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Abstract

Milman’s ellipsoids and an M -position of convex bodies are described in terms of isotropic
restricted Gaussian measures.

1 Introduction

For symmetric convex bodies A and B in Rn, put

M(A,B) =
( |A+B|
|A ∩B|

· |A
o +Bo|
|Ao ∩Bo|

)1/n

.

Here and below we denote by |A| the n-dimensional volume of a set A in Rn, and by Ao =
{x ∈ Rn : 〈x, y〉 ≤ 1, ∀y ∈ A} its polar.

A main result about the quantity M(A,B) is the following theorem due to V. D. Milman.
Let us make the convention that all ellipsoids (in particular, all Euclidean balls) have the
center at the origin.

Theorem 1.1 (V. D. Milman [M1]). For any symmetric convex body K in Rn, there
exists an ellipsoid E such that

M(K, E) ≤ C, (1.1)

where C is a universal constant.

An ellipsoid E which appears in this statement is called Milman’s ellipsoid or, for short,
an M -ellipsoid (although the definition involves an implicit constant C). This deep result
contains as corollaries a number of important facts in Convex Geometry, such as the reverse
Santalo inequality due to J. Bourgain and V. D. Milman [B-M], Milman’s reverse Brunn-
Minkowski inequality [M1], the duality of entropy numbers [K-M]. There are some other
equivalent definitions of M -ellipsoids, for example, in terms of the entropy numbers. For
different proofs, see subsequent works of V. D. Milman [M2-4], and the book by G. Pisier
[P], which contains an excellent exposition and historical remarks.
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Note that if E is an M -ellipsoid for K, then the polar ellipsoid Eo is an M -ellipsoid for
the polar body Ko. In general

M(T (A), T (B)) = M(A,B) = M(Ao, Bo) (1.2)

for any linear invertible map T : Rn → Rn, so the M -functional represents an affine invariant
of the couple (A,B), as well as of the couple (Ao, Bo). Hence, in Theorem 1.1 one may
always choose T such that T (E) is a Euclidean ball. In this case, one says that T (K) is in
M -position (i.e., in ”main” position according to [M4], which also corresponds to the notion
of a ”regular” position in [P]). In other words, a symmetric convex body K is in M -position,
when the inequality (1.1) holds true for some Euclidean ball E .

Since Theorem 1.1 only states the existence of an M -ellipsoid, it is natural to ask how to
find or constructively describe it. Equivalently, one may wonder how to find an M -position
for K (that is, a map T ). One way towards a solution to this question seems the notion of
the isotropic position.

Let us recall that a symmetric log-concave probability measure µ on Rn with a (symmetric
log-concave) density f is isotropic, if for any vector θ from the unit sphere Sn−1,

f(0)2/n
∫
〈x, θ〉2 dµ(x) = L2

µ, (1.3)

for some positive Lµ, called an isotropic constant of µ. By simple algebra, any symmetric
log-concave measure µ can be put in the isotropic position, and often the condition (1.3)
has a matter of normalization, only. As a particular case, a symmetric convex body K with
unit volume is called isotropic with an isotropic constant LK > 0, if the restricted Lebesgue
measure on K with the indicator density function f = 1K is isotropic, i.e., for any θ ∈ Sn−1,∫

K
〈x, θ〉2 dx = L2

K .

There is a good reason to expect that any symmetric convex body, which is in the isotropic
position, is in M -position. As was noticed in [B-M-K], if this was true, the isotropic constants
would be bounded from above by an absolute constant (this assertion represents an equivalent
formulation of the so-called hyperplane conjecture). In this note we show that, regardless
of whether this is true or not, an M -position of convex bodies may indeed be related to the
isotropy – but in a different class of log-concave probability distributions.

Denote by γ the standard Gaussian measure on Rn with density ϕ(x) = (2π)−n/2 e−|x|
2/2,

x ∈ Rn. For symmetric convex bodies K in Rn, we consider the normalized restrictions of
this measure to K, defined by

γK(A) = γ(A ∩K)/γ(K)

on Borel subsets A of the space. Theorem 1.1 may be complemented with the following:

Theorem 1.2. Given a symmetric convex body K in Rn with volume |K| = 1, assume the
normalized restricted Gaussian measure γK is isotropic. Then K is in M -position. Moreover,

LγK ≤ C, (1.4)
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for some positive numerical constant C.

Thus, the isotropic constants are universally bounded for the class of isotropic restricted
Gaussian measures.

The argument leading to (1.4) essentially uses Theorem 1.1. To make its application
convenient, first we discuss different equivalent representations for the functional M(A,B),
which are easily obtained by virtue of the reverse Santalo inequality and an extension of
Roger-Shephard’s inequality to the case of two bodies (Section 2). In Section 3, the isotropic
positions for the normalized restricted Gaussian measures are described as solutions to the
variational problem, where γ(T (K)) is to be maximized among all volume-preserving linear
maps T . On this step, we involve a generalized form of the so-called B-conjecture, considered
and solved in [CE-F-M]. A final step of the proof, based on the concentration property of
restricted Gaussian measures, is made in Section 4.

2 Representations for M(A, B)

We need one generalization of the well-known Roger-Shephard’s difference body inequality.

Proposition 2.1 (C. A. Roger and G. C. Shephard [R-S2]). For all convex bodies A and
B in Rn,

|A−B| |A ∩B| ≤ (2n)!
n! 2

|A| |B|.

In case of one convex body, that is, when A = B, the above inequality is reduced to

|A−A| ≤ (2n)!
n! 2

|A|.

It was first proved in [R-S1], and later Roger and Shephard obtained a more general form,
involving two convex bodies; cf. [R-S2], Theorem 1 on p.273. It can also be derived from
Berwald’s Khinchin-type inequality for the class of concave functions, cf. [Ber], [Bor].

If convex bodies A and B in Rn are symmetric (which is always assumed in the sequel),
Proposition 2.1 implies

|A|1/n |B|1/n ≤ |A+B|1/n |A ∩B|1/n ≤ 4 |A|1/n |B|1/n, (2.1)

where the (trivial) left inequality is added to compare with the right inequality.

Definition. For two expressions Q and Q′, depending on the dimension n, we write
Q ∼ Q′, if for any n ≥ 1,

cQ ≤ Q′ ≤ c′Q,

with some numerical positive constants c, c′.

For example, (2.1) gives the equivalence

|A+B|1/n |A ∩B|1/n ∼ |A|1/n |B|1/n
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within the factors 1 and 4. Applying this twice in the definition of the M -functional, we
obtain

M(A,B) ∼ |A|
1/n |B|1/n

|A ∩B|2/n
· |A

o|1/n |Bo|1/n

|Ao ∩Bo|2/n
.

By the Santalo and reverse Santalo inequalities, written as the equivalence |K|1/n |Ko|1/n ∼ 1
n

(cf. [B-M]), we then get that

M(A,B)1/2 ∼ 1
n
· 1
|A ∩B|1/n · |Ao ∩Bo|1/n

. (2.2)

On the other hand, since 1
2 (Ao ∩Bo) ⊂ (A+B)o ⊂ Ao ∩Bo, we always have

|(A+B)o|1/n ∼ |Ao ∩Bo|1/n.

Hence, by the Santalo and the reverse Santalo inequalities, applied to K = A+B,

|A+B|1/n ∼ 1
n |Ao ∩Bo|1/n

,

so (2.1) implies
|A ∩B|1/n

|Ao ∩Bo|1/n
∼ n |A|1/n |B|1/n.

Plugging this in (2.2), we get an equivalent expression for the M -functional, which does not
involve polar bodies.

Corollary 2.2. For all symmetric convex bodies A and B in Rn,

M(A,B)1/2 ∼ |A|
1/n |B|1/n

|A ∩B|2/n
, (2.3)

as well as

M(A,B)1/2 ∼ |A+B|2/n

|A|1/n |B|1/n
.

Multiplying the two relations, we also have

M(A,B)1/2 ∼ |A+B|1/n

|A ∩B|1/n
.

All these representations remain to hold for the polar bodies by the polar invariance of
M (property (1.2)) and seem to be more-less known, although we could not find a direct
reference.

Now, for a symmetric convex body K in Rn with volume |K| = 1, introduce the functional

M(K) = inf
E
M(K, E), (2.4)
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where the infimum runs over all ellipsoids E in Rn. Then, Milman’s Theorem 1.1 is telling us
that M(K) is bounded from above by a universal constant. Using Corollary 2.2, this quantity
may be related to a simpler functional

m(K) = sup
|E|=1

|K ∩ E|1/n.

Corollary 2.3. For any symmetric convex body K in Rn with volume |K| = 1, up to
some positive absolute constants, we have

C0

m(K)
≤M(K) ≤ C1

m(K)4
. (2.5)

Indeed, by (2.3) with A = K,

M(K,B)−1/2 ∼ |K ∩B|
2/n

|B|1/n
, (2.6)

which implies
1
C
M(K,B)−1/2 ≤ |B|1/n ≤ CM(K,B)1/2

with some absolute C ≥ 1. Hence, for the optimal ellipsoid E in (2.4), we have 1
λ ≤ |E|

1/n ≤ λ,
where λ = CM(K)1/2. By (2.6), this gives

M(K)−1/2 ∼ sup
{ |K ∩ E|2/n
|E|1/n

:
1
λ
≤ |E|1/n ≤ λ

}
. (2.7)

Restricting the sup on the right-hand side to the ellipsoids with unit volume, we get
immediately that M(K)−1/2 ≥ cm(K)2, which is the bound on the right-hand side of (2.5).

On the other hand, put E ′ = 1
|E|1/n E , so that |E ′| = 1. Assuming |E|1/n ≥ 1

λ and using
also that |K| = 1, we have

|K ∩ E|2/n

|E|1/n
≤ |K ∩ E|1/n

|E|1/n
=
∣∣∣∣( 1
|E|1/n

K

)
∩ E ′

∣∣∣∣1/n
≤ |(λK) ∩ E ′|1/n ≤ λ|K ∩ E ′|1/n ≤ λm(K).

Taking the sup over all E and applying (2.7), we arrive at

M(K)−1/2 ≤ Cλm(K) = C ′M(K)1/2m(K),

which is equivalent to the bound on the left-hand side of (2.5). Corollary 2.3 follows.

Remark. According to (2.6), if K is a symmetric convex body in Rn with volume
|K| = 1, we have M̃(K) ∼ m(K)−4 for a slightly modified functional

M̃(K) = inf
|E|=1

M(K, E).
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3 Restricted Gaussian measures in isotropic position

Recall that the standard (n-dimensional) Gaussian measure γ is defined on Borel subsets of
Rn by

γ(A) = (2π)−n/2
∫
A
e−|x|

2/2 dx.

Proposition 3.1. Given a symmetric convex body K in Rn, the normalized restricted
Gaussian measure γK is isotropic, if and only if in the class of all volume preserving linear
maps T : Rn → Rn the maximum to

γ(T (K)) = (2π)−n/2
∫
T (K)

e−|x|
2/2 dx

is attained for the identity map T (x) = x.

Proof. For Q = T ′T put

u(Q) = (2π)n/2 γ(T (K)) =
∫
K
e−〈Qx,x〉

2/2 dx.

So, maximum to γ(T (K)) over all linear maps T with |detT | = 1 is attained at the identity
map, if and only if in the classM of all symmetric positive definite matrices Q with detQ = 1
the functional u(Q) attains a maximum for the unit matrix In.

Note that u does attain a maximum at some Q inM, since u(Q)→ 0 when the maximal
eigenvalue of Q grows to infinity. To find a necessary condition, assume that Q provides a
local maximum to u. Given an arbitrary symmetric n × n matrix E and numbers ε small
enough, define

Qε =
In + εE

det(In + εE)
= In + ε F + o(ε),

where F = E− (TrE) In. The latter may be any symmetric n×n matrix with trace TrF = 0.
Hence 〈Qεx, x〉 = 〈x, x〉+ε 〈Fx, x〉+o(ε), as ε→ 0 uniformly over all x ∈ K, and by Taylor’s
expansion,

u(Qε) = u(In)− ε

2

∫
K
〈Fx, x〉 e−|x|2/2 dx+ o(ε).

Since u(Qε) ≤ u(In) with arbitrary ε in some neighbourhood of zero, we conclude that∫
K
〈Fx, x〉 e−|x|2/2 dx = 0

for any symmetric F such that TrF = 0. But this is equivalent to saying that there is a
constant C such that, for all i, j = 1, . . . , n,∫

K
xixj dγ(x) = Cδij , (3.1)

where δij denotes Kronecker’s symbol. Thus,
∫
K 〈x, θ〉

2 dγ(x) = C, for any unit vector θ,
that is, γK is isotropic.
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The converse statement is more delicate. Assume γK is isotropic. We need to show that

u(Q) ≤ u(In), (3.2)

for any symmetric positive definite matrix Q with detQ = 1.
Let us represent Q = UDU−1, where U is an orthogonal matrix, and D = D(λ1, . . . , λn)

is diagonal with eigenvalues λ1, . . . , λn > 0 on the main diagonal, such that λ1 . . . λn = 1.
Then

u(Q) =
∫
U(K)

e−〈Dx,x〉
2/2 dx.

But, as follows from the very definition, the restricted Gaussian measures γU(K) will be
isotropic for any orthogonal U , as long as γK is isotropic. Replacing U(K) with K, the
inequality (3.2) is therefore reduced to

u(D(λ)) ≤ u(In), (3.3)

for any collection λ = (λ1, . . . , λn) such that λi > 0 and λ1 . . . λn = 1.
At this step we involve the following observation made by D. Cordero-Erausquin, M.

Fradelizi and B. Maurey in their study and proof of the so-called B-conjecture, cf. [CE-F-M],
Theorem 1. It is stated below as a lemma, where D(λ) is treated as a linear map.

Lemma 3.2 (D. Cordero-Erausquin, M. Fradelizi and B. Maurey [CE-F-M]). For any
symmetric convex body K in Rn, the function

(t1, . . . , tn) −→ γ(D(et1 , . . . , etn)(K))

is log-concave on Rn.

To continue the proof of Proposition 3.1, introduce the function on Rn−1

v(t1, . . . , tn−1) = log u(D(et1 , . . . , etn)),

where tn = −(t1 + . . . + tn−1). The required property (3.3), where one can take λi = eti , is
equivalent to the statement that v attains a maximum at the origin. But by Lemma 3.2, v
is concave, so it is enough to check that ∇v(0) = 0. To this aim, write

v(t1, . . . , tn−1) = log
∫
K

exp
[
− 1

2

n∑
i=1

e2tix2
i

]
dx.

The direct differentiation gives, for any i = 1, . . . , n− 1,

∂v(0)
∂ti

=
1

u(In)

[ ∫
K
x2
n e
−|x|2/2 dx−

∫
K
x2
i e
−|x|2/2 dx

]
=

∫
x2
n dγK(x)−

∫
x2
i dγK(x) = 0,

according to the isotropy assumption (3.1). Hence, ∇v(0) = 0.
Proposition 3.1 is proved.
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Recall that
m(K) = sup

|E|=1
|K ∩ E|1/n, (3.4)

where the supremum is taken over all ellipsoids with unit volume. Note that this quantity
does not depend on the ”position” of K.

Corollary 3.3. Let K be a symmetric convex body in Rn with volume |K| = 1. If the
normalized restricted Gaussian measure γK is isotropic, then

γ(K)1/n ∼ γ(K ∩D)1/n ∼ m(K),

where D is the Euclidean ball in Rn of unit volume with center at the origin.

Proof. Since the density of γ does not exceed (2π)−n/2, we have

γ(K ∩D) ≤ (2π)−n/2 |K ∩D| ≤ (2π)−n/2m(K)n. (3.5)

Now, consider a volume preserving linear map T : Rn → Rn, such that for K ′ = T (K)
the supremum in (3.4) is attained at E = D. Since D has radius of order

√
n,

γ(K ′) ≥ γ(K ′ ∩D) = (2π)−n/2
∫
K′∩D

e−|x|
2/2 dx ≥ cn |K ′ ∩D|

= cnm(K ′)n = cnm(K)n,

for some absolute constant c > 0. Using the isotropy assumption for γK (Proposition 3.1),
we arrive at γ(K) ≥ γ(K ′) ≥ cnm(K)n. Thus,

γ(K)1/n ≥ cm(K).

Moreover, since γ(D)1/n ≥ c′ with some absolute constant c′ > 0,

γ(K ∩D)1/n ≥ γ(K)1/nγ(D)1/n ≥ c′′m(K), (3.6)

where the first inequality is a simple part of the Gaussian correlation inequality. More
generally, one has µ(K ∩D) ≥ µ(K)µ(D), for any spherically invariant probability measure
on Rn, cf. [S-S-Z]. Thus, combining (3.5) with (3.6), we get

γ(K ∩D)1/n ∼ m(K).

Using once more γ(D)1/n ≥ c′ and the first inequality in (3.6), we also have that γ(K)1/n ∼
γ(K ∩D)1/n. This finishes the proof.

Remark 3.4. Without the assumption that γK is isotropic, we only have a lower bound

m(K) ≥ c γ(K)1/n,

where K is an arbitrary symmetric convex body in Rn with |K| = 1, and c > 0 is an absolute
constant. This is seen by combining (3.5) with the first inequality in (3.6).
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Remark 3.5. One may also relate m(K) to the isotropic constant LK and other related
quantities. Let K be a symmetric convex body in Rn with |K| = 1. The isotropic constant
does not depend on the ”position” and is defined by

L2
K = inf

T

∫
K

|Tx|2

n
dx,

where the infimum is taken over all volume preserving linear maps T : Rn → Rn. If K is
isotropic (so that the above infimim is attained for the identity map), by Jensen’s inequality,

γ(K) ≥ (2π)−n/2 e−
1
2

∫
K
|x|2 dx = (2π)−n/2 e−nL

2
K/2.

Hence, γ(K)1/n ≥ 1√
2π
e−L

2
K and, by Remark 3.4, m(K) ≥ c e−L

2
K/2 with some absolute

constant c > 0.
However, the exponential dependence on L2

K is not optimal and can be improved by
involving other than Gaussian probability measures (e.g. with heavy-tailed Cauchy densities)
to get

m(K) ≥ c

LK
. (3.7)

The latter can also be derived from the reverse Brunn-Minkowski-type inequality in the form
of K. Ball [Bal], who showed that with some numerical constant C, for all convex symmetric
bodies K and K ′ in Rn,

|K +K ′|2/n ≤ C
[

1
n |K|

∫
K
|x|2 dx+

1
n |K ′|

∫
K′
|x|2 dx

]
.

In particular, taking K ′ = D the Euclidean ball in Rn of unit volume, and if K is isotropic
and has volume one, then

|K +D|1/n ≤ C LK ,

where C is a different numerical constant and where we have used the fact LK is separated
from zero. Hence, using the left inequality in (2.1), we have |K ∩D|1/n ≥ 1/(CLK), which
implies (3.7).

Although being a tautology, the relation (3.7) shows that Milman’s Theorem 1.1 in the
form m(K) ≥ c > 0 would follow from the assertion of the slicing conjecture, telling that LK
is bounded from above by a universal constant. In fact, with similar arguments (3.7) may be
sharpened as

m(K) ≥ c

L̃K

in terms of L̃K = infK′ LK′ , where the infimum is taken over all convex bodies K ′ in Rn

with baricenter at the origin, such that |K ′| = 1 and 1
2 K

′ ⊂ K ⊂ 2K ′. On the other hand,
a remarkable theorem due to B. Klartag [K] concerning the isomorphic variant of the slic-
ing problem asserts that L̃K is indeed bounded from above by a universal constant. Hence,
Klartag’s theorem implies that m(K) is separated from zero (and therefore implies Theo-
rem 1.1, provided that one can use the reverse Santalo and the extended Roger-Shephard’s
inequalities).
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4 Isotropic constants of restricted Gaussian measures

Let K be a symmetric convex body in Rn with volume |K| = 1. As it was already discussed,
the quantity

M(K) = inf
E
M(K, E) (4.1)

may be bounded both from above and below by negative powers of

m(K) = sup
|E|=1

|K ∩ E|1/n.

Thanks to Theorem 1.1, the latter quantity is separated from zero.
Now, assume the normalized restricted Gaussian measure γK is isotropic. As we know

from Corollary 3.3, γ(K∩D)1/n ∼ m(K), where D is the Euclidean ball in Rn of unit volume.
Together with (3.5) this gives, up to an absolute constant C,

m(K) ≤ C |K ∩D|1/n.

Hence, by Corollary 2.2, cf (2.6), and Corollary 2.3,

M(K,D) ∼ |K ∩D|−4/n ≤ C4m(K)−4 ≤ C ′M(K)4.

Irrespectively of whether or not E = D realizes minimum to (4.1), if M(K) is bounded by a
universal constant, then so is M(K,D). It is in this sense K is in an M -position (which is
the first assertion in Theorem 1.2).

Now, let us look at the isotropic constant of γK . It is defined like in the general symmetric
isotropic log-concave case (1.3) by

L2
γK

=
1

γ(K)2/n

∫ |x|2
n

dγK(x). (4.2)

Lemma 4.1. Given a symmetric convex body K in Rn with volume |K| = 1, if γK is
isotropic, then

c ≤
∫ |x|2

n
dγK(x) ≤ 1 (4.3)

with some absolute constant c > 0. In particular,

LγK ∼ γ(K)−1/n.

The right inequality in (4.3) remains to hold regardless of the volume of K and of whether
γK is isotropic or not. However, the assumptions are important for the left inequality. This
can be seen on the example of the parallepipeds

K =
[
−ε

2
,
ε

2

]n−1

×
[
− 1

2εn−1
,

1
2εn−1

]
, ε > 0.

Indeed, in this particular case rewrite the left inequality in (4.3) equivalently as∫ ε
2

− ε
2

. . .

∫ ε
2

− ε
2

∫ − 1
2εn−1

− 1
2εn−1

(
x2

1 + . . .+ x2
n

n
− c
)
e−

1
2

(x2
1+...+x2

n) dx1 . . . dxn ≥ 0.



11

Dividing by εn−1 and letting ε→ 0, in the limit we obtain that
∫+∞
−∞ (x

2
n
n − c) e

−x2
n/2 dxn ≥ 0,

so, c ≤ 1
n .

Proof of Lemma 4.1. Since γK has a log-concave density with respect to γ, it inherits
many properties of the standard Gaussian measure. As an example, it satisfies an isoperi-
metric inequality similarly to the Gaussian case (cf. [B-L], [Bob], [C]). In addition, for any
function u on Rn with Lipschitz semi-norm ‖u‖Lip ≤ 1,

VarγK (u) ≤ Varγ(u) ≤ 1.

One may take u(x) = xi, so if K is symmetric, we get
∫
x2
i dγK ≤ 1. Hence,

∫
|x|2 dγK(x) ≤ n,

which is the right inequality in (4.3).
For the left inequality of the lemma (which is not needed for Theorem 1.2), one may use

the well-known fact that the isotropic constants are separated from zero. Hence, from (4.2)
and using Corollary 3.3 and Theorem 1.1, we have with some absolute constants∫ |x|2

n
dγK(x) ≥ c1γ(K)2/n ≥ c2m(K)2 ≥ c3 > 0.

Proof of (1.4). Now, it is easy to complete the proof of Theorem 1.2. According to
Lemma 4.1, if |K| = 1 and γK is isotropic,

LγK ∼
1

γ(K)1/n
∼ 1
γ(K ∩D)1/n

∼ 1
m(K)

≤ CM(K).

It remains to apply Theorem 1.1.

Remark. If K is a symmetric convex body in Rn with |K| = 1, and if γK is not
necessarily isotropic, then we only have an inequality

LγK ≤ γ(K)−1/n.

Arguing as before, we have

γ(K)−1/n ∼ γ(K ∩D)−1/n ≤ C |K ∩D|−1/n.

Hence, by Theorem 1.1, LγK is still universally bounded, as long as K is in M -position.

Acknowledgement. The author would like to thank a referee for valuable remarks and
suggestions.
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