,

�(t) = 1 − cQ(t)2, Q(t) = (
1 − 4 sin2 t

)
sin2 t = sin2 t − 4 sin4 t,

so that � ′′(t) = −2cQ′(t)2 at the points t such that Q(t) = 0, that is, for t = t0. Hence,
� ′′(t) = 0 ⇔ Q′(t) = 0. In our case,

Q′(t) = 2 sin t cos t − 16 sin3 t cos t = sin(2t)
(
1 − 8 sin2 t

)
,

and Q′(t0) = −1
2

√
3 	= 0. Hence, � ′′(t0) 	= 0, showing that the condition (9.2) is not fulfilled.

Thus, the CLT with respect to T∞ does not hold in this example.
The examples based on trigonometric polynomials may be generalized to the setting of

2π -periodic functions represented by Fourier series

P(t) = a0 +
∞∑

k=1

(
ak cos(kt) + bk sin(kt)

)
.

Then the assertions in Proposition 9.2 and Corollary 9.3 will continue to hold, as long as the
coefficients satisfy

∑∞
k=1 ek2/2 (|ak| + |bk|) < ∞.
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10. Richter’s local limit theorem and its refinement. We now turn to the problem
of convergence rates with respect to T∞, which can be explored, for example, under the
separation-type condition (2.2). In this case, it was shown in Corollary 4.3 that pn(x) is
much smaller than ϕ(x) outside the interval |x| = O(

√
n). In the region |x| = o(

√
n), an

asymptotic behavior of the densities pn of the normalized sums

Zn = (X1 + · · · + Xn)/
√

n

is governed by the following theorem due to Richter [30]. Assume that (Xn)n≥1 are indepen-
dent copies of a random variable X with mean EX = 0 and variance Var(X) = 1.

THEOREM 10.1. Let E ec|X| < ∞ for some c > 0, and let Zn have a bounded density for
some n. Then Zn with large n have bounded continuous densities pn satisfying

(10.1)
pn(x)

ϕ(x)
= exp

{
x3
√

n
λ

(
x√
n

)}(
1 + O

(
1 + |x|√

n

))

uniformly for |x| = o(
√

n). The function λ(z) is represented by an infinite power series which
is absolutely convergent in a neighborhood of z = 0.

The corresponding representation

(10.2) λ(z) =
∞∑

k=0

λkz
k

is called Cramer’s series; it is analytic in some disc |z| ≤ τ0 of the complex plane. The proof of
this theorem may also be found in the book by Ibragimov and Linnik [18] (cf. Theorem 7.1.1)
where it was assumed that X has a continuous bounded density. The representation (10.1) was
further investigated there for zones of normal attraction |x| = o(nα), α < 1

2 .
One immediate consequence of (10.1) is that

(10.3)
pn(x)

ϕ(x)
→ 1 as n → ∞

uniformly in the region |x| = o(n1/6). However, in general this is no longer true outside
this region. To better understand the possible behavior of densities, one needs to involve
the information about the coefficients in the power series (10.2). As was already mentioned
in [18], λ0 = 1

6γ3, λ1 = 1
24 (γ4 − 3γ 2

3 ). However, in order to judge the behavior of λ(z) for
small z, one should describe the leading term in this series. The analysis of the saddle point
associated to the log-Laplace transform of the distribution of X shows that

(10.4) λ(z) = γm

m! zm−3 + O
(|z|m−2)

as z → 0,

where γm denotes the first nonzero cumulant of X (when X is not normal). Equivalently, m

is the smallest integer such that m ≥ 3 and EXm 	= EZm, where Z ∼ N(0,1). In this case,
γm = EXm −EZm.

Using (10.4) in (10.1), we obtain a more informative representation

(10.5)
pn(x)

ϕ(x)
= exp

{
γm

m!
xm

n
m
2 −1

+ O

(
xm+1

n
m
2

)}(
1 + O

(
1 + |x|√

n

))
,

which holds uniformly for |x| = o(
√

n). With this refinement, the convergence in (10.3) holds
true uniformly over all x in the potentially larger region

|x| ≤ εnn
1
2 − 1

m (εn → 0).
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For example, if the distribution of X is symmetric about the origin, then γ3 = 0, so that
necessarily m ≥ 4.

Nevertheless, for an application to the T∞-distance, it is desirable to get some information
for larger intervals such as |x| ≤ τ0

√
n and to replace the term O(

|x|√
n
) in (10.5) with an

explicit n-dependent quantity. For this aim, the following refinement of Theorem 10.1 was
recently proved in [9].

THEOREM 10.2. Let the conditions of Theorem 10.1 be fulfilled. There is τ0 > 0 with
the following property. Putting τ = x/

√
n, we have for |τ | ≤ τ0,

(10.6)
pn(x)

ϕ(x)
= enτ 3 λ(τ)−μ(τ)

(
1 + O

(
n−1(logn)3))

,

where μ(τ) is an analytic function in |τ | ≤ τ0 such that μ(0) = 0.

Here, similar to (10.4),

μ(τ) = 1

2(m − 2)! γmτm−2 + O
(|τ |m−1)

.

As a consequence of (10.6), we have the following assertion, which was also derived in
[9] (note that it cannot be obtained on the basis of (10.1) or (10.5)).

COROLLARY 10.3. Under the same conditions, suppose that first nonzero cumulant γm

of X is negative and m ≥ 4 is even. There exist constants τ0 > 0 and c > 0 with the following
property. If |τ | ≤ τ0, τ = x/

√
n, then

(10.7)
pn(x)

ϕ(x)
≤ 1 + c(logn)3

n
.

PROOF OF THEOREM 2.2. It remains to combine Corollary 4.3 with Corollary 10.3 and
note that, for any strictly sub-Gaussian random variable X with variance one, m is even
and γm < 0. Indeed, the log-Laplace transform of the distribution of X admits the following
Taylor expansion near zero:

K(t) = logE etX = 1

2
t2 +

∞∑
k=3

γk

k! t
k

= 1

2
t2 + γm

m! t
m + O

(
tm+1)

,

which is a definition of cumulants. Hence, the strict sub-Gaussianity, that is, the property
K(t) ≤ 1

2 t2 for all t ∈ R implies the claim. �

PROOF OF THEOREM 2.3 (CONVERGENCE PART). For simplicity, let n0 = 1, so that
the random variable X has density p with T∞(p‖ϕ) < ∞. By the assumption, EX = 0,
Var(X) = 1 and

L(t) = E etX = �(t) et2/2, t ∈ R,

for some periodic function �(t) with period h > 0 such that 0 < �(t) < 1 for all 0 < t < h.
Hence,

L(t/
√

n)n = E etZn = �n(t) et2/2, �n(t) = �(t/
√

n)n,
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where the function �n(t) has period h
√

n. Since the density p is bounded, the characteristic
function of X is square integrable. Hence, the characteristic function of Zn is integrable
whenever n ≥ 2. In this case, we are in position to apply Proposition 9.1 to the random
variable Zn and conclude that it has a continuous density pn, which is periodic with respect to
the standard normal law with period h

√
n. That is, pn(x) = qn(x)ϕ(x) for some continuous,

periodic function qn with period h
√

n. We need to show that

(10.8) sup
x

(
qn(x) − 1

) = O

(
(logn)3

n

)
as n → ∞.

In view of periodicity, one may restrict this supremum to the interval 0 ≤ x ≤ h
√

n. But, if
0 ≤ x ≤ τ0

√
n, where τ0 is taken as in Corollary 10.3, we obtain the desired rate due to (10.7).

Here, without loss of generality one may assume that τ0 < h. Since qn(x) = qn(x − h
√

n),
the same conclusion is also true, if we restrict the supremum to (h − τ0)

√
n ≤ x ≤ h

√
n.

Finally, if τ0
√

n ≤ x ≤ (h − τ0)
√

n, we apply the bound (4.3), which gives

qn(x) ≤ c
√

2�

(
x√
n

)n−1
, c = 1 + T∞(p‖ϕ).

Since �(t) is continuous, supτ0≤t≤h−τ0
�(t) < 1. Hence, the expression on the right-hand

side is exponentially small for growing n. Collecting these estimates, we arrive at (10.8). �

11. Examples based on weighted sums. Here, we describe some examples illustrating
Theorem 2.2. It involves the separation condition (2.2) on the Laplace transform,

(11.1) sup
|t |≥t0

[
e−t2/2

E etX]
< 1 for all t0 > 0,

and states the following speed of convergence in the CLT:

(11.2) D∞(pn‖ϕ) = O

(
(logn)3

n

)
as n → ∞,

provided that the necessary condition D∞(pn‖ϕ) < ∞ for some n = n0 holds, where pn de-
note the densities of the normalized sums Zn constructed for independent copies of a random
variable X with EX = 0, Var(X) = 1.

While in general this condition is rather delicate, in the simplest case n0 = 1, it reduces to
the pointwise sub-Gaussian bound

(11.3) p(x) ≤ Mϕ(x), x ∈ R,

which should hold with some constant M for a density p of the random variable X. This
property is obviously fulfilled, when the density p is bounded and compactly supported; the
rate (11.2) holds as well for a family of probability distributions whose Laplace transform
contains a periodic component (see remarks after Proposition 9.2). We now consider further
examples where the density p is representable as a “weighted” convolution of at least two
densities satisfying (11.3). More precisely, we have the following.

COROLLARY 11.1. Assume that X satisfies (11.1) and is represented as

(11.4) X = c0η0 + c1η1 + c2η2, c2
0 + c2

1 + c2
2 = 1, c1, c2 > 0,

where the independent random variables ηk, k = 0,1,2, are strictly sub-Gaussian with vari-
ance one and satisfy D∞(ηk‖ϕ) < ∞ for k = 1,2. Then the CLT holds with rate (11.2).
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As an interesting subclass, one may consider infinite weighted convolutions, that is, ran-
dom variables of the form

(11.5) X =
∞∑

k=1

akξk,

∞∑
k=1

a2
k = 1.

COROLLARY 11.2. Assume that the i.i.d. random variables ξk are strictly sub-Gaussian
and have a bounded, compactly supported density with variance Var(ξ1) = 1. If ξ1 satisfies
(11.1), then the CLT holds with rate (11.2).

This statement includes, for example, infinite weighted convolutions of the uniform distri-
bution on a bounded symmetric interval.

By Theorem 2.2, Corollary 11.1 follows from the next general assertion.

LEMMA 11.3. Suppose that the random variable X is represented in the form (11.4),
where the random variables η0, η1, η2 are independent and possess the properties:

(a) η0 is strictly sub-Gaussian with Var(η0) = 1;
(b) η1, η2 have densities q1, q2 such that qk(x) ≤ Mkϕ(x) for all x ∈ R with some con-

stants Mk (k = 1,2).

Then X has a density p satisfying (11.3) with constant M = 1√
2c1c2

M1M2.

PROOF. The case c0 = 0 is simple. Then X has density

p(x) = 1

c1c2

∫ ∞
−∞

q1

(
x − y

c1

)
q2

(
y

c1

)
dy, x ∈ R,

which, by the assumption, does not exceed

M1M2

c1c2

∫ ∞
−∞

ϕ

(
x − y

c1

)
ϕ

(
y

c1

)
dy = M1M2 ϕ(x).

Hence, (11.3) is fulfilled with constant M = M1M2 (which is better than what is claimed in
the lemma, since 2c1c2 ≤ 1).

In the basic case c0 > 0, introduce the characteristic functions fk(t) of ηk and put gk(t) =
fk(ckt), k = 0,1,2. Since the densities q1, q2 are bounded, they belong to L2(R) together
with their characteristic functions f1, f2, according to the Plancherel theorem. The same is
true for g1, g2, so that the characteristic function of X,

(11.6) f (t) = g0(t)g1(t)g2(t),

is integrable on the real line (using |g0(t)| ≤ 1 for all t ∈ R). As a consequence, the random
variable X has a continuous density described by the inversion formula

(11.7) p(x) = 1

2π

∫ ∞
−∞

e−itxf (t) dt, x ∈R.

Moreover, the pointwise sub-Gaussian bounds on the densities qk in b) for k = 1,2 ensure
that E eλη2

k < ∞ for λ < 1
2 , implying that the random variables ηk are sub-Gaussian. Since η0

is also sub-Gaussian, we conclude that X is sub-Gaussian as well. Hence, all gk(t) and f (t)

may be extended from the real line to the complex plane as entire functions of order at most
2, and thus, (11.6) holds true for all t ∈C.
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For definiteness, let x < 0 in (11.7). We use a contour integration to obtain a different
representation for p(x). Fix T > 0, y > 0, and apply Cauchy’s formula for the oriented
contour consisting of the segments [−T ,T ], [T ,T + iy], [T + iy,−T + iy], [−T + iy,−T ],∫ T

−T
e−itxf (t) dt +

∫ y

0
e−i(T +ih)xf (T + ih) dh

=
∫ T

−T
e−i(t+iy)xf (t + iy) dt +

∫ y

0
e−i(−T +ih)xf (−T + ih) dh.

(11.8)

Here, the two integrals taken over the interval [0, y] are vanishing as T → ∞. To prove this,
first let us note that the functions

qk,h(x) = e−hxqk(x), x ∈R (k = 1,2),

are integrable for every h ∈ R and have the Fourier transform

q̂k,h(t) =
∫ ∞
−∞

eitxqk,h(x) dx = Eei(t+ih)ηk = fk(t + ih).

We may therefore conclude by applying the Riemann– Lebesgue lemma that fk(t + ih) → 0
as |t | → ∞. Moreover, this convergence is uniform over all 0 ≤ h ≤ y, which is due to the
assumption b). Indeed, since the mapping h → qk,h from [0, h] to L1(R) is continuous, for
any ε > 0, one can choose the points 0 = h0 < h1 < · · · < hN = y such that

‖qk,h − qk,hj
‖L1 < ε for all h ∈ [hj ,hj+1], 0 ≤ j ≤ N − 1.

In particular, supt |q̂k,h(t) − q̂k,hj
(t)| < ε. By the Riemann–Lebesgue lemma, for every j ,

there is tj > 0 such that sup|t |≥tj
|q̂k,hj

(t)| < ε. As a consequence,

sup
h∈[0,y]

sup
|t |≥T

∣∣fk(t + ih)
∣∣ < 2ε,

by choosing T = max{t1, . . . , tN }. A similar property holds true for gk , k = 1,2 and, there-
fore, for the characteristic function f in (11.6), we get

sup
h∈[0,y]

sup
|t |≥T

∣∣f (t + ih)
∣∣ → 0 as T → ∞.

As a result, in the limit as T → ∞ the identity (11.8) leads to the equivalent variant of
(11.7),

p(x) = eyx

2π

∫ ∞
−∞

e−itxf (t + iy) dt,

which yields

(11.9) p(x) ≤ eyx

2π

∫ ∞
−∞

∣∣f (t + iy)
∣∣dt.

In the next step, we need to estimate the integrand in (11.9). In view of the bound,∣∣g0(t + iy)
∣∣ = ∣∣E eic0(t+iy)η0

∣∣ ≤ E e−c0yη0 = g0(iy),

equation (11.6) gives ∣∣f (t + iy)
∣∣ ≤ g0(iy)

∣∣g1(t + iy)
∣∣∣∣g2(t + iy)

∣∣.
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Applying this in (11.9) and using Cauchy’s inequality, we get

p(x) ≤ eyxg0(iy)
1

2π

∫ ∞
−∞

∣∣g1(t + iy)
∣∣∣∣g2(t + iy)

∣∣dt

≤ eyxg0(iy)

(
1

2π

∫ ∞
−∞

∣∣g1(t + iy)
∣∣2 dt

)1/2(
1

2π

∫ ∞
−∞

∣∣g2(t + iy)
∣∣2 dt

)1/2

= eyxf0(ic0y)

2π
√

c1c2

(∫ ∞
−∞

∣∣f1(t + ic1y)
∣∣2 dt

)1/2(∫ ∞
−∞

∣∣f2(t + ic2y)
∣∣2 dt

)1/2
.

Applying the Plancherel theorem and using the pointwise sub-Gaussian bound in (b), we get

1

2π

∫ ∞
∞

∣∣fk(t + icky)
∣∣2 dt =

∫ ∞
∞

e−2ckyxq2
k (x) dx

≤ M2
k

∫ ∞
∞

e−2ckyxϕ2(x) dx = M2
k

2
√

π
ec2

ky
2
.

In addition, by the assumption a), f0(ic0y) = E e−c0yη0 ≤ ec2
0y2/2. Combining these esti-

mates, we arrive at

p(x) ≤ eyx

√
2c1c2

M1M2√
2π

e(c2
0+c2

1+c2
2) y2/2.

It remains to choose y = −x and recall the assumption c2
0 + c2

1 + c2
2 = 1. �

We conclude this section with the following.

PROOF OF COROLLARY 11.2. To apply Theorem 2.2, we only need to check that X has a
density p(x) satisfying (11.3). Let q(x) denote the common density of ξk , which is supposed
to be bounded and compactly supported. Without loss of generality, let a1 ≥ a2 ≥ · · · ≥ 0.

Case 1: a1 = 1 and ak = 0 for all k ≥ 2. Then p = q , so that p(x) ≤ M1ϕ(x) a.e. for some
constant M1 ≥ 1.

Case 2: a2 > 0. Then X = c0η0 + c1η1 + c2η2, where

c0η0 =
∞∑

k=3

akξk, η1 = ξ1, η2 = ξ2, c1 = a1, c2 = a2.

If a3 > 0, then c0 =
√

1 − a2
1 − a2

2 , so, η0 is well-defined, strictly sub-Gaussian, and has
variance one. Otherwise, we may put c0η0 = 0. By Lemma 11.3, the relation p(x) ≤ Mϕ(x)

a.e. holds true with constant M = 1√
2a1a2

M2
1 , thus proving (11.3). �
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