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1. Introduction

Introduce the normalized sums

Zn = X1 + · · · + Xn√
n

of independent copies of a random vector X in Rd with mean zero and identity covariance 
matrix Id. It is well known that, if Zn have densities pn for large n, their distributions 
are convergent in total variation norm to the standard normal law on Rd with density 
ϕ(x) = 1 

(2π)d/2 exp(−|x|2/2). That is, we have the convergence in L1-norm for densities

∫
Rd

|pn − ϕ| dx → 0 (n → ∞),

which was first emphasized by Prokhorov [18]. A much stronger property, which may or 
may not hold in general, is described by means of the Rényi divergence

Dα(pn||ϕ) = 1 
α− 1 log

∫
Rd

(pn
ϕ 

)α

ϕ dx

of order α ≥ 1 (the relative α-entropy). These distance-like functionals are increasing for 
growing α, and in the limit they define the Rényi divergence of infinite order

D∞(pn||ϕ) = ess supx log pn(x)
ϕ(x) .

The convergence in relative entropy

D(pn||ϕ) = D1(pn||ϕ) =
∫
Rd

pn log pn
ϕ 

dx

(which is the Kullback-Leibler distance) was the subject of numerous investigations start-
ing with Linnik [15], who initiated an information-theoretic approach to the central limit 
theorem. Let us only mention the work by Barron [2] for necessary and sufficient condi-
tions and later [1], [4], [5] for the problems of rates and Berry-Esseen bounds. The case 
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α > 1 and, in particular, the Pearson χ2-distance was treated in detail in [6], where the 
following statement was obtained as a consequence of a certain characterization of the 
convergence with respect to Dα in terms of the Laplace transform.

Theorem 1.1. Assume that Dα(pn||ϕ) < ∞ for every α ∈ (1,∞) with some n = nα. For 
the convergence Dα(pn||ϕ) → 0 for any finite α, it is necessary and sufficient that

E e〈t,X〉 ≤ e|t|
2/2 for all t ∈ Rd. (1.1)

The assumption of finiteness of Dα(pn||ϕ) may be equivalently stated as the property 
that Zn have bounded densities for large n.

The inequality (1.1) describes a remarkable class of probability distributions which ap-
pear naturally in many mathematical problems. In modern literature, (1.1) is often called 
strict sub-Gaussianity. We refer an interested reader to [7] for the history, references, and 
recent developments towards the problem of characterization of such distributions in di-
mension one.

The convergence in D∞ is equivalent to the convergence with respect to

T∞(pn||ϕ) = ess supx

pn(x) − ϕ(x)
ϕ(x) 

in view of the relation T∞ = eD∞−1. This quantity looks more natural than D∞ for local 
limit theorems, where |pn(x) − ϕ(x)| is commonly estimated on Rd with polynomially 
growing weights. However, if X is not normal, the statement

ess supx

pn(x) − ϕ(x)
ϕ(x) → 0 as n → ∞, (1.2)

cannot be strengthened to absolute value under the supremum. Indeed, if for example, 
X is bounded, then pn(x) is compactly supported, and the above ratio is equal to −1
for large |x| (see also Corollary 6.5 and the relation (6.5) after it).

One of the purposes of this paper is to give necessary and sufficient conditions for the 
multidimensional CLT such as (1.2) in terms of the Laplace transform L(t) = E e〈t,X〉. 
Introduce K(t) = logL(t) (which is a convex smooth function) and define the function

A(t) = 1
2 |t|2 −K(t), t ∈ Rd.

As before, suppose that (Xk)k≥1 are independent copies of the random vector X in Rd

with mean zero and identity covariance matrix. Below we assume that:

1) Zn has density pn with T∞(pn||ϕ) < ∞ for some n = n0;
2) X is strictly sub-Gaussian, that is, A(t) ≥ 0 for all t ∈ Rd.
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Theorem 1.2. For the convergence T∞(pn||ϕ) → 0, it is necessary and sufficient that the 
following two conditions are fulfilled:

a) A′′(t) = 0 for every point t ∈ Rd such that A(t) = 0;
b) limk→∞ A′′(tk) = 0 for every sequence |tk| → ∞ such that A(tk) → 0 as k → ∞.

Here and elsewhere A′′ denotes the Hessian, that is, the d× d matrix of second order 
partial derivatives of A. The conditions a) − b) may be combined in the requirement

lim 
A(t)→0

A′′(t) = 0, or equivalently lim 
A(t)→0

K ′′(t) = Id

which is a kind of continuity of A′′ with respect to A. As we will see, these conditions 
may also be stated in a formally weaker form as

a′) detK ′′(t) = 1 for every t ∈ Rd such that A(t) = 0;
b′) limk→∞ detK ′′(tk) = 1 for any sequence |tk| → ∞ such that A(tk) → 0 as k → ∞.

In dimension d = 1 Theorem 1.2 has been obtained in [8], where a)− b) are stated as 
a weaker condition lim supA(t)→0 A

′′(t) ≤ 0. The multidimensional situation turns out to 
be more complicated, since it requires a careful treatment of eigenvalues of the matrix 
K ′′(t), when A(t) approaches zero. Another ingredient in the proof is a quantitative 
version of the uniform local limit theorem, which was recently developed in [9].

Assuming the strict sub-Gaussianity (1.1), the conditions a)−b) may or may not hold 
in general. This shows that the convergence in D∞ is stronger than the convergence in 
Dα simultaneously for all finite α. Nevertheless, for a wide class of strictly sub-Gaussian 
distributions the Laplace transform possesses a separation-type property

sup 
|t|≥t0

[
e−|t|2/2 E e〈t,X〉] < 1 for all t0 > 0. (1.3)

This is a strengthened form of condition 2), which entails properties a) − b).

Corollary 1.3. If a random vector X with mean zero and identity covariance matrix 
satisfies (1.3), then T∞(pn||ϕ) → 0 as n → ∞.

On the other hand, the case of equality in the sub-Gaussian bound (1.1) is quite possi-
ble, and one can observe new features in the multidimensional case. While in dimension 
one, an equality L(t) = e|t|

2/2 is only possible for a discrete set of points t, in higher 
dimensions the set of points where this equality holds may have dimension d−1. In order 
to clarify this behavior, we will discuss the class of Laplace transforms which contain 
periodic components. Specializing Theorem 1.2 to this class, the general characterization 
may be simplified.
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Corollary 1.4. Suppose that the function Ψ(t) = L(t) e−|t|2/2 is h-periodic for some vector 
h ∈ Rd

+ (h �= 0). For the convergence T∞(pn||ϕ) → 0 as n → ∞, it is necessary and 
sufficient that, for every t ∈ [0, h],

Ψ(t) = 1 ⇒ Ψ′′(t) = 0.

Our approach to Theorem 1.2 is based on the application of the Esscher transforms 
Qh on Rd defined below. Recall that a random vector X in Rd is called sub-Gaussian, if 
E ec|X|2 < ∞ for some c > 0.

Definition 1.5. Let X be a sub-Gaussian random vector in Rd with distribution μ. In-
troduce the family of probability distributions μh = Qhμ on Rd with parameter h ∈ Rd

which have densities with respect to μ

dμh(x)
dμ(x) = 1 

L(h) e
〈h,x〉, x ∈ Rd. (1.4)

The early history of this transform in dimension one goes back to Esscher [13] in 
actuarial science, Khinchin [14] in statistical mechanics, and Daniels [12] who applied it 
to develop asymptotic expansions for densities. It is used to study large deviations for 
instance in Central Limit theorems and sometimes called Cramér’s transform as well. 
For examples, see [19].

As a result, in (1.4) we obtain a semi-group of probability measures {Qhμ}h∈Rd on Rd

with the following remarkable property: Every Qh transforms the convolution of several 
measures to the convolutions of their Qh-transforms. This is analogous to the property 
that the Fourier transform of convolutions represents the product of Fourier transforms. 
Somewhat surprisingly, for the study of convergence in T∞ an application of the Qh-
transform effectively replaces Fourier calculus. Indeed, the proof of Theorem 1.2 makes 
use of the Fourier analysis only in a minor way.

We will discuss the action of the Q-transform on single distributions in Sections 2-5
and then turn to convolutions in Sections 6-7. The proof of Theorem 1.2 and Corollar-
ies 1.3-1.4 are given in Section 8-9. The remaining Sections 10-14 illustrate these results 
for several classes of probability distributions and specific examples.

2. Semigroup of shifted distributions. A basic identity

Let X be a sub-Gaussian random vector in Rd with distribution μ. Then, the Laplace 
transform, or the moment generating function

(Lμ)(t) = L(t) = E e〈t,X〉 =
∫
Rd

e〈t,x〉 dμ(x), t ∈ Rd,

is finite and represents a C∞-smooth function on Rd. Correspondingly, the log-Laplace 
transform
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(Kμ)(t) = K(t) = logL(t) = logE e〈t,X〉

is a convex, C∞-smooth function on Rd.
The measures μh = Qhμ are defined in (1.4) by means of the Esscher transform. In 

the absolutely continuous case, Definition 1.5 is reduced to the following:

Definition 2.1. If the random vector X has density p, the measure μh has density which 
we denote similarly as

Qhp(x) = 1 
L(h) e

〈h,x〉p(x). (2.1)

In this case, let us also write Lμ = Lp and Kμ = Kp.

We will call μh the shifted distribution of X at step h in order to emphasize the 
following important fact: For the standard normal density ϕ(x), the shifted normal law 
has density Qhϕ(x) = ϕ(x + h).

A remarkable property of the transform (1.4) is the semi-group property

Qh1(Qh2μ) = Qh1+h2μ, h1, h2 ∈ Rd.

Similarly, in the space of probability densities as in (2.1), we have

Qh1(Qh2p) = Qh1+h2p.

Let us also mention how this transform acts under rescaling, for simplicity in the 
absolutely continuous case. Given λ > 0, the random vector λX has density pλ(x) =
λ−d p(x/λ) with Laplace transform (Lpλ)(t) = L(λt). Hence

Qhpλ(x) = 1 
(Lpλ)(h) e

〈h,x〉pλ(x) = 1 
λd

(Qλhp)
(x 
λ

)
. (2.2)

The transform Qh is multiplicative with respect to convolutions.

Proposition 2.2. If independent sub-Gaussian random vectors in Rd have distributions 
μ1, . . . , μn, then for the convolution μ = μ1 ∗ · · · ∗ μn, we have

Qhμ = Qhμ1 ∗ · · · ∗Qhμn. (2.3)

In particular, if μk have densities pk, then for the convolution p = p1 ∗ · · · ∗ pn, we have

Qhp = Qhp1 ∗ · · · ∗Qhpn.



S.G. Bobkov, F. Götze / Journal of Functional Analysis 289 (2025) 110999 7

Proof. It is sufficient to compare the Laplace transforms of both sides in (2.3). The 
Laplace transform of μ is given by

Lμ(t) = (Lμ1)(t) . . . (Lμn)(t).

Hence, the Laplace transform of Qhμ is given by

(LQhμ)(t) =
∫
Rd

e〈t,x〉 dQhμ(x) = 
1 

(Lμ)(t)

∫
Rd

e〈t+h,x〉dμ(x)

= (Lμ)(t + h)
(Lμ)(t) = 

n ∏
k=1

(Lμk)(t + h)
(Lμk)(t) 

= 
n ∏

k=1

(LQhμk)(t). �

If the random vector X has density p, the formula (2.1) may be rewritten as

p(x) = L(h)e−〈x,h〉 Qhp(x) = e−〈x,h〉+K(h) Qhp(x),

or

p(x) 
ϕ(x) = (2π)d/2 e 1

2 |x−h|2− 1
2 |h|2+K(h) Qhp(x).

As in the introductory section, we consider the smooth function on Rd

(Ap)(h) = A(h) = 1
2 |h|2 −K(h). (2.4)

It allows one to reformulate the property L(h) ≤ e
1
2 |h|2 as A(h) ≥ 0 for all h ∈ Rd. Note 

that this is equivalent to the strict sub-Gaussianity of X, when this random vector has 
mean zero and identity covariance matrix. Thus, we have:

Proposition 2.3. Given a sub-Gaussian random vector X in Rd with density p,

p(x) 
ϕ(x) = (2π)d/2 e 1

2 |x−h|2−A(h) Qhp(x), x, h ∈ Rd, (2.5)

where A is the associated function to p.

This is a basic identity which will be used with h = x to bound from above the ratio 
on the left for densities of normalized sums of independent copies of X.

Since the function A(h) plays an essential role in the representation (2.5), a number 
of its properties will be important in the sequel. Some of them may be explored in the 
general situation where X does not need to have a density. We denote by A′(h) = ∇A(h)
the gradient and by A′′(h) the Hessian of A at the point h.
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Proposition 2.4. Let X be a sub-Gaussian random vector in Rd with Laplace transform 
satisfying A(h) ≥ 0 for all h ∈ Rd. Then, for all h ∈ Rd,

|A′(h)|2 ≤ 2A(h), (2.6)

A′′(h) ≤ Id, (2.7)

A(h) = 0 ⇒ A′(h) = 0 and A′′(h) ≥ 0. (2.8)

Proof. The inequalities in (2.7)-(2.8) are understood in matrix sense. The implication 
in (2.8) is obvious. Also, since the function K is convex, the assertion (2.7) follows from 
the definition (2.4). To prove (2.6), let us write the Taylor integral formula for A at the 
point h up to the quadratic term

A(h + x) = A(h) + 〈A′(h), x〉 +
1 ∫

0 

(1 − s) 〈A′′(h + sx)x, x〉 ds. (2.9)

By (2.7), and using the assumption A ≥ 0, we have, for all x ∈ Rd,

0 ≤ A(h) + 〈A′(h), x〉 + 1
2 |x|2.

Minimizing the right-hand side over all x, we arrive at (2.6). �
Note that an application of (2.6)-(2.7) in the Taylor formula (2.9) also implies that

|A(h + x) −A(h)| ≤
√

2A(h) |x| + 1
2 |x|2, x, h ∈ Rd. (2.10)

To explore some other properties of the function A, we need to look at the moments 
of shifted distributions.

3. Moments of shifted distributions

For a sub-Gaussian random vector X in Rd with distribution μ, denote by X(h) a 
random vector with distribution μh = Qhμ (h ∈ Rd). It is sub-Gaussian, and its Laplace 
and log-Laplace transforms are given by

Lh(t) = E e〈t,X(h)〉 = L(t + h)
L(h) ,

Kh(t) = logLh(t) = K(t + h) −K(h). (3.1)

This random vector has mean

mh = EX(h) = 
L′(h)
L(h) = K ′(h),
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where we recall that L′(h) = ∇L(h) and K ′(h) = ∇K(h) denote the gradients of L and 
K respectively. In addition, since for all t, h ∈ Rd,

Var
(
〈t,X(h)〉

)
= 

d2

dλ2 Kh(λt)
∣∣∣
λ=0

= 〈K ′′(h)t, t〉 ,

the covariance matrix of X(h) represents the matrix of second order partial derivatives 
(Hessian)

Rh = K ′′(h), h ∈ Rd.

This shows that necessarily K ′′(h) is positive semi-definite. Moreover, if X has a density, 
it is strictly positive definite, since otherwise the random vector X(h) may not have a 
density.

The centered random vector

X̄(h) = X(h) −mh (3.2)

has mean zero and covariance matrix Rh. Involving the function A and assuming that it 
is non-negative, the log-Laplace transform is given by and satisfies

K̄h(t) = logE e
〈
t,X̄(h)

〉
= K(t + h) −K(h) − 〈t,mh〉

=
(1

2 |t + h|2 −A(t + h)
)
−

(1
2 |h|2 −A(h)

)
− 〈t,K ′(h)〉

≤ 1
2 |t + h|2 −

(1
2 |h|2 −A(h)

)
− 〈t,K ′(h)〉

= 1
2 |t|2 + A(h) + 〈t, A′(h)〉 .

Applying (2.6), we get

K̄h(t) ≤ 1
2 |t|2 + A(h) + |t| |A′(h)|

≤ 1
2 |t|2 + A(h) + |t|

√
2A(h) = 

1
2

(
|t| +

√
2A(h)

)2
.

Thus, we obtain an upper bound for the Laplace transform.

Proposition 3.1. Let X be a sub-Gaussian random vector in Rd with Laplace transform 
such that A(h) ≥ 0 for all h ∈ Rd. Then

E e
〈
t,X̄(h)

〉
≤ exp

{1
2

(
|t| +

√
2A(h)

)2}
, t, h ∈ Rd. (3.3)
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This relation shows in a quantitative form the sub-Gaussian character of X̄. Indeed, 
to simplify, one may use (a + b)2 ≤ 2a2 + 2b2 (a, b ∈ R), so that (3.3) yields

E e
〈
t,X̄(h)

〉
≤ exp

{
|t|2 + 2A(h)

}
.

Let us apply this with t = 1
2 ξθ, |θ| = 1, where ξ is a standard normal random variable 

independent of X. Taking the expectation with respect to ξ and using E e
1
4 ξ2 =

√
2, we 

then get

E e
1
4
〈
θ,X̄(h)

〉2
≤

√
2 e2A(h). (3.4)

Moreover, by Jensen’s inequality, the left expectation is greater than or equal to 
exp

{1
4 E

〈
θ, X̄(h)

〉2 } which leads to

1
4 〈Rhθ, θ〉 ≤ 2A(h) + log

√
2.

In particular, one may apply this inequality to orthonormal eigenvectors θ of Rh.

Corollary 3.2. Under the conditions of Proposition 3.1, the eigenvalues λj(h) of Rh sat-
isfy, for any h ∈ Rd,

max 
1≤j≤d

λj(h) ≤ 8A(h) + 2 log 2. (3.5)

Starting from (3.4), one may similarly estimate higher order moments of linear func-
tionals of X̄(h). The following bound will be needed with q = 3.

Corollary 3.3. Under the conditions of Proposition 3.1, up to some absolute constant C,

(
E 
∣∣ 〈θ, X̄(h)

〉 ∣∣q)2/q
≤ C

(
q + A(h)

)
, q ≥ 1. (3.6)

Proof. One may assume that q ≥ 2. By (3.4), for the random variable

η = 1
4
〈
θ, X̄(h)

〉2 − 2A(h) − log
√

2

we have E eη ≤ 1, implying P{η ≥ x} ≤ e−x for all x ≥ 0. Hence, for any r ≥ 1,

E (η+)r = r

∞ ∫
0 

xr−1 P{η ≥ x} dx ≤ Γ(r + 1),

where η+ = max(η, 0). Using 
〈
θ, X̄(h)

〉2 ≤ 4η+ + 8A(h) + 2 log 2, it follows that
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(
E 
∣∣ 〈θ, X̄(h)

〉 ∣∣2r)1/r
≤ 4 Γ(r + 1)1/r + 8A(h) + 2 log 2.

It remains to apply this inequality with r = q/2. �
4. Behavior of eigenvalues near the critical zone

Another application of the sub-Gaussian bound (3.4), more precisely – of the inequal-
ity (3.6) with q = 3, concerns the behavior of the Hessian A′′(h) when A(h) is small 
(which we shall call the critical zone in view of the inequality (6.3) from Proposition 6.3
below). The following statement complements the property (2.8) from Proposition 2.4
which asserts that A′′(h) ≥ 0 as long as A(h) = 0.

Proposition 4.1. Let X be a sub-Gaussian random vector in Rd with Laplace transform 
such that A(h) ≥ 0 for all h ∈ Rd. If 0 ≤ A(h) ≤ 1, then

inf 
|θ|=1

〈A′′(h)θ, θ〉 ≥ −CdA(h)1/4 (4.1)

with some constant Cd > 0 depending on d only.

One consequence of (4.1), which will be needed for the characterization of the CLT 
with respect to the Rényi divergence of infinite order is that

lim inf 
A(h)→0

inf 
|θ|=1

〈A′′(h)θ, θ〉 ≥ 0,

or equivalently, since A′′ = Id −K ′′,

lim sup
A(h)→0 

sup 
|θ|=1

〈K ′′(h)θ, θ〉 ≤ 1.

In terms of the eigenvalues λj(h) of the covariance matrix Rh of the random vector X(h)
this may also be restated as:

Corollary 4.2. Let X be a sub-Gaussian random vector in Rd with Laplace transform 
such that A(h) ≥ 0 for all h ∈ Rd. Then

lim sup
A(h)→0 

max 
1≤j≤d

λj(h) ≤ 1. (4.2)

In particular,

lim sup
A(h)→0 

detK ′′(h) ≤ 1.
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Proof. We keep notations from the previous sections. Recall that

X̄(h) = X(h) − EX(h) = (ξ1, . . . , ξd), h = (h1, . . . , hd) ∈ Rd.

The following elementary identity is needed for the 3rd order partial derivatives of 
the log-Laplace transform with respect to the variables hi, hj , hk:

∂ijkK(h) = E ξiξjξk = −∂ijkA(h), 1 ≤ i, j, k ≤ d.

By (3.6) with q = 3,

(
E |ξi|3

)1/3 ≤ C (1 + A(h))1/2,

where C is an absolute constant. Hence, by Hölder’s inequality, for any h ∈ Rd,

|∂ijkA(h)| ≤ C3 (1 + A(h))3/2. (4.3)

Let 0 < A(h) ≤ 1. Applying the inequality (2.10), we get that, whenever |x| ≤ 1,

|A(h + x) −A(h)| ≤
√

2A(h) |x| + 1
2 |x|2 < 2.

Hence A(h + x) < 3, so that by (4.3),

|∂ijkA(h + x)| ≤ C (4.4)

with some absolute constant C > 0.
We now apply the multidimensional integral Taylor formula up to cubic terms which 

indicates that

A(h + x) = A(h) + 〈A′(h), x〉 + 1
2 〈A′′(h)x, x〉

+ 
∑
|β|=3

3 
β! x

β

1 ∫
0 

(1 − s)2 DβA(h + sx) ds. (4.5)

Here we use the standard notation for the partial derivative

DβA = ∂|β|A 

∂hβ1
1 . . . ∂hβd

d

, β = (β1, . . . , βd),

where β is a multi-index of length |β| = β1 + · · · + βd (with integers βi ≥ 0), and where

xβ = xβ1
1 . . . xβd

d for x = (x1, . . . , xd) ∈ Rd.
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If |x| ≤ 1, then, by (4.4), all these partial derivatives for |β| = 3 do not exceed C in 
absolute value. Since also |xβ | ≤ |x||β|, we obtain from (4.5) that

A(h + x) ≤ A(h) +
√

2A(h) |x| + 1
2 〈A′′(h)x, x〉 + Cd |x|3 (4.6)

with Cd = C
∑

|β|=3
1 
β! . Here we also used (2.6) to bound the linear term in (4.5). Let 

us choose x = rθ with 0 < r ≤ 1, |θ| = 1, and use the assumption A(h + x) ≥ 0. Then 
(4.6) yields

〈A′′(h)θ, θ〉 ≥ − 2 
r2

[
A(h) +

√
2A(h) r + Cdr

3
]
.

In particular, the choice r = A(h)1/4 leads to (4.1). �
5. Maximum of shifted densities

In order to bound the last term Qhp(x) in the basic identity (2.5), suppose that the 
distribution of X has a finite Rényi distance of infinite order to the standard normal 
law. This means that X has a density p which admits a point-wise upper bound

p(x) ≤ cϕ(x), x ∈ Rd (a.e.) (5.1)

with optimal value c = 1 + T∞(p||ϕ). In that case, one may control the maximum of the 
density Qhp as follows. In the sequel, we use the notation

M(ξ) = M(q) = ess supx q(x)

for a random vector ξ in Rd with density q.
By (5.1), for almost all x ∈ Rd, using 〈x, h〉 ≤ 1

2 |x|2 + 1
2 |h|2, we have

Qhp(x) = 1 
L(h) e

〈x,h〉p(x)

≤ c e〈x,h〉−
1
2 |x|2

L(h) (2π)d/2
≤ 

c e
1
2 |h|2

L(h) (2π)d/2
= 

c 
(2π)d/2

eA(h),

where L is the Laplace transform of the distribution of X and A(h) = 1
2 |h|2 − K(h), 

K(h) = logL(h). Thus, we arrive at the following elementary relation.

Proposition 5.1. Let X be a sub-Gaussian random vector in Rd with density p such that 
c = 1 + T∞(p||ϕ) is finite. Then, for all h ∈ Rd,

M(Qhp) ≤
c 

(2π)d/2
eA(h). (5.2)
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This inequality may be used to bound the eigenvalues of the covariance matrix Rh in 
terms of A(h) from below. This complements the upper bound of Corollary 3.2.

In the sequel, put

σh = (detRh) 1 
2d = (detK ′′(h)) 1 

2d , h ∈ Rd,

which is everywhere positive. In dimension d = 1, this quantity represents the standard 
deviation of the random variable X(h).

Proposition 5.2. Under the condition (5.1), for all h ∈ Rd,

σd
h ≥ 1

c 
e−A(h)−d/2. (5.3)

Proof. The argument employs the following known relation between the covariance ma-
trix and maximum of density whose proof we include for completeness at the end of this 
section: Given a random vector ξ in Rd with finite second moment and finite M = M(ξ), 
we have

(
M2 detR

) 1 
d ≥ 1 

2πe, (5.4)

where R is the covariance matrix of ξ. Applying this inequality to the random vector 
ξ = X(h) with its covariance matrix R = Rh and using (5.2), we get

1 
(2πe)d/2

≤ M(X(h)) σd
h ≤ c σd

h

(2π)d/2
eA(h),

from which (5.3) follows immediately. �
Corollary 5.3. Let X be a sub-Gaussian random vector in Rd with Laplace transform such 
that A(h) ≥ 0 for all h ∈ Rd and with finite c = 1 + T∞(p||ϕ). Then, the eigenvalues 
λj(h) of Rh satisfy, for any h ∈ Rd,

1 
c2

e−2A(h)−d

(8A(h) + 2)d−1 ≤ min 
1≤j≤d

λj(h)

≤ max 
1≤j≤d

λj(h) ≤ 8A(h) + 2. (5.5)

Proof. Put λj = λj(h) and α = A(h). The upper bound in (5.5) is provided in Corol-
lary 3.2. On the other hand, by (5.3),

σ2d
h = detRh = λ1 . . . λd ≥ 1 

c2
e−2α−d. (5.6)

Therefore, by the upper bound in (5.5),
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λ1 . . . λd ≤ min
j

λj (max
j

λj)d−1 ≤ min
j

λj (8α + 2)d−1,

and (5.6) yields the lower bound in (5.5). �
Proof of (5.4). We follow a simple information-theoretic approach proposed in [10]. In-
troduce the entropy functional

h(p) = −
∫
Rd

p(x) log p(x) dx. (5.7)

It is well defined for absolutely continuous distributions with finite second moment and 
is maximized for the normal distribution when the covariance matrix is fixed. Indeed, 
without loss of generality, let ξ have mean zero. If ζ has a normal density q on Rd with 
mean zero and the same covariance matrix R, then E

〈
R−1ξ, ξ

〉
= E

〈
R−1ζ, ζ

〉
= d, 

implying

h(q) − h(p) =
∫
Rd

p(x) log p(x)
q(x) dx.

Here the right-hand side defines the relative entropy D(p||q) of p with respect to q (the 
Kullback-Leibler distance), which is non-negative, by Jensen’s inequality.

Now, from one hand,

h(q) = d

2 
log(Cσ2), C = 2πe, σ = (detR) 1 

2d .

On the other hand, h(p) ≥ − logM , which follows from (5.7) using log p(x) ≤ logM
(a.e.) Hence

D(p||q) ≤ d

2 
log(Cσ2) + logM,

that is,

M2 detR ≥ 1 
(2πe)d e2D(q||p).

This is a sharpened form of (5.4). �
6. Representation for convolutions

We are now prepared to apply these results to the normalized sums

Zn = X1 + · · · + Xn√
n
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of independent copies of a sub-Gaussian random vector X in Rd with density p. Note 
that in terms of L = Lp, K = Kp and A = Ap, for the density pn of Zn we have

(Lpn)(t) = L(t/
√
n)n = enK(t/

√
n),

(Kpn)(t) = nK(t/
√
n),

(Apn)(hn) = 1
2 |hn|2 − (Kpn)(hn) = 

n

2 
|h|2 − nK(h) = nA(h),

where hn = h
√
n. Hence, the basic identity (2.5) yields a similar formula.

Proposition 6.1. Putting xn = x
√
n, hn = h

√
n (x, h ∈ Rd), the density pn of Zn admits 

the representation

pn(x
√
n)

ϕ(x
√
n) 

= (2π)d/2 en
2 |x−h|2−nA(h) Qhn

pn(xn). (6.1)

This equality becomes useful, if we are able to bound the factor Qhn
pn(xn) uniformly 

over all x for a fixed value of h as stated in the following:

Corollary 6.2. For all x, h ∈ Rd,

pn(x
√
n)

ϕ(x
√
n) 

≤ (2π)d/2 en
2 |x−h|2−nA(h) M(Qh

√
n pn). (6.2)

A general upper bound on the M -functional was given in Proposition 5.1. However, 
it is useless to apply this bound directly in (6.2) to the densities pn, since then the 
right-hand side of (5.2) will contain the parameter cn = 1 + T∞(pn||ϕ). Instead, we use 
a semi-additive property of the maximum-of-density functional, which indicates that

M(X1 + · · · + Xn)− 2 
d ≥ 1

e 

n ∑
k=1

M(Xk)−
2 
d

for all independent random vectors Xk in Rd having bounded densities, cf. [3]. If all Xk

are identically distributed and have a density p, this relation yields

M(p∗n) ≤
( e 
n

)d/2
M(p)

for the convolution n-th power of p. Applying the multiplicativity property of the Esscher 
transform (Proposition 2.2) together with (5.2), we then have

M(Qhp
∗n) ≤

( e 
n

)d/2
M(Qhp) ≤ c 

( e 
2πn

)d/2
eA(h),

where we recall that c = 1 + T∞(p||ϕ). Now, since p∗n(x) = λ−d pn(x/λ) with λ =
√
n, 

one may apply the scaling identity (2.2):
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Qhp
∗n(x) = 1 

λd
(Qλhpn)

(x 
λ

)
.

Hence, a similar identity holds true for the M -functional,

M(Qhp
∗n) = 1 

nd/2 M(Qh
√
n pn),

and we get

M(Qh
√
n pn) ≤ c 

( e 
2π

)d/2
eA(h).

One can now return to Corollary 6.2 and apply the above bound to obtain that

pn(x
√
n)

ϕ(x
√
n) 

≤ c ed/2 e
n
2 |x−h|2−(n−1)A(h).

In particular, with h = x this yields:

Proposition 6.3. If the density p has finite Rényi distance of infinite order to the standard 
normal law, then, for almost all x ∈ Rd,

pn(x
√
n)

ϕ(x
√
n) 

≤ c ed/2 e−(n−1)A(x), (6.3)

where c = 1 + T∞(p||ϕ).

Corollary 6.4. If additionally X has identity covariance matrix and is strictly sub-
Gaussian, then

T∞(pn||ϕ) ≤ ed/2 (1 + T∞(p||ϕ)) − 1.

Thus, the finiteness of the Tsallis distance T∞(p||ϕ) for a strictly sub-Gaussian random 
vector X with density p ensures the boundedness of T∞(pn||ϕ) for all normalized sums 
Zn.

If A(x) is bounded away from zero, the inequality (6.3) shows that its left-hand side is 
exponentially small for growing n. In particular, this holds for any non-normal random 
vector X satisfying the separation property (1.3). Then we immediately obtain:

Corollary 6.5. Suppose that X has a density p with finite T∞(p||ϕ). Under the condition 
(1.3), for any τ0 > 0, there exist A > 0 and δ ∈ (0, 1) such that the densities pn of Zn

satisfy

pn(x) ≤ Aδnϕ(x), |x| ≥ τ0
√
n. (6.4)
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In particular,

lim inf
n→∞ 

sup 
x∈Rd

|pn(x) − ϕ(x)|
ϕ(x) ≥ 1. (6.5)

Therefore, one can not hope to strengthen the Tsallis distance by introducing a modulus 
sign in the definition of the distance.

Although (1.3) does not hold in general for strictly sub-Gaussian distributions, Propo-
sition 6.3 may be applied outside the set of points where A(x) is bounded away from 
zero. If A(x) is close to zero, we say that the point x belongs to the critical zone (a 
precise definition will be given in Section 8). In this case, we need to return to the basic 
representation of Proposition 6.1 and study the last term Qhn

pn(xn). This requires to 
apply a variant of the local limit theorem, using the property that the density Qhn

pn
has a convolution structure.

7. Local limit theorem for shifted distributions

Keeping the notations and assumptions from the previous section, recall that Rh =
K ′′(h) represents the covariance matrix of X(h). Since it is symmetric and strictly pos-
itive definite, one may consider the normalized random vectors

X̂(h) = R
−1/2
h (X(h) − EX(x))

= R
−1/2
h (X(h) −mh), h ∈ Rd,

which have mean zero and identity covariance matrix. We will have to consider convolu-
tion powers of distributions of X̂(h) by means of a multidimensional local limit theorem 
for the points h where the value

A(h) = 1
2 |h|2 −K(h) = 1

2 |h|2 − logE e〈X,h〉

is small. More precisely, here we prove the following refinement of the representation 
(6.1). Consider the vector-function

vx = R−1/2
x (x−mx)

= R−1/2
x (x−K ′(x)) = R−1/2

x A′(x), x ∈ Rd, (7.1)

and recall that

σx = (detRx) 1 
2d = (detK ′′(x)) 1 

2d .

Proposition 7.1. If the Laplace transform of a sub-Gaussian random vector X in Rd with 
finite c = 1 + T∞(p||ϕ) is such that A(h) ≥ 0 for all h ∈ Rd, then for all x ∈ Rd, n ≥ 6, 
we have
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pn(x
√
n)

ϕ(x
√
n) 

= 1 
σd
x

exp
{
− nA(x) − n |vx|2/2

}
+ Bdc5√

n
, (7.2)

where B = Bn(x) is bounded by an absolute constant.

One should note that the term |vx|2 appearing on the right-hand side of (7.2) must be 
small for small values of A(x). Indeed, according to Corollary 5.3, the minimal eigenvalue 
λ = min1≤j≤d λj(x) of the matrix Rx admits a lower bound

λ ≥ 1 
c2 (8A(x) + 2)d−1 e−2A(x)−d. (7.3)

As a consequence, applying Proposition 2.4 in (7.1), we have

|vx|2 ≤ 1 
λ
|A′(x)|2

≤ 2c2 (8A(x) + 2)d−1 A(x) e2A(x)+d ≤ Cdc2A(x) (7.4)

for some absolute constant C > 0, where we assumed that A(x) ≤ 1 in the last step.
For the derivation of (7.2), we employ a general local limit theorem for densities on 

Rd with a quantitative error term, which was recently derived in [9].

Lemma 7.2. Let (ξk)k≥1 be independent copies of a random vector ξ in Rd with mean 
zero, identity covariance matrix and finite third absolute moment. Assuming that ξ has 
a bounded density with maximum M(ξ), the densities qn of the normalized sums Zn =
(ξ1 + · · · + ξn)/

√
n satisfy

sup
x 

|qn(x) − ϕ(x)| ≤ Cd 1 √
n
M(ξ)2 E |ξ|3, x ∈ Rd,

with some absolute constant C > 0.

Proof of Proposition 7.1. Consider the term Qhn
pn in (6.1) with hn = h

√
n. By Propo-

sition 2.2, this density has a convolution structure. It was also emphasized in (2.2) that, 
for any random vector X with density p = pX ,

QhpλX(x) = 1 
λd

(Qλhp)
(x 
λ

)
.

Using this notation, we have pn = pSn/
√
n for the sum Sn = X1 + · · · + Xn. Hence with 

λ = 1/
√
n,

Qhn
pn(x) = nd/2 (QhpSn

)(x
√
n) = nd/2 (Qhp) ∗ · · · ∗ (Qhp)(x

√
n),

where we applied Proposition 2.2 in the last step. Since Qhp serves as a density of the 
random vector X(h), Qhn

pn(x) represents the density for the normalized sum
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Zn,h = X1(h) + · · · + Xn(h)√
n

,

assuming that Xk(h) are independent.
Now, introduce the normalized sums

Ẑn,h = X̂1(h) + · · · + X̂n(h)√
n

for the shifted distributions, i.e. with Xk(h) = mh + R
1/2
h X̂k(h). Thus,

Zn,h = mh

√
n + R

1/2
h Ẑn,h.

Denote by p̂n,h the density of Ẑn,h. Then the density of Zn,h is given by

pn,h(x) = 
1 
σd
h

p̂n,h
(
R

−1/2
h (x−mh

√
n)
)
.

At the points xn = x
√
n as in (6.1), we therefore obtain that

Qhn
pn(xn) = pn,h(xn) = 1 

σd
h

p̂n,h
(√

nR
−1/2
h (x−mh)

)
.

Consequently, the equality (6.1) may be equivalently stated as

pn(x
√
n)

ϕ(x
√
n) 

= (2π)d/2 en
2 (x−h)2−nA(h) 1 

σd
h

p̂n,h
(√

nR
−1/2
h (x−mh)

)
.

In particular, for h = x, we get

pn(x
√
n)

ϕ(x
√
n) 

= (2π)d/2 e−nA(x) 1 
σd
x

p̂n,x
(
vx
√
n
)
. (7.5)

We are in a position to apply Lemma 7.2 to the sequence ξk = X̂k(x) and write

p̂n,x(z) = ϕ(z) + Bd β3(x)M2
x√

n
, z ∈ Rd, (7.6)

where

β3(x) = E 
∣∣X̂(x)

∣∣3, Mx = M
(
X̂(x)

)
,

and where the quantity B = Bn(z) is bounded by an absolute constant. The latter 
maximum can be bounded by virtue of the upper bound (5.2):
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Mx = M
(
R

−1/2
h (X(h) −mh)

)
= σd

x M(X(x)) = σd
x M(Qxp) ≤ 

cσd
x

(2π)d/2
eA(x).

In this case, (7.6) may be simplified with a new quantity B = Bn(z) to

p̂n,x(z) = ϕ(z) + Bdc2
β3(x) σ2d

x√
n

e2A(x).

Inserting this in (7.5) with z = vx
√
n, we arrive at

pn(x
√
n)

ϕ(x
√
n) 

= 1 
σd
x

e−nA(x)−n|vx|2/2 + Bdc2
β3(x) σd

x√
n

e−(n−2)A(x), (7.7)

where B = Bn(x) is bounded in absolute value by an absolute constant.
In order to estimate β3(x), let us recall the bound (3.6) with q = 3 which implies

E |X(x) −mx|3 ≤ Cd3/2 (1 + A(x))3/2 (7.8)

with some absolute constant C. Also, by (7.3), for any w ∈ Rd,

∣∣R−1/2
x w

∣∣ ≤ c (8A(x) + 2)
d−1
2 eA(x)+d/2 |w|.

Applying this with w = X(x) −mx together with (7.8), we get

β3(x) ≤ c3 (8A(x) + 2)
3(d−1)

2 e3A(x)+3d/2 · Cd3/2 (1 + A(x))3/2

≤ Cd
1 c

3 e4A(x)

for some absolute constant C1 > 0. It remains to insert this bound in (7.7) leading to

pn(x
√
n)

ϕ(x
√
n) 

= 1 
σd
x

e−nA(x)−n|vx|2/2 + Bdc5
σd
x√
n
e−(n−6)A(x). �

8. Proof of Theorem 1.2

Recall that the assumptions 1)-2) stated before Theorem 1.2 are necessary for the 
convergence T∞(pn||ϕ) → 0 as n → ∞. For simplicity, we assume that n0 = 1, that is, 
X is a strictly sub-Gaussian random vector with mean zero, identity covariance matrix, 
and finite constant c = 1 + T∞(p||ϕ). In particular, the function

A(x) = 1
2 |x|2 −K(x)

is non-negative on the whole space Rd.
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According to Corollary 4.2, the function σx = (detK ′′(x)) 1 
2d satisfies

lim sup
A(x)→0 

σ2d
x ≤ 1. (8.1)

First we show that the convergence T∞(pn||ϕ) → 0 is equivalent to

lim 
A(x)→0

σ2d
x = lim 

A(x)→0
detK ′′(x) = 1, (8.2)

which is a compact version of the conditions a′) − b′) mentioned after Theorem 1.2. 
Introduce the critical zones

An(a) =
{
x ∈ Rd : A(x) ≤ a 

n− 1

}
, a > 0, n ≥ 2.

Sufficiency part. Putting a = log(1/ε), ε ∈ (0, 1), the upper bound (6.3) yields

sup 
x/ ∈An(a)

pn(x
√
n)

ϕ(x
√
n) 

≤ ced/2 ε.

As for the critical zone, the equality (7.2) is applicable for n ≥ 6 and implies

sup 
x∈An(a)

pn(x
√
n)

ϕ(x
√
n) 

≤ sup 
x∈An(a)

1 
σd
x

+ C√
n
,

where the constant C does not depend on n. Both estimates can be combined to give

1 + T∞(pn||ϕ) ≤ sup 
x∈An(a)

1 
σd
x

+ ced/2 ε + C√
n
.

Choosing here ε = 1 √
n
, one may conclude that a sufficient condition for the convergence 

T∞(pn||ϕ) → 0 as n → ∞ is that

lim inf 
A(x)→0

σ2d
x ≥ 1, (8.3)

which is equivalent to (8.2) in view of (8.1).

Necessity part. To see that the condition (8.2) is also necessary for the convergence in 
T∞, let us return to the representation (7.2). Assuming that T∞(pn||ϕ) → 0, it implies 
that, for any a > 0,

lim sup
n→∞ 

sup 
x∈An(a)

1 
σd
x

exp
{
− n

(
A(x) + 1

2 |vx|2
)}

≤ 1. (8.4)

As explained in (7.4), |vx|2 ≤ Cdc2A(x) for some absolute constant C > 0 whenever 
A(x) ≤ 1. In particular, this holds for all x ∈ An(a) with n ≥ a + 1. Since nA(x) ≤ 2a
on the set An(a), it follows that
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A(x) + 1
2 |vx|2 ≤ βA(x) ≤ 2β

n 
a,

where β depends on c and d only. Thus, (8.4) implies that

lim sup
n→∞ 

sup 
x∈An(a)

1 
σ2d
x

≤ e4βa, 0 < a ≤ 1.

Therefore, for all n ≥ n(a),

inf 
x∈An(a)

σ2d
x ≥ e−5βa.

Since a may be as small as we wish, we conclude that necessarily

∀ε > 0 ∃ δ > 0 
[
A(x) ≤ δ ⇒ detK ′′(x) ≥ 1 − ε

]
. (8.5)

But this is the same as (8.3), which is equivalent to (8.2).
Let us now explain why

lim 
A(x)→0

K ′′(x) = Id ⇐⇒ lim 
A(x)→0

detK ′′(x) = 1. (8.6)

The implication “⇒” is obvious. For the opposite direction, we may assume that the 
necessary condition (8.5) is fulfilled. Since detK ′′(x) = λ1(x) . . . λd(x) in terms of the 
eigenvalues λj(x) of Rx, this condition may be stated in a weaker form as

∀ε > 0 ∃ δ > 0 
[
A(x) ≤ δ ⇒ min 

1≤j≤d
λj(x) ≥ (1 − ε)1/d

]
. (8.7)

In order to reverse the conclusion, let us return to Corollary 4.2 and recall that the 
eigenvalues satisfy

lim sup
A(x)→0 

λj(x) ≤ 1, 1 ≤ j ≤ d,

for any x ∈ Rd, which is a stronger property compared to (8.1). Thus, for any ε > 0, 
there exists δ > 0 such that

A(x) ≤ δ ⇒ max 
1≤j≤d

λj(x) ≤ 1 + ε.

Being combined with (8.7) with 0 < ε < 1, this gives (1 − ε)1/d ≤ λj(x) ≤ 1 + ε and 
hence |λj(x) − 1| ≤ ε for all j, as long as A(x) ≤ δ. In this case it follows that

‖K ′′(x) − Id‖2
HS =

d ∑
j=1 

|λj(x) − 1|2 ≤ dε.
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As a result, we obtain the opposite implication in (8.6).
It remains to see that the property

lim 
A(x)→0

A′′(x) = 0 (8.8)

may be restated as the conditions a) − b) in Theorem 1.2:

a) A′′(x) = 0 for every point x ∈ Rd such that A(x) = 0;
b) limk→∞ A′′(xk) = 0 for every sequence |xk| → ∞ such that A(xk) → 0 as k → ∞.

Obviously, the conditions a)− b) follow from (8.8). For the converse direction, assume 
that (8.8) is not true. Then there would exist ε > 0 such that, for any δ > 0, one can 
pick up a point x ∈ Rd with the property that

A(x) ≤ δ and ‖A′′(x)‖HS > ε.

Choosing δ = δk ↓ 0, we would obtain a sequence xk ∈ Rd such that A(xk) ≤ δk and 
‖A′′(xk)‖HS > ε. If this sequence is bounded, it would contain a convergent sub-sequence 
xkl

→ x with A(x) = 0 and ‖A′′(x)‖HS ≥ ε, by continuity of the functions A and A′′. 
But this contradicts a). In the other case, one can subtract a sub-sequence such that 
|xkl

| → ∞, A(xkl
) → 0 as l → ∞, while ‖A′′(xkl

)‖HS > ε. But this contradicts b). �
9. Proof of Corollaries 1.3-1.4

As in Theorem 1.2, suppose that the random vector X has mean zero and identity 
covariance matrix. In addition, assume that:

1) Zn has density pn for some n = n0 such that T∞(pn||ϕ) < ∞;
2) X is strictly sub-Gaussian: L(t) ≤ e|t|

2/2 or equivalently Ψ(t) ≤ 1 for all t ∈ Rd.

Recall that, by the separation property, we mean the relation

L(t) ≤ (1 − δ) e|t|
2/2, (9.1)

which holds for all t0 > 0 and |t| ≥ t0 with some δ = δ(t0), δ ∈ (0, 1).

Proof of Corollary 1.3. From (9.1) it follows that the log-Laplace transform and the 
function A satisfy

K(t) ≤ 1
2 |t|2 + log(1 − δ), A(t) ≥ − log(1 − δ).
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Hence, the approach A(t) → 0 is only possible when t → 0. But, for strictly sub-Gaus-
sian distributions, we necessarily have A(t) = O(|t|4) and A′′(t) = O(|t|2) near zero. 
Therefore, the condition (8.8) is fulfilled automatically. �

Next, let us apply Theorem 1.2 to the Laplace transforms L(t) = E e〈t,X〉 with

Ψ(t) = L(t) e−|t|2/2, t ∈ Rd,

being periodic, that is, satisfying

Ψ(t + h) = Ψ(t), t ∈ Rd, (9.2)

for some h = (h1, . . . , hd) ∈ Rd, h �= 0. Without loss of generality, let hi ≥ 0 and not all 
of them be zero. Put [0, h] = [0, h1] × · · · × [0, hd].

Proof of Corollary 1.4. The function Ψ(t) is positive, and by the assumption (9.2), the 
function

A(t) = − log Ψ(t) = 1
2 |t|2 −K(t)

is h-periodic as well. To express the condition a) in terms of Ψ, let us differentiate the 
equality Ψ(t) = e−A(t) to get

∂tiΨ(t) = −∂tiA(t) e−A(t)

and

∂2
titjΨ(t) = −∂2

titjA(t) e−A(t) + ∂tiA(t) ∂tjA(t) e−A(t).

Thus, A′′(t) = −Ψ′′(t) for every point t ∈ Rd such A(t) = 0. Recall that in this case, 
necessarily A′(t) = 0 and therefore Ψ′(t) = 0.

As for the condition b) in Theorem 1.2, it may be reduced to a). Indeed, assume that 
A(xk) → 0 for some sequence xk ∈ Rd such that |xk| → ∞. Using the condition a), we 
need to show that A′′(xk) → 0. The latter is equivalent to the assertion that from any 
sub-sequence xkl

one may subtract a further sub-sequence xk′
l
such that A′′(xk′

l
) → 0. For 

simplicity, let a given sub-sequence be the whole sequence xk. By the periodicity (9.2), 
A(xk) = A(yk) and A′′(xk) = A′′(yk) for some yk ∈ [0, h]. By compactness, there is a 
convergence sub-sequence ykl

→ y ∈ [0, h] as l → ∞. But then, by continuity, A(y) = 0
and hence A′′(y) = 0, by a). As a consequence, A′′(xkl

) = A′′(ykl
) → A′′(y) = 0. �
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10. Laplace transforms with separation property

In dimension d = 1, Corollary 1.3 can be illustrated by different examples. Let us 
recall two results from [7], assuming that X is a sub-Gaussian random variable with 
mean zero. In this case the characteristic function

f(z) = E eizX , z ∈ C,

represents an entire function in the complex plane of order at most 2. If f(z) does 
not have any real or complex zeros, a well-known theorem due to Marcinkiewicz [16] 
implies that the distribution of X is already Gaussian. Thus, non-normal sub-Gaussian 
distributions have characteristic functions that need to have zeros.

The strict sub-Gaussianity is defined by the relation

E etX ≤ eσ
2t2/2, t ∈ R, (10.1)

where σ2 = Var(X) is the variance of X.

Proposition 10.1. If the distribution of X is symmetric, and all zeros of f(z) with Re(z) ≥
0 lie in the cone centered on the real axis defined by

|Arg(z)| ≤ π

8 
,

then X is strictly sub-Gaussian. Moreover, if X is non-normal, then for any t0 > 0, 
there exists c = c(t0) in the interval 0 < c < σ2 such that

E etX ≤ ect
2/2, |t| ≥ t0. (10.2)

The inequality (10.2) strengthens not only (10.1), but also the separation relation (9.1) 
(for σ2 = 1). The claim about the strict sub-Gaussianity in Proposition 10.1 refines a 
theorem due to Newman [17], who considered the case where f(z) has only real zeros (cf. 
also [11]). It was also shown in [7] that the condition |Arg(z)| ≤ π

8 is also necessary for the 
strict sub-Gaussianity of X, when it has a symmetric distribution, and its characteristic 
function f(z) has exactly one zero z in the quadrant Re(z) > 0, Im(z) > 0.

The next assertion provides a sufficient condition for the property (10.2).

Proposition 10.2. If X is non-normal, and the function K(
√
|t|) is concave on the half-

axis t > 0 and is concave on the half-axis t < 0, then (10.2) holds true.

In [7] one can find various examples illustrating these propositions. In particular, the 
symmetric Bernoulli and the uniform distribution on a symmetric interval are strictly 
sub-Gaussian, as well as convergent infinite convolutions of such distributions. Moreover, 
they satisfy the separation property (10.2).
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Turning to the multidimensional situation, let us only mention two examples. For a 
sub-Gaussian random vector X in Rd with mean zero and covariance matrix σ2Id, the 
notion of the strict sub-Gaussianity is defined by

E e〈t,X〉 ≤ eσ
2|t|2/2, t ∈ Rd. (10.3)

This class of probability distributions is invariant under convolutions and weak limits.
It should be clear that, a product measure on Rd satisfies (10.3), if and only if all 

marginals are strictly sub-Gaussian. For spherically invariant distributions, (10.3) is also 
reduced to dimension one.

Proposition 10.3. Suppose that the distribution of a sub-Gaussian random vector X =
(X1, . . . , Xd) is spherically invariant. Then X is strictly sub-Gaussian, if and only if X1
is strictly sub-Gaussian. In this case, if X is non-normal, and X1 satisfies (10.2), then 
for any t0 > 0, there exists c = c(t0), 0 < c < σ2, such that

E e〈t,X〉 ≤ ec|t|
2/2, t ∈ Rd, |t| ≥ t0. (10.4)

Proof. By the assumption, the random vectors X and UX are equidistributed for any 
linear orthogonal transformation of the space Rd. Given t ∈ Rd, choose U such that 
U ′t = |t|e1 = |t| (1, 0, . . . , 0). Then

E e〈t,X〉 = E e〈t,UX〉 = E e
〈
U ′t,X

〉
= E e|t|X1 .

Since the distribution of X1 is symmetric about the origin, (10.3) is equivalent to (10.1) 
with X1 in place of X. The same is true about the equivalence of (10.2) and (10.4). �

Here are two basic examples, where as before, pn denotes the density of the normalized 
sum of n independent copies of X.

Corollary 10.4. The uniform distribution on the Euclidean ball B(r) in Rd with center 
at the origin and radius r > 0 satisfies (10.3). As a consequence, if r2 = d + 2, then 
T∞(pn||ϕ) → 0 as n → ∞.

The assumption r2 = d+2 corresponds to the requirement that E |X|2 = d or EX2
1 = 1

for the random vector X = (X1, . . . , Xd) uniformly distributed in B(r). This is equivalent 
to the property that X has identity covariance matrix.

Corollary 10.5. The same assertion holds for the uniform distribution on the Euclidean 
sphere in Rd with center at the origin and radius r =

√
d.

Note that the uniform distribution on the Euclidean sphere is not absolutely contin-
uous. But its n-th convolution power for large n has a bounded, compactly supported 
density, so that T∞(pn||ϕ) < ∞ for some n = n0.
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Introduce one dimensional probability densities

qα(x) = 1 
cα

(1 − x2)α−1, |x| < 1,

with parameter α > 0, where (using the usual gamma-function)

cα =
1 ∫

−1

(1 − x2)α−1 dx

=
1 ∫

0 

y−1/2 (1 − y)α−1 dy = 
Γ(1

2 )Γ(α)
Γ(α + 1

2) 
(10.5)

is the normalizing constant. For the proof of Corollaries 10.4-10.5, we need:

Lemma 10.6. For any α > 0, the distribution μα with density qα is strictly sub-Gaussian. 
Moreover, the separation property (10.2) holds true.

Proof. Expanding the cosh-function in power series, for the random variable ξα with 
density qα the Laplace transform is given by

Lα(t) = 1 
cα

1 ∫
−1

etx (1 − x2)α−1 dx = 
2 
cα

1 ∫
0 

cosh(tx) (1 − x2)α−1 dx

= 2 
cα

∞ ∑
n=0

t2n

(2n)!

1 ∫
0 

x2n (1 − x2)α−1 dx

= 1 
cα

∞ ∑
n=0

t2n

(2n)!

1 ∫
0 

yn−
1
2 (1 − y)α−1 dx

= 1 √
π

∞ ∑
n=0

Γ(s) 
Γ(n + s)

Γ(n + 1
2 )

(2n)! t2n,

where we used (10.5) in the last step together with notation s = α + 1
2 . From this 

expansion we find that

σ2
α = Var(ξα) = 1 

2α + 1 = 1 
2s (σα > 0).

Hence

Lα(t/σα) = 1 √
π

∞ ∑
n=0

Γ(s)sn

Γ(n + s)
Γ(n + 1

2 )
(2n)! (2t2)n
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= 1 + 1
2 t2 + 1 √

π

∞ ∑
n=2

sn−1

(s + 1) . . . (s + n− 1)
Γ(n + 1

2 )
(2n)! (2t2)n. (10.6)

The fraction inside the sum represents an increasing function in s, and letting s → ∞, 
we get

Lα(t/σα) ≤ 1 √
π

∞ ∑
n=0

Γ(n + 1
2 )

(2n)! (2t2)n =
∞ ∑

n=0

1 
n! 2n t2n = et

2/2.

Thus, the Laplace transform of X = ξα/σα is bounded by the Laplace transform of the 
standard normal law μ, which proves the strict sub-Gaussianity (this is consistent with 
the property that μα → μ weakly as α → ∞).

To prove the refining property (10.2) for the random variable X, let us return to (10.6) 
and use the bound

sn−1

(s + 1) . . . (s + n− 1) ≤ βn−1, β = s 
s + 1 .

Then we get

Lα(t/σα) ≤ 1 + 1 
β
√
π

∞ ∑
n=1

Γ(n + 1
2 )

(2n)! (2βt2)n

= 1 + 1 
β

∞ ∑
n=1

βn

n! 2n t2n = 1 + eβt
2/2 − 1
β

.

Since β < 1, it is now easy to check that the last expression can be bounded by ect
2/2

for all |t| ≥ t0 with some constant c ∈ (0, 1) depending on β and t0 > 0. �
Proof of Corollaries 10.4-10.5. Without loss of generality, let r = 1. If the random vector 
X = (X1, . . . , Xd) is uniformly distributed in the unit ball B(1), the distribution of X1
has density qα with α = (d + 1)/2. Similarly, if X is uniformly distributed in the unit 
sphere, the distribution of X1 has density qα with α = (d − 1)/2. It remains to apply 
Lemma 10.6 and Proposition 10.3. �
11. Laplace transforms with periodic components

In order to describe examples illustrating Corollary 1.4, let us start with the following 
definition. We write h = (h1, . . . , hd) ≥ 0, if all hj ≥ 0.

Definition. We say that the distribution μ of a random vector X in Rd is periodic with 
respect to the standard normal law, with period h ≥ 0 (h �= 0), if it has a density p(x)
such that the function
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q(x) = p(x) 
ϕ(x) = dμ(x)

dγ(x) , x ∈ Rd,

is periodic with period h, that is, q(x + h) = q(x) for all x ∈ Rd.

Here, q represents the density of μ with respect to the standard Gaussian measure γ
on Rd. We denote the class of all such distributions by Fh, and say that X belongs to Fh. 
In dimension d = 1, this class was studied in [7], and here we extend a number of one di-
mensional observations to higher dimensions. For this aim, introduce the componentwise 
multiplication of vectors xy = (x1y1, . . . , xdyd), where x = (x1, . . . , xd), y = (y1, . . . , yd)
are points in Rd.

Proposition 11.1. If X belongs to the class Fh, then for all m ∈ Zd,

E e〈mh,X〉 = e|mh|2/2. (11.1)

In particular, the random vector X is sub-Gaussian.

Proof. By the periodicity, q(x − mh) = q(x) for all x ∈ Rd and m ∈ Zd. Hence, the 
random vector X + mh has density

p(x−mh) = q(x−mh)ϕ(x−mh)

= q(x)ϕ(x) e〈mh,x〉− 1
2 |mh|2 = p(x) e〈mh,x〉− 1

2 |mh|2 .

It remains to integrate this equality over the variable x, which leads to (11.1).
Next, starting from (11.1), it is easy to see that E ec|X|2 < ∞ for some c > 0. �
As a consequence, the Laplace transform L(t) = E e〈t,X〉, t ∈ Rd, is finite and 

may be extended to the d-dimensional complex space Cd as an entire function L(z) =
L(z1, . . . , zd). By saying “entire”, it is meant that a given function on Cd is entire with 
respect to every complex coordinate zj = tj + iyj (tj , yj ∈ R) and is C∞-smooth as a 
function of 2d real variables t1, y1, . . . , td, yd.

This property of L(z) may be further refined.

Proposition 11.2. If X belongs to Fh, then its Laplace transform is an entire function of 
order 2 (with respect to every complex coordinate). Moreover,

|L(z)| ≤ e|t|
2+|h|2 , z = t + iy ∈ Cd. (11.2)

Proof. Since Re 〈z,X〉 = 〈t,X〉 for z = t + iy, we have |L(z)| ≤ L(t). Hence, one may 
assume that y = 0 in (11.2).

We employ the convexity of the function K(t) = logL(t). For simplicity, suppose 
that t = (t1, . . . , td) ∈ Rd

+. Take an integral vector m = (m1, . . . ,md) with positive 
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components such that (mj −1)hj ≤ tj < mjhj for all j ≤ d. Since t lies in the cube with 
sides [0,mjhj ], this point may be written as a convex mixture of vertices of the cube

t =
∑
ε 

aεvε, aε ≥ 0, 
∑
ε 

aε = 1.

Here the vertex vε = (ε1m1h1, . . . , εdmdhd) is parametrized by the tuple ε = (ε1, . . . , εd)
with εj = 0 or εj = 1 for each j ≤ d. By Jensen’s inequality and (11.1),

K(t) ≤
∑
ε 

aεK(vε) = 
1
2
∑
ε 

aε

[ d ∑
j=1 

ε2
jm

2
jh

2
j

]

≤ 1
2

d ∑
j=1 

m2
jh

2
j ≤ 

1
2

d ∑
j=1 

(tj + hj)2.

Dropping the condition on the sign of tj , more generally we obtain that

K(t) ≤ 1
2

d ∑
j=1 

(|tj | + hj)2 ≤
d ∑

j=1 
(t2j + h2

j ) = |t|2 + |h|2.

Thus, we obtain (11.2) which shows that L(z) is an entire function of order at most 
2. On the other hand, by (11.1), it is an entire function of order at least 2. �

Let us also mention the periodicity property for convolutions.

Proposition 11.3. If X belongs to Fh, then Zn belongs to Fh
√
n.

Here as before, Zn = 1 √
n

(X1 + · · ·+Xn) denotes the normalized sum of independent 
copies Xk of the random vector X. The proof is similar to the proof of Proposition 10.4 
from [7] for the one dimensional case, so we omit it.

12. Characterizations of periodicity in terms of Laplace transform

Fix h = (h1, . . . , hd) ∈ Rd, h �= 0, for simplicity with hj ≥ 0. Here we prove:

Proposition 12.1. If X belongs to Fh, then the function

Ψ(t) = L(t) e−|t|2/2, t ∈ Rd, (12.1)

is periodic with period h. It can be extended to the complex space Cd as an entire function 
of order at most 2. Conversely, if the function Ψ(t) for a sub-Gaussian random vector 
X is h-periodic, then X belongs to Fh, as long as the characteristic function f(t) of X
is integrable on Rd.
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The last claim is based on the following general observation.

Lemma 12.2. Let f(z) = E ei〈z,X〉 (z ∈ Cd) be the characteristic function of a sub-
Gaussian random vector X. If f(t) and f(t + ih) are integrable in t ∈ Rd, then

∫
Rd

e−i〈t,x〉f(t) dt =
∫
Rd

e−i〈t+ih,x〉f(t + ih) dt. (12.2)

Proof. Write z = (z1, . . . , zd) with zj ∈ C. By assumption, f(z) = f(z1, . . . , zd) is well-
defined and represents an entire function. In addition,

|f(z)| ≤ E |ei〈z,X〉| = E e−〈y,X〉 ≤ E e|y| |X|, z = t + iy, t, y ∈ Rd. (12.3)

One may rewrite the first integral in (12.2) in a different way using contour integration. 
For this aim, let Xε = X + εZ, where ε > 0 and Z is a standard normal random vector 
in Rd independent of X. The random vector Xε is also sub-Gaussian and has an entire 
characteristic function

fε(z) = f(z) e−ε2z2/2, z ∈ Cd,

where z2 = z2
1 + · · · + z2

d. Moreover, by (12.3), for all t ∈ Rd,

|fε(t + iy)| ≤ Ke−ε2|t|2/2, y = (y1, . . . , yj), |yj | ≤ hj , (12.4)

with some constant K which does not depend on t.
Putting x = (x1, . . . , xd), t = (t1, . . . , td), let us integrate the left integrand in (12.2) 

with respect to t1, keeping the remaining variables t2, . . . , td fixed. Given T > 0, consider 
the rectangle contour with sides

C1 = [−T, T ], C2 = [T, T + ih1],

C3 = [T + ih1,−T + ih1], C4 = [−T + ih1,−T ],

so that to apply Cauchy’s theorem which yields
∫
C1

e−iz1x1fε(z) dz1 +
∫
C2

e−iz1x1f(z) dz1

+ 
∫
C3

e−iz1x1fε(z) dz1 +
∫
C4

e−iz1x1fε(z) dz1 = 0.

For points z1 = t1 + iy1 on the contour, |e−iz1x1 | = ex1y1 ≤ e|x|h1 . Hence, by the decay 
property (12.4), the integrals over C2 and C4 are vanishing as T → ∞, and
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∞ ∫
−∞

e−it1x1fε(t) dt1 = lim 
T→∞

∫
C1

e−iz1x1fε(z) dz1

= − lim 
T→∞

∫
C3

e−iz1x1fε(z) dz1

=
∞ ∫

−∞

e−i(t1+ih1)x1fε(t1 + ih1, t2, . . . , td) dt1.

Thus,

∞ ∫
−∞

e−it1x1fε(t) dt1 =
∞ ∫

−∞

e−i(t1+ih1)x1fε(t1 + ih1, t2, . . . , td) dt1. (12.5)

Turning to the next variable t2, first note that the function

g(z2, . . . , zd) =
∞ ∫

−∞

e−i(t1+ih1)x1fε(t1 + ih1, z2, z3, . . . , zd) dt1, zj = tj + iyj ∈ C,

is entire and admits a similar bound as (12.4)

|g(z2, . . . , zd)| ≤ Ke−ε2(t22+···+t2d)/2, |yj | ≤ hj .

Hence, one may perform the contour integration like in the previous step leading to

∞ ∫
−∞

e−it2x2 g(t2, t3, . . . , td) dt2 =
∞ ∫

−∞

e−i(t2+ih2)x2 g(t2 + ih2, t3, . . . , td) dt2.

By the Fubini theorem and using (12.5), we then get

∞ ∫
−∞

∞ ∫
−∞

e−it1x1−it2x2fε(t) dt1dt2

= 

∞ ∫
−∞

∞ ∫
−∞

e−i(t1+ih1)x1−i(t2+ih2)x2fε(t1 + ih1, t2 + ih2, t3, . . . , td) dt1dt2.

Repeating the process, we will arrive at the equality for the d-dimensional integrals
∫
Rd

e−i〈t,x〉fε(t) dt =
∫
Rd

e−i〈t+ih,x〉fε(t + ih) dt.
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It remains to let ε → 0 and make use of the Lebesgue dominated convergence theorem, 
which provides the desired equality in (12.2). �
Proof of Proposition 12.1. By periodicity of q, changing the variable x = y+h, we have, 
for any t ∈ Rd,

L(t + h) =
∫
Rd

e〈t+h,x〉 q(x) ϕ(x) dx

=
∫
Rd

e〈t+h,y+h〉 q(y + h) ϕ(y + h) dy

=
∫
Rd

e〈t+h,y+h〉 q(y) ϕ(y) e−〈y,h〉−|h|2/2 dy = L(t) e〈t,h〉+|h|2/2.

Hence

L(t + h) e−|t+h|2/2 = L(t) e−|t|2/2,

which is the first claim of the proposition. Since L(z) is an entire function of order 2, 
the formula (12.1) admits a natural extension to Cd

Ψ(z) = L(z) e− 1
2 (z2

1+···+z2
d), z = (z1, . . . , zd) ∈ Cd,

which is an entire function with respect to every component zj of order at most 2. By 
analyticity and periodicity on Rd,

Ψ(z + h) = Ψ(z) for all z ∈ Cd. (12.6)

Turning to the last claim of the proposition, we need to prove the periodicity of the 
function q(x) = p(x)/ϕ(x). The characteristic function of X admits an entire extension 
using the formula

f(z) = E ei〈z,X〉 = L(iz) = Ψ(iz) e−z2/2, z ∈ Cd,

where again z2 = z2
1 + · · · + z2

d. Hence, by (12.6), f(t + ih) e(t+ih)2/2 = f(t) et2/2, i.e.

f(t + ih) = f(t) e−i〈t,h〉+|h|2/2 for all t ∈ Rd. (12.7)

This identity also shows that, due to the integrability of f(t), the function f(t + ih) is 
integrable as well.

By the integrability of f(t), the random vector X has a continuous density given by 
the Fourier inversion formula
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p(x) = 1 
(2π)d

∫
Rd

e−i〈t,x〉f(t) dt, x ∈ Rd.

This yields

q(x) = p(x) 
ϕ(x) = 1 

(2π)d/2
e|x|

2/2
∫
Rd

e−i〈t,x〉f(t) dt

and

q(x + h) = 1 
(2π)d/2

e|x|
2/2 e〈x,h〉+|h|2/2

∫
Rd

e−i〈t,x〉−i〈t,h〉f(t) dt.

Hence, we need to show that
∫
Rd

e−i〈t,x〉f(t) dt = e〈x,h〉+|h|2/2
∫
Rd

e−i〈t,x〉−i〈t,h〉f(t) dt.

Here, the left integral may be rewritten according to Lemma 12.1, so that the above 
equality is restated as

∫
Rd

e−i〈t+ih,x〉f(t + ih) dt = e〈x,h〉+|h|2/2
∫
Rd

e−i〈t,x〉−i〈t,h〉f(t) dt. (12.8)

Moreover, by (12.7), the first integrand is equal to

e−i〈t+ih,x〉 e−i〈t,h〉+|h|2/2 f(t).

This proves (12.8). �
Remark. Since f(t) = L(it) = Ψ(it) e−t2/2, t ∈ Rd, the integrability assumption in 
Proposition 12.1 is fulfilled, if Ψ(z) has order smaller than 2.

13. Periodic components via trigonometric series

Proposition 12.1 is applicable to a variety of interesting examples including the un-
derlying distributions whose Laplace transform has the form

L(t) = Ψ(t) e|t|
2/2, t ∈ Rd, (13.1)

where Ψ is a 2π-periodic function of the form

Ψ(t) = 1 − cP (t), P (t) =
∑
k∈Zd

cke
i〈k,t〉 (13.2)



36 S.G. Bobkov, F. Götze / Journal of Functional Analysis 289 (2025) 110999 

(for simplicity, in the sequel we say “2π-periodic” instead of “(2π, . . . , 2π)-periodic”). 
Here ck = ak − ibk are complex coefficients which are supposed to satisfy

∞ ∑
k∈Zd

e|k|
2/2 |ck| < ∞, (13.3)

and c ∈ R is a non-zero parameter. To ensure that P (t) is real-valued, we assume that 
a−k = ak and b−k = −bk for all k ∈ Zd, in which case

P (t) =
∑
k∈Zd

(
ak cos 〈k, t〉 + bk sin 〈k, t〉

)
.

Any such function with real coefficients ak and bk can be written in the form (13.2).
Let us note that the function Ψ(t) defined in the equality (13.1) for a sub-Gaussian 

random vector X is smooth with Ψ(0) = L(0) = 1. Differentiating (13.1), we see that 
X has mean zero and identity covariance matrix if and only if Ψ′(0) = 0 in vector sense 
and Ψ′′(0) = 0 in matrix sense. For the Ψ-functions as in (13.2), this is equivalent to 
P (0) = P ′(0) = P ′′(0) = 0, that is,

∑
k∈Zd

ak = 0, 
∑
k∈Zd

bkk = 0, 
∞ ∑
k=1

ak k ⊗ k = 0,

where k ⊗ k denotes the d × d matrix with entries kikj , 1 ≤ i, j ≤ d, k = (k1, . . . , kd). 
All the series are well convergent due to the condition (13.3).

Proposition 13.1. If P (0) = P ′(0) = P ′′(0) = 0 and |c| is small enough, then L(t)
represents the Laplace transform of a sub-Gaussian random vector X with mean zero, 
identity covariance matrix, and with density p = qϕ, where q is a bounded, 2π-periodic 
function. This random vector is strictly sub-Gaussian, if P (t) ≥ 0 for all t ∈ Rd and if 
c > 0 is small enough.

Proof. The functions uλ(x) = ϕ(x) cos 〈λ, x〉 and vλ(x) = ϕ(x) sin 〈λ, x〉 with parameter 
λ ∈ Rd have respectively the Laplace transforms∫

Rd

e〈t,x〉uλ(x) dx = e−|λ|2/2 cos 〈λ, t〉 e|t|2/2,

∫
Rd

e〈t,x〉vλ(x) dx = e−|λ|2/2 sin 〈λ, t〉 e|t|2/2.

Define

q(x) = 1 − c
∑
k∈Zd

e|k|
2/2 (ak cos 〈k, x〉 + bk sin 〈k, x〉

)
. (13.4)
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It is bounded due to the condition (13.3) and is non-negative for sufficiently small |c|, 
more precisely, if

∞ ∑
k∈Zd

e|k|
2/2 (|ak| + |bk|) ≤

1 
|c| .

Moreover, the Laplace transform of the function p(x) = q(x)ϕ(x) is exactly

∫
Rd

e〈t,x〉p(x) dx = (1 − cP (t)) e−|t|2/2, t ∈ Rd.

Recall that the requirement P (0) = 0 guarantees that 
∫
Rd p(x) dx = 1, while the 

property that X has mean zero and identity covariance matrix is equivalent to P ′(0) =
P ′′(0) = 0.

Finally, if P (t) ≥ 0 for all t ∈ Rd and c > 0 is small enough, then 0 < Ψ(t) ≤ 1, which 
means that X is strictly sub-Gaussian. �
14. Examples involving trigonometric polynomials

Some specific examples in Proposition 13.1 are based on trigonometric polynomials. 
More precisely, suppose that the random vector X has the Laplace transform

L(t) = Ψ(t) e|t|
2/2, t ∈ Rd, (14.1)

with

Ψ(t) = 1 − cQ(t)2, Q(t) =
∑
k∈Zd

(
ak cos 〈k, t〉 + bk sin 〈k, t〉

)
, (14.2)

where c > 0, assuming that the sum contains only finitely many real coefficients.

Corollary 14.1. If Q(0) = Q′(0) = 0 and c > 0 is small enough, L(t) represents the 
Laplace transform of a strictly sub-Gaussian random vector X with mean zero, identity 
covariance matrix, and with density p = qϕ, where q is a bounded, 2π-periodic function.

Let us complement this statement with the assertion about the central limit theorem 
for the distance

T∞(pn||ϕ) = sup
x 

pn(x) − ϕ(x)
ϕ(x) ,

where pn denotes the density of the normalized sum Zn constructed for n independent 
copies of X.
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Corollary 14.2. Under the assumptions of Corollary 14.1, T∞(pn||ϕ) → 0 as n → ∞, if 
and only if

∀ t ∈ [0, 2π]d
[
Q(t) = 0 ⇒ Q′(t) = 0

]
. (14.3)

This is the case where Q(t) ≥ 0 for all t ∈ [0, 2π]d.

Proof. We apply Proposition 13.1 with P (t) = Q(t)2. Then P (0) = Q(0)2 = 0 and 
P ′(0) = 2Q(0) Q′(0) = 0. In addition,

P ′′(t) = 2 Q(t)Q′′(t) + 2 Q′(t) ⊗Q′(t), (14.4)

so that P ′′(0) = 0 as well. This proves Corollary 14.1.
For the assertion in Corollary 14.2, we appeal to Corollary 1.4 and simplify the impli-

cation Ψ(t) = 0 ⇒ Ψ′′(t) = 0. Here, the hypothesis means that Q(t) = 0, in which case 
Ψ′′(t) = −cP ′′(t) = −2c Q′(t) ⊗ Q′(t), according to (14.4). The latter matrix is zero, if 
and only if Q′(t) = 0. �
Example 14.3. Consider the Laplace transform

L(t) =
(
1 − c sin2m(t1 + · · · + td)

)
e|t|

2/2, t = (t1, . . . , td) ∈ Rd,

with a fixed integer m ≥ 2, where c > 0 is small enough (depending on m and d). In this 
case, the conditions of Corollary 14.1 are fulfilled for

Q(t) = sinm(t1 + · · · + td).

Since the condition (14.3) in Corollary 14.2 is fulfilled as well, we obtain the assertion 
about the CLT (although Q(t) does not need be non-negative for odd values of m).

An interesting feature of this example is that L(t) = e|t|
2/2 on countably many hyper-

planes t1 + · · · + td = πl, l ∈ Z.

Example 14.4. Modifying the previous example, put

P (t) = Q(t)2, Q(t) =
(
1 − 4 sin2(t1 + · · · + td)

)
sin2(t1 + · · · + td).

In this case, Q(0) = Q′(0) = 0, so that the conditions of Corollary 14.1 are fulfilled.
We have Q(t) = 0 for t1 = π/6, tj = 0 for j ≥ 2. At this point ∂t1Q(t) �= 0, so that 

the condition (14.3) is not fulfilled. Hence, by Corollary 14.2, the CLT with respect to 
T∞ does not hold in this example.
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