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Abstract—The hyperplane conjecture is a major unsolved
problem in high-dimensional convex geometry that has attracted
much attention in the geometric and functional analysis litera-
ture. It asserts that there exists a universal constant c such that
for any convex set K of unit volume in any dimension, there exists
a hyperplane H passing through its centroid such that the volume
of the section K ∩H is bounded below by c. A new formulation
of this conjecture is given in purely information-theoretic terms.
Specifically, the hyperplane conjecture is shown to be equivalent
to the assertion that all log-concave probability measures are at
most a bounded distance away from Gaussianity, where distance
is measured by relative entropy per coordinate. It is also shown
that the entropy per coordinate in a log-concave random vector
of any dimension with given density at the mode has a range
of just 1. Applications, such as a novel reverse entropy power
inequality, are mentioned.

I. INTRODUCTION

The hyperplane conjecture (sometimes called the slicing
problem) was originally raised by J. Bourgain [1] in 1986 and
has attracted a lot of attention since. In one basic formulation,
this may be stated as follows.

Conjecture 1: [SLICING FORM OF HYPERPLANE CONJEC-
TURE] There exists a universal, positive constant c (not de-
pending on n) such that for any convex set K of unit volume
in Rn, there exists a hyperplane H such that the (n − 1)-
dimensional volume of the section K ∩H is bounded below
by c.

There are several equivalent formulations of the conjecture,
all of a geometric or functional analytic flavor. For instance,
another popular formulation (developed by K. Ball [2]) is
that the isotropic constant (to be defined later) of a log-
concave measure in any Euclidean space is bounded above
by a universal constant independent of dimension.

The main goal of this note is to demonstrate that the
hyperplane conjecture has a formulation in purely information-
theoretic terms. First we need to recall the notion of a log-
concave density. A probability density function (or simply
“density”) f defined on the linear space Rn is said to be
log-concave if

f(αx+ (1− α)y) ≥ f(x)αf(y)1−α, (1)

for each x, y ∈ Rn and each 0 ≤ α ≤ 1. If f is log-concave,
we will also use the adjective “log-concave” for a random
variable X distributed according to f , and for the probability
measure induced by it.

Log concavity has been deeply studied in probability, statis-
tics, optimization and geometry, and there are a number of
results that show that log-concave random vectors resemble
Gaussian random vectors. For instance, several functional
inequalities that hold for Gaussians also hold for appropriate
subclasses of log-concave distributions. Observe that this is
not at all obvious at first glance– log-concave probability
measures include a large variety of distributions including the
uniform distribution on any compact, convex set, the (one-
sided) exponential distribution, and of course any Gaussian.
Both the results and conjectures in this note are, in some sense,
attempts to give a strong (quantitative) information-theoretic
basis to the intuition that log-concave distributions resemble
Gaussian distributions.

For a random vector X = (X1, . . . , Xn) in Rn with density
f(x), let h(X) or h(f) denote its differential entropy, and let
D(X) or D(f) denote its relative entropy from Gaussianity,
i.e.,

D(X) = h(Z)− h(X),

where Z has the same covariance matrix as X . For instance,
for dimension n = 1,

D(X) = 1
2 log

[
2πeVar(X)

]
− h(X).

Conjecture 2: [ENTROPIC FORM OF HYPERPLANE CON-
JECTURE] For any log-concave density f on Rn and some
universal constant c,

D(f)
n
≤ c.

This formulation has several advantages. First, it demon-
strates deep and hitherto not well explored links between
information theory and convex geometry. Second, it allows
for the potential deployment of information-theoretic tools for
attacking open problems such as this conjecture in convex
geometry. Third, the information-theoretic formulation is very



natural, and along the way to obtaining it, we also provide new
bounds on the differential entropy of log-concave probability
measures that are of intrinsic interest, and have a number of
applications in their own right.

In particular, Conjecture 2 gives a pleasing formulation of
the slicing problem as a statement about the (dimension-free)
closeness of an arbitrary log-concave measure to Gaussian
measure. It is possible to prove, using results from [3], that
D(X) is bounded above by a constant for one-dimensional
log-concave distributions (see [4]). Thus Conjecture 2 posits
that an arbitrary multivariate log-concave distribution cannot
get very much more non-Gaussian than a product of one-
dimensional log-concave distributions.

The proof of the equivalence of Conjectures 1 and 2 relies
on a remarkable entropy comparison inequality. Specifically,
in terms of the “amount of randomness” as measured by
entropy per coordinate, any log-concave random vector of any
dimension contains randomness that differs from that in the
normal random variable with the same maximal density value
by at most 1/2.

Theorem 1: If a random vector X in Rn has a log-concave
density f , let Z in Rn be any normally distributed random
vector with maximum density being the same as that of X .
Then

1
n
h(Z)− 1

2 ≤
1
n
h(X) ≤ 1

n
h(Z) + 1

2 .

Equality holds in the lower bound if and only if X is uniformly
distributed on a convex set with non-empty interior. Equality
holds in the upper bound if X has coordinates that are i.i.d.
exponentially distributed.

Theorem 1 and Conjecture 2 have an intriguing relationship.
Indeed, the latter says that for any log-concave random vector
X taking values in Rn,

1
n
h(X) ≥ 1

n
h(Z)− C, (2)

where C is a universal constant, and Z is the normal with the
same covariance matrix as X . The inequality (2) looks like the
lower bound of Theorem 1, except that the way in which the
matching Gaussian is chosen is to match the covariance matrix
rather than the maximum density. Thus, while Theorem 1 is a
Gaussian comparison result for log-concave random vectors
where the Gaussian is chosen by matching the supremum
norm, our formulation of the hyperplane conjecture is a
Gaussian comparison result for log-concave random vectors
where the Gaussian is chosen by matching the mean and
covariance matrix.

This note is organized as follows. In Section II, we prove
entropy bounds for log-concave probability measures, and in
particular, Theorem 1. In Section III, we prove the equivalence
of Conjectures 1 and 2. In Section IV, we summarize some
possible extensions of the results in this note. We end in
Section V with some discussion of applications of our results.

II. ENTROPY BOUNDS FOR LOG-CONCAVE MEASURES

This result follows quite easily from the following basic
proposition. Throughout this paper, we will write ‖f‖ =
ess supxf(x). In particular, for a continuous, bounded density
f , this is just the maximum value of f .

Proposition 1: If a random vector X in Rn has density f ,
then

1
n
h(X) ≥ log ‖f‖−1/n.

If, in addition, f is log-concave, then

1
n
h(X) ≤ 1 + log ‖f‖−1/n,

with equality for the n-dimensional exponential distribution,
concentrated on the positive orthant with density f(x) =
e−(x1+···+xn), xi > 0.

Proof: The lower bound is trivial and holds without any
assumption on the density:

h(X) ≥
∫
Rn

f(x) log
1
‖f‖

dx = log
1
‖f‖

.

Let us derive the upper bound. By definition of log-
concavity, for any x, y ∈ Rn,

f(tx+ sy) ≥ f(x)t f(y)s, t, s > 0, t+ s = 1.

Integrating with respect to x, we get

t−n
∫
f(x) dx ≥ f(y)s

∫
f(x)t dx.

Now using the assumption that
∫
f = 1 and maximizing over

y, we obtain

t−n ≥ ‖f‖1−t
∫
f(x)t dx. (3)

Observe that the left and right sides of (3) are equal for t = 1,
and the above tells us the left side dominates the right side
for 0 < t ≤ 1. This implies that we can compare derivatives
of the two sides of (3) in t at t = 1. Specifically, we have

−n ≤ − log ‖f‖+
∫
f(x) log f(x) dx,

which yields the desired inequality. It is easy to check that a
product of exponentials is an instance of equality.

We can now complete the proof of Theorem 1.

Proof of Theorem 1. Observe that the maximum density of
the N(0, σ2I) distribution is (2πσ2)−n/2. Thus matching the
maximum density of f and the isotropic normal Z leads to
(2πσ2)1/2 = ‖f‖−1/n, and

1
n
h(Z) = 1

2 log(2πeσ2) = 1
2 + log ‖f‖−1/n.

Combining with Proposition 1, we are done. �



III. AN ENTROPIC FORMULATION OF THE SLICING
PROBLEM

The main observation of this section is a relationship
between the entropy distance to Gaussianity D(f) and the
isotropic constant Lf for densities of convex measures.

For any probability density function f on Rn, let D(f) be
the relative entropy between f and the normal density with
the same mean and covariance matrix as f . Recall that D(f)
may also be written as the difference in entropies of f and
the normal density (see, e.g., Cover and Thomas [5]), which
yields the definition given in the Introduction.

For any probability density function f on Rn, define its
isotropic constant Lf by

L2
f = ‖f‖2/ndet

1
n (R).

The isotropic constant has a nice interpretation for uniform
distributions on convex sets K. If one rescales K (by a linear
transformation) so that the volume of the convex set is 1 and
the covariance matrix is a multiple of the identity, then L2

K :=
L2
f is the value of the multiple. Such convex bodies, with

volume 1 and covariance matrix a multiple of the identity, are
said to be isotropic.

Observe that both D(f) and Lf are affine invariants.

Theorem 2: For any density f on Rn,

1
n
D(f) ≤ log[

√
2πeLf ],

with equality if and only if f is the uniform density on some
set of positive, finite Lebesgue measure. If f is a log-concave
density on Rn, then

log
[√

2π
e
Lf

]
≤ 1
n
D(f),

with equality if f is a product of one-dimensional exponential
densities.

Proof: Let X ∼ f have covariance matrix R. If Z ∼
N(0, R),

h(Z) = 1
2 log[(2πe)ndet(R)] =

n

2
log(Cσ),

where σ = det(R)
1
n and C = 2πe. Thus

1
n
D(X) =

h(Z)− h(X)
n

≤ 1
2 log(Cσ)− log ‖f‖− 1

n

= 1
2 log[Cσ‖f‖2/n] = 1

2 log[CL2
f ],

and

1
n
D(X) =

h(Z)− h(X)
n

≥ 1
2 log(Cσ)− log ‖f‖− 1

n − 1

= 1
2 log

[
C

e2
σ‖f‖2/n

]
= 1

2 log
[

2π
e
L2
f

]
,

where the inequalities come from Proposition 1.

Theorem 2 immediately yields the following corollary, by
using the fact that D(f) ≥ 0.

Corollary 1: For any log-concave density f (on Euclidean
space of any dimension),

Lf ≥
1√
2πe

.

On the other hand, whether or not this quantity, the isotropic
constant Lf = ‖f‖1/n (detR)1/n, is bounded from above by
a universal constant for the class of uniform distributions on
convex bodies is precisely the hyperplane conjecture originally
raised by J. Bourgain [1].

First, let us mention the following equivalences that arise
from Theorem 2.

Corollary 2: Let c(n) be any non-decreasing sequence, and
c′(n) = c(n) + 1

2 log(2πe). Then the following statements are
equivalent:

1) For any log-concave density f on Rn, Lf ≤ ec(n).
2) For any log-concave density f on Rn, D(f) ≤ nc′(n).
3) supf mingD(f‖g) ≤ nc′(n), where the minimum is

taken over all Gaussian densities on Rn, and the maxi-
mum is taken over all log-concave densities on Rn.

Here the equivalence of (i) and (ii) follows from Theorem 2,
and that of (ii) and (iii) follows from the easily verified fact
that D(f) = mingD(f‖g), where g is allowed to run over
all Gaussian distributions. Furthermore, the seminal paper of
Hensley [6] (cf. Milman and Pajor [7]) showed that for an
isotropic convex body K, and any hyperplane H passing
through its barycenter,

c1 ≤ LKVoln−1(K ∩H) ≤ c2,

where c2 > c1 > 0 are universal constants. Hence the state-
ments of Corollary 2, when restricted to uniform distributions
on convex sets, are also equivalent to the statement that

Voln−1(K ∩H) ≥ e−c(n).

Thus the slicing problem or the hyperplane conjecture is
simply the conjecture that c(n) can be taken to be constant
(independent of n), in any of the statements of Corollary 2.

Existing partial results on the slicing problem already give
insight into the closeness of log-concave measures to Gaussian
measures. For many years, the best known bound in the slicing
problem for general bounded convex sets, due to Bourgain [8]
in the centrally-symmetric case and generalized by Paouris [9]
to the non-symmetric case, was

LK ≤ cn1/4 log(n+ 1).

Recently Klartag [10] removed the log n factor and showed
that LK ≤ cn1/4. Using results of Ball [2], the same bound is
seen to also apply to D(f), for a general log-concave density
f . Thus we have:



Corollary 3: There is a universal constant c such that for
any log-concave density f on Rn,

D(f) ≤ 1
4
n log n+ cn.

IV. EXTENSIONS

While we focused on the Shannon differential entropy in
this note, several of our results have generalized statements
involving Rényi entropy. Proposition 1 and Theorem 1 emerge
as consequences of a more general result (and rather powerful)
that bounds the Rényi entropy of any order p ≥ 1 using the
maximum of the density. As a corollary of this, we show in
[4] that any two Rényi entropies (or Lp-norms for different p)
become comparable for the class of log-concave densities.

Another, and perhaps more interesting, extension of our
results involves broadening the class of densities considered.
While Proposition 1 is already remarkable in its own right,
log-concavity is a relatively strong assumption, and it would
be advantageous to loosen it. Inspired by this objective, one
wishes to study more general classes of probability distribu-
tions, satisfying weaker convexity conditions (in comparison
with log-concavity). As a natural generalization, one may con-
sider so-called convex or hyperbolic probability measures on
Euclidean spaces. In [4], we give new constraints on entropy
per coordinate for this class of measures, which generalize
our results under the log-concavity assumption, and expose the
extremal role of multivariate Pareto-type distributions. A major
advantage of considering the class of convex measures is that
they can have much heavier tails than log-concave measures.

Convex measures include probability densities of the form

f(x) = ϕ(x)−β , x ∈ Ω, (4)

where ϕ is a positive convex function on an open convex set
Ω in Rn, and β ≥ n. The n-dimensional Pareto distribution
with density

fβ(x) =
1

Z(β)
(x0 + x1 + · · ·+ xn)−β , xi > 0, (5)

where x0 > 0 is fixed, and where Z(β) is a normalizing factor,
belongs to this class whenever its parameter β > n.

Just for illustration, we state a generalization of Proposi-
tion 1.

Corollary 4: For the range β ≥ β0n with fixed β0 > 1 (and
still for β ≥ n+ 1), we have

1
n
h(X) ≤ Cβ0 + log ‖f‖−1/n,

where the constant Cβ0 depends on β0 only. However, in the
larger range β ≥ β0 + n with fixed β0 ≥ 1,

1
n
h(X) ≤ log ‖f‖−1/n +O(log n),

where the O(log n) term may be explicitly bounded.

Proposition 1 is recovered in the limit as β → +∞.

V. DISCUSSION

The results in this note have several applications. Let us call
a discrete-time stochastic process X = (Xi) log-concave if all
its finite-dimensional marginals are log-concave distributions.
An important sub-class of the log-concave processes is the
family of Gaussian processes, and this is so far the only
class of processes for which the computation of entropy rate
is tractable. Our inequalities give a way of obtaining some
information about the entropy rate of a stationary log-concave
process. One interesting class of processes where this result
may be of utility, and where the study of entropy rate has
attracted much recent interest, is the class of hidden Markov
processes.

Getting estimates of the entropy of infinitely divisible dis-
tributions is a notoriously hard problem because of the lack
of an explicit form for their density functions in most cases.
It is also interesting because infinitely divisible distributions
include the limiting distributions that appear in all probabilistic
limit laws for sums of random variables. Our inequalities give
a way of getting bounds on entropies of these distributions
based on some qualitative knowledge of the shapes of their
densities.

There are also other applications, such as to giving a
quantitative version of an inequality of Junge concerning
the behavior of ‖f‖ on convolution. However, perhaps the
most interesting appearance of these ideas is in the proof
of a remarkable reverse entropy power inequality, which we
mention next. First we recall some facts about the reverse
Brunn-Minkowski inequality.

The reverse Brunn-Minkowski inequality is a deep result in
Convex Geometry discovered by V. D. Milman in the mid
1980s (cf. [11], [12], [13], [14]). It states that, given two
convex bodies A and B in Rn, one can find linear volume
preserving maps ui : Rn → Rn (i = 1, 2) such that with
some absolute constant C∣∣Ã+ B̃

∣∣1/n ≤ C (|A|1/n + |B|1/n
)
, (6)

where Ã = u1(A), B̃ = u2(B), Ã + B̃ =
{
x + y : x ∈

Ã, y ∈ B̃
}

is the Minkowski sum, and where |A| stands for
the n-dimensional volume. (Of course, one of these maps may
be taken to be the identity operator.)

Note that the reverse inequality to (6),∣∣Ã+ B̃
∣∣1/n ≥ |A|1/n + |B|1/n,

holds true for any such ui by the usual Brunn-Minkowski
inequality.

Milman’s inverse Brunn-Minkowski inequality has deep
connections with high dimensional phenomena in convex
geometry. For instance, it is known that proving Milman’s
inequality for convex bodies in isotropic position is equivalent
to the hyperplane conjecture [15]. It has also found a number
of interesting extensions and applications (cf. [16], [17], [18]).

In [19], we develop an entropic generalization of (6) that
involves arbitrary log-concave probability distributions rather
than just uniform measures on compact convex sets. This



entropic generalization may be stated as an inverse of the
entropy power inequality, in the same sense that Milman’s
inequality is an inverse of the Brunn-Minkowski inequality.
Given a random vector X in Rn with density f(x), recall
that the entropy power is defined by

N (X) = e2h(X)/n.

In particular, if X is uniformly distributed in a convex body
A ⊂ Rn, we have

h(X) = log |A|, N (X) = |A|2/n.

The entropy power inequality, due to Shannon and Stam
([20], [21], cf. also [22], [23]), asserts that

N (X + Y ) ≥ N (X) +N (Y ), (7)

for any two independent random vectors X and Y in Rn, for
which the entropy is defined. Although it is not directly equiv-
alent to the Brunn-Minkowski inequality, it is very similar to
it [23].

To judge the sharpness of the entropy power inequality,
we need to keep in mind that the entropy is invariant under
linear volume preserving transformation of the space, i.e.,
N (u(X)) = N (X) whenever |det(u)| = 1. On the other
hand, the left-hand side of (7) essentially depends on “posi-
tions” of the distributions of X and Y . Therefore, to reverse
this inequality, some transformation of these random vectors
is needed. Then, we have:

Theorem 3: Let X and Y be independent random vectors
in Rn with log-concave densities. There exist linear volume
preserving maps ui : Rn → Rn such that

N
(
X̃ + Ỹ

)
≤ C (N (X) +N (Y )), (8)

where X̃ = u1(X), Ỹ = u2(Y ), and where C is a universal
constant.

The proof of this result, as well as extensions of it and
further discussion, can be found in [19].
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