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REGULARIZED DISTRIBUTIONS AND ENTROPIC

STABILITY OF CRAMER’S CHARACTERIZATION

OF THE NORMAL LAW

S. G. BOBKOV1,4, G. P. CHISTYAKOV2,4, AND F. GÖTZE3,4

Abstract. For regularized distributions we establish stability of the characterization of the
normal law in Cramer’s theorem with respect to the total variation norm and the entropic
distance. As part of the argument, Sapogov-type theorems are refined for random variables
with finite second moment.

1. Introduction

Let X and Y be independent random variables. A theorem of Cramer [Cr] indicates
that, if the sum X + Y has a normal distribution, then both X and Y are normal. P. Lévy
established stability of this characterization property with respect to the Lévy distance, which
is formulated as follows. Given ε > 0 and distribution functions F , G,

L(F ∗G,Φ) < ε ⇒ L(F,Φa1,σ1
) < δε, L(G,Φa2,σ2

) < δε,

for some a1, a2 ∈ R and σ1, σ2 > 0, where δε only depends on ε, and in a such way that δε → 0
as ε→ 0. Here Φa,σ stands for the distribution function of the normal law N(a, σ2) with mean
a and standard deviation σ, i.e., with density

ϕa,σ(x) =
1

σ
√
2π

e−(x−a)2/2σ2

, x ∈ R,

and we omit indices in the standard case a = 0, σ = 1. As usual, F ∗G denotes the convolution
of the corresponding distributions.

The problem of quantitative versions of this stability property of the normal law has been
intensively studied in many papers, starting with results by Sapogov [S1-3] and ending with
results by Chistyakov and Golinskii [C-G], who found the correct asymptotic of the best
possible error function ε→ δε for the Lévy distance. See also [Z1], [M], [L-O], [C], [Se] [Sh1-2].

As for stronger metrics, not much is known up to now. According to McKean ([MC], cf.
also [C-S] for some related aspects of the problem), it was Kac who raised the question about
the stability in Cramer’s theorem with respect to the entropic distance to normality. Let us
recall that, if a random variable X with finite second moment has a density p(x), its entropy

h(X) = −
∫ ∞

−∞
p(x) log p(x) dx
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is well-defined and is bounded from above by the entropy of the normal random variable Z,
having the same variance σ2 = Var(Z) = Var(X). The entropic distance to the normal is
given by the formula

D(X) = h(Z)− h(X) =

∫ ∞

−∞
p(x) log

p(x)

ϕa,σ(x)
dx,

where in the last formula it is assumed that a = EZ = EX. It represents the Kullback-Leibler
distance from the distribution F of X to the family of all normal laws on the line.

In general, 0 ≤ D(X) ≤ ∞, and an infinite value is possible. This quantity does not depend
on the variance of X and is stronger than the total variation distance ‖F − Φa,σ‖TV, as may
be seen from the Pinsker (Pinsker-Csiszár-Kullback) inequality

D(X) ≥ 1

2
‖F − Φa,σ‖2TV.

Thus, Kac’s question is whether one can bound the entropic distance D(X+Y ) from below
in terms of D(X) and D(Y ) for independent random variables, i.e., to have an inequality

D(X + Y ) ≥ α(D(X),D(Y ))

with some non-negative function α, such that α(t, s) > 0 for t, s > 0. If so, Cramer’s theorem
would be an immediate consequence of this. Note that the reverse inequality does exist, and
in case Var(X + Y ) = 1 we have

D(X + Y ) ≤ Var(X)D(X) + Var(Y )D(Y ),

which is due to the general entropy power inequality, cf. [D-C-T].
It turned out that Kac’s question has a negative solution. More precisely, for any ε > 0, one

can construct independent random variables X and Y with absolutely continuous symmetric
distributions F , G, and with Var(X) = Var(Y ) = 1, such that

a) D(X + Y ) < ε ;

b) ‖F − Φa,σ‖TV > c and ‖G− Φa,σ‖TV > c, for all a ∈ R and σ > 0,

where c > 0 is an absolute constant, see [B-C-G1]. In particular, D(X) and D(Y ) are bounded
away from zero. Moreover, refined analytic tools show that the random variables may be chosen
to be identically distributed, i.e., a)− b) hold with F = G, see [B-C-G2].

Nevertheless, Kac’s problem remains to be of interest for subclasses of probability measures
obtained by convolution with a “smooth” distribution. The main purpose of this note is to
give an affirmative solution to the problem in the (rather typical) situation, when independent
Gaussian noise is added to the given random variables. That is, for a small parameter σ > 0,
we consider the regularized random variables

Xσ = X + σZ, Yσ = Y + σZ,

where Z denotes a standard normal random variable, independent of X,Y . As a main result,
we prove:

Theorem 1.1. Let X,Y be independent random variables with Var(X + Y ) = 1. Given

0 < σ ≤ 1, the regularized random variables Xσ and Yσ satisfy

D(Xσ + Yσ) ≥ exp
{

− c log7(2 + 1/D)

D2

}

,

where c > 0 is an absolute constant, and

D = σ2
(

Var(Xσ)D(Xσ) + Var(Yσ)D(Yσ)
)

.
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Thus, if D(Xσ +Yσ) is small, the entropic distances D(Xσ) and D(Yσ) have to be small, as
well. In particular, Cramer’s theorem is a consequence of this statement. However, it is not
clear whether the above lower bound is optimal with respect to the couple (D(Xσ),D(Yσ)),
and perhaps the logarithmic term in the exponent may be removed. As we will see, a certain
improvement of the bound can be achieved, when X and Y have equal variances.

Beyond the realm of results around P. Lévy’s theorem, recently there has been renewed the
interest in other related stability problems in different areas of Analysis and Geometry. One
can mention, for example, the problems of sharpness of the Brunn-Minkowski and Sobolev-type
inequalities (cf. [F-M-P1-2], [Seg], [B-G-R-S]).

We start with the description and refinement of Sapogov-type theorems about the normal
approximation in Kolmogorov distance (Sections 2-3) and then turn to analogous results for
the Lévy distance (Section 4). A version of Theorem 1.1 for the total variation distance is given
in Section 5. Sections 6-7 deal with the problem of bounding the tail function EX2 1{|X|≥T} in
terms of the entropic distances D(X) and D(X +Y ), which is an essential part of Kac’s prob-
lem. A first application, namely, to a variant of Chistyakov-Golinskii’s theorem, is discussed
in Section 8. In Section 9, we develop several estimates connecting the entropic distance D(X)
and the uniform deviation of the density p from the corresponding normal density. In Section
10 an improved variant of Theorem 1.1 is derived in the case, where X and Y have equal
variances. The general case is treated in Section 11. Finally, some relations between different
distances in the space of probability distributions on the line are postponed to appendix.

2. Sapogov-type theorems for Kolmogorov distance

Throughout the paper we consider the following classical metrics in the space of probability
distributions on the real line:

1) The Kolmogorov or L∞-distance ‖F −G‖ = supx |F (x) −G(x)|;
2) The Lévy distance

L(F,G) = min
{

h ≥ 0 : G(x− h)− h ≤ F (x) ≤ G(x+ h) + h, ∀x ∈ R
}

;

3) The Kantorovich or L1-distance

W1(F,G) =

∫ ∞

−∞
|F (x)−G(x)| dx;

4) The total variation distance

‖F −G‖TV = sup
∑

|(F (xk)−G(xk))− (F (yk)−G(yk))|,
where the sup is taken over all finite collections of points y1 < x1 < · · · < yn < xn.

In these relations, F and G are arbitrary distribution functions. Note that the quantity
W1(F,G) is finite, as long as both F and G have a finite first absolute moment.

In the sequel, Φa,v or N(a, v2) denote the normal distribution (function) with parameters
(a, v2), a ∈ R v > 0. If a = 0, we write Φv, and write Φ in the standard case a = 0, v = 1.

Now, let X and Y be independent random variables with distribution functions F and G.
Then the convolution F ∗ G represents the distribution of the sum X + Y . If both random
variables have mean zero and unit variances, Sapogov’s main stability result reads as follows:

Theorem 2.1. Suppose that EX = EY = 0 and Var(X) = Var(Y ) = 1. If

‖F ∗G− Φ ∗ Φ‖ ≤ ε < 1,
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then with some absolute constant C

‖F − Φ‖ ≤ C
√

log 1
ε

and ‖G− Φ‖ ≤ C
√

log 1
ε

.

In the general case (that is, when there are no finite moments), the conclusion is somewhat
weaker. Namely, with ε ∈ (0, 1), we associate

a1 =

∫ N

−N
x dF (x), σ21 =

∫ N

−N
x2 dF (x)− a21 (σ1 ≥ 0),

and similarly (a2, σ
2
2) for the distribution function G, where N = N(ε) = 1 +

√

2 log(1/ε).
In the sequel, we also use the function

m(σ, ε) = min
{ 1√

σ
, log log

ee

ε

}

, σ > 0, 0 < ε ≤ 1.

Theorem 2.2. Assume ‖F ∗G− Φ‖ ≤ ε < 1. If F has median zero, and σ1, σ2 > 0, then
with some absolute constant C

‖F − Φa1,σ1
‖ ≤ C

σ1

√

log 1
ε

m(σ1, ε),

and similarly for G.

Originally, Sapogov derived a weaker bound in [Sa1-2] with worse behaviour with respect
to both σ1 and ε. In [Sa3] he gave an improvement,

‖F − Φa1,σ1
‖ ≤ C

σ31

√

log 1
ε

with a correct asymptotic of the right-hand side with respect to ε, cf. also [L-O]. The correct-
ness of the asymptotic with respect to ε was studied in [M], cf. also [C]. In 1976 Senatov [Se1],

using the ridge property of characteristic functions, improved the factor σ31 to σ
3/2
1 , i.e.,

‖F − Φa1,σ1
‖ ≤ C

σ
3/2
1

√

log 1
ε

. (2.1)

He also emphasized that the presence of σ1 in the bound is essential. A further improvement
of the power of σ1 is due to Shiganov [Sh1-2]. Moreover, at the expense of an additional

ε-dependent factor, one can replace σ
3/2
1 with σ1. As shown in [C-G], see Remark on p. 2861,

‖F − Φa1,σ1
‖ ≤ C log log ee

ε

σ1

√

log 1
ε

. (2.2)

Therefore, Theorem 2.2 is just the combination of the two results, (2.1) and (2.2).
Let us emphasize that all proofs of these theorems use the methods of the Complex Analysis.

Moreover, up to now there is no ”Real Analysis” proof of the Cramér theorem and of its
extensions in the form of Sapogov-type results. This, however, does not concern the case of
identically distributed summands, cf. [B-C-G2].

We will discuss the bounds in the Lévy distance in the next sections.
The assumption about the median in Theorem 2.2 may be weakened to the condition that

the medians of X and Y , m(X) and m(Y ), are bounded in absolute value by a constant. For
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example, if EX = EY = 0 and Var(X + Y ) = 1, and if, for definiteness, Var(X) ≤ 1/2, then,
by Chebyshev’s inequality, |m(X)| ≤ 1, while |m(Y )| will be bounded by an absolute constant,
when ε is small enough, due to the main hypothesis ‖F ∗G− Φ‖ ≤ ε.

Moreover, if the variances of X and Y are bounded away from zero, the statement of
Theorem 2.2 holds with a1 = 0, and the factor σ1 can be replaced with the standard deviation
of X. In the next section, we recall some standard arguments in order to justify this conclusion
and give a more general version of Theorem 2.2 involving variances:

Theorem 2.3. Let EX = EY = 0, Var(X + Y ) = 1. If ‖F ∗G − Φ‖ ≤ ε < 1, then with

some absolute constant C

‖F − Φv1‖ ≤ Cm(v1, ε)

v1

√

log 1
ε

and ‖G− Φv2‖ ≤ Cm(v2, ε)

v2

√

log 1
ε

,

where v21 = Var(X), v22 = Var(Y ) (v1, v2 > 0).

Under the stated assumptions, Theorem 2.3 is stronger than Theorem 2.2, since v1 ≥ σ1.
Another advantage of this formulation is that v1 does not depend on ε, while σ1 does.

3. Proof of Theorem 2.3

Let X and Y be independent random variables with distribution functions F and G, re-
spectively, with EX = EY = 0 and Var(X + Y ) = 1. We assume that

‖F ∗G− Φ‖ ≤ ε < 1,

and keep the same notations as in Section 2. Recall that N = N(ε) = 1 +
√

2 log(1/ε).
The proof of Theorem 2.3 is entirely based on Theorem 2.2. We will need:

Lemma 3.1. With some absolute constant C we have

0 ≤ 1− (σ21 + σ22) ≤ CN2√ε.

A similar assertion, |σ21 + σ22 − 1| ≤ CN2ε, is known under the assumption that F has a
median at zero (without moment assumptions). For the proof of Lemma 3.1, we use arguments
from [Sa1] and [Se1], cf. Lemma 1. It will be convenient to divide the proof into several steps.

Lemma 3.2. Let ε ≤ ε0 =
1
4 − Φ(−1) = 0.0913... Then |m(X)| ≤ 2 and |m(Y )| ≤ 2.

Indeed, let Var(X) ≤ 1/2. Then |m(X)| ≤ 1, by Chebyshev’s inequality. Hence,

1

4
≤ P{X ≤ 1, Y ≤ m(Y )} ≤ P{X + Y ≤ m(Y ) + 1} ≤ Φ(m(Y ) + 1) + ε,

which for ε ≤ 1
4 implies that m(Y ) + 1 ≥ Φ−1(14 − ε). In particular, m(Y ) ≥ −2, if ε ≤ ε0.

Similarly, m(Y ) ≤ 2. �

To continue, introduce truncated random variables at level N . Put X∗ = X in case
|X| ≤ N , X∗ = 0 in case |X| > N , and similarly Y ∗ for Y . Note that

EX∗ = a1, Var(X∗) = σ21, and EY ∗ = a2, Var(Y ∗) = σ22.

By the construction, σ1 ≤ v1 and σ2 ≤ v2. In particular, σ21 + σ22 ≤ v21 + v22 = 1. Let F ∗, G∗

denote the distribution functions of X∗, Y ∗, respectively.
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Lemma 3.3. With some absolute constant C we have

‖F ∗ − F‖ ≤ C
√
ε, ‖G∗ −G‖ ≤ C

√
ε, ‖F ∗ ∗G∗ − Φ‖ ≤ C

√
ε.

Proof. One may assume that N = N(ε) is a point of continuity of both F and G. Since
the Kolmogorov distance is bounded by 1, one may also assume that ε is sufficiently small,
e.g., ε < min{ε0, ε1}, where ε1 = exp{−1/(3− 2

√
2 )}. In this case (N − 2)2 > (N − 1)2/2, so

Φ(−(N − 2)) = 1− Φ(N − 2) ≤ 1

2
e−(N−2)2/2 ≤ 1

2
e−(N−1)2/4 =

√
ε

2
.

By Lemma 3.2 and the basic assumption on the convolution F ∗G,
1

2
P{Y ≤ −N} ≤ P{X ≤ 2, Y ≤ −N}

≤ P{X + Y ≤ −(N − 2)} = (F ∗G)(−(N − 2)) ≤ Φ(−(N − 2)) + ε.

So, G(−N) ≤ 2Φ(−(N − 2)) + 2ε ≤ 3
√
ε. Analogously, 1−G(N) ≤ 3

√
ε. Thus,

∫

{|x|≥N}
dG(x) ≤ 6

√
ε as well as

∫

{|x|≥N}
dF (x) ≤ 6

√
ε.

In particular, for x < −N , we have |F ∗(x) − F (x)| = F (x) ≤ 6
√
ε, and similarly for

x > N . If −N < x < 0, then F ∗(x) = F (x) − F (−N), and if 0 < x < N , we have
F ∗(x) = F (x) + (1− F (N)). In both cases, |F ∗(x)− F (x)| ≤ 6

√
ε. Therefore,

‖F ∗ − F‖ ≤ 6
√
ε.

Similarly, ‖G∗ −G‖ ≤ 6
√
ε. From this, by the triangle inequality,

‖F ∗ ∗G∗ − F ∗G‖ ≤ ‖F ∗ ∗G∗ − F ∗ ∗G‖+ ‖F ∗ ∗G− F ∗G‖
≤ ‖F ∗ − F‖+ ‖G∗ −G‖ ≤ 12

√
ε.

Finally,

‖F ∗ ∗G∗ − Φ‖ ≤ ‖F ∗ ∗G∗ − F ∗G‖ + ‖F ∗G−Φ‖ ≤ 12
√
ε+ ε ≤ 13

√
ε.

�

Proof of Lemma 3.1. Since |X∗+Y ∗| ≤ 2N and a1+a2 = E (X∗+Y ∗) =
∫

x dF ∗∗G∗(x),
we have, integrating by parts,

a1 + a2 =

∫ 2N

−2N
x d((F ∗ ∗G∗)(x)− Φ(x))

= x ((F ∗ ∗G∗)(x) − Φ(x))

∣

∣

∣

∣

x=2N

x=−2N

−
∫ 2N

−2N
((F ∗ ∗G∗)(x)− Φ(x)) dx.

Hence, |a1 + a2| ≤ 8N ‖F ∗ ∗G∗ −Φ‖, which, by Lemma 3.3, is bounded by CN
√
ε. Similarly,

E (X∗ + Y ∗)2 − 1 =

∫ 2N

−2N
x2 d((F ∗ ∗G∗)(x)− Φ(x))−

∫

{|x|>2N}
x2 dΦ(x)

= x2 ((F ∗ ∗G∗)(x)− Φ(x))

∣

∣

∣

∣

x=2N

x=−2N

− 2

∫ 2N

−2N
x ((F ∗ ∗G∗)(x)− Φ(x)) dx−

∫

{|x|>2N}
x2 dΦ(x).
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Hence,
∣

∣E (X∗ + Y ∗)2 − 1
∣

∣ ≤ 24N2 ‖F ∗ ∗G∗ − Φ‖+ 2

∫ ∞

2N
x2 dΦ(x).

The last integral asymptotically behaves like 2Nϕ(2N) < Ne−2(N−1)2 = Nε4. Therefore,
∣

∣E (X∗ + Y ∗)2 − 1
∣

∣ is bounded by CN2√ε. Finally, writing σ21+σ22 = E (X∗+Y ∗)2−(a1+a2)
2,

we get that
∣

∣σ21 + σ22 − 1
∣

∣ ≤
∣

∣E (X∗ + Y ∗)2 − 1
∣

∣+ (a1 + a2)
2 ≤ CN2√ε

with some absolute constant C. Lemma 3.1 follows. �

Proof of Theorem 2.3. First note that, given a > 0, σ > 0, and x ∈ R, the function

ψ(x) = Φ0,σ(x)− Φa,σ(x) = Φ
(x

σ

)

− Φ
(x− a

σ

)

is vanishing at infinity, has a unique extreme point x0 =
a
2 , and ψ(x0) =

∫ a/2σ
−a/2σ ϕ(y) dy ≤ a

σ
√
2π
.

Hence, including the case a ≤ 0, as well, we get

‖Φa,σ − Φ0,σ‖ ≤ |a|
σ
√
2π
.

We apply this estimate for a = a1 and σ = σ1. Since EX = 0 and Var(X + Y ) = 1, by
Cauchy’s and Chebyshev’s inequalities,

|a1| =
∣

∣EX 1{|X|≥N}
∣

∣ ≤ P{|X| ≥ N}1/2 ≤ 1

N
<

1
√

log e
ε

.

Hence,

‖Φa1,σ1
− Φ0,σ1

‖ ≤ |a1|
σ1

√
2π

≤ C

σ1

√

log 1
ε

.

A similar inequality also holds for the parameters (a2, σ2).
Now, define the non-negative numbers u1 = v1 − σ1, u2 = v2 − σ2. By Lemma 3.1,

CN2√ε ≥ 1− (σ21 + σ22) = 1−
(

(v1 − u1)
2 + (v2 − u2)

2
)

= u1 (2v1 − u1) + u2 (2v2 − u2) ≥ u1v1 + u2v2.

Hence,

u1 ≤
CN2√ε
v1

and u2 ≤
CN2√ε
v2

.

These relations can be used to estimate the Kolmogorov distance ∆ = ‖Φ0,v1 −Φ0,σ1
‖.

Given two parameters α > β > 0, consider the function of the form ψ(x) = Φ(αx)−Φ(βx).
In case x > 0, by the mean value theorem, for some x0 ∈ (βx, αx),

ψ(x) = (α− β)xϕ(x0) < (α− β)xϕ(βx).

Here, the right-hand side is maximized for x = 1
β , which gives ψ(x) < 1√

2πe

α−β
β . A similar

bound also holds for x < 0. Using this bound with α = 1/σ1 (σ1 > 0), β = 1/v1, we obtain

∆ ≤ 1√
2πe

v1

(

1

σ1
− 1

v1

)

=
1√
2πe

u1
σ1

≤ CN2√ε
σ1v1

≤ CN2√ε
σ21

.
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Thus, applying Theorem 2.2, we get with some universal constant C > 1 that

‖F − Φ0,v1‖ ≤ ‖F − Φa1,σ1
‖+ ‖Φa1,σ1

− Φ0,σ1
‖+ ‖Φ0,σ1

− Φ0,v1‖

≤ C

σ1

√

log 1
ε

m(σ1, ε) +
C

σ1

√

log 1
ε

+
CN2√ε
σ21

≤ 2C

σ1

√

log 1
ε

m(σ1, ε) +
CN2√ε
σ21

. (3.1)

The obtained estimate remains valid when σ1 = 0, as well. On the other hand, σ1 = v1−u1 ≥
v1− CN2

√
ε

v1
≥ 1

2 v1 where the last inequality is fulfilled for the range v1 ≥ v(ε) =
√
C N (4ε)1/4.

Hence, from (3.1) and using m(σ1, ε) ≤ 2m(v1, ε), for this range

‖F − Φ0,v1‖ ≤ 8Cm(v1, ε)

v1

√

log 1
ε

+
4CN2√ε

v21
.

Here, since m(v1, ε) ≥ 1, the first term on the right-hand side majorizes the second one, if

v1 ≥ ṽ(ε) = N2

√

ε log
1

ε
.

Therefore, when v1 ≥ w(ε) = max{v(ε), ṽ(ε)}, with some absolute constant C ′ we have

‖F − Φ0,v1‖ ≤ C ′m(v1, ε)

v1

√

log 1
ε

.

Thus, we arrive at the desired inequality for the range v1 ≥ w(ε). But the function w behaves

almost polynomially near zero and admits, for example, a bound of the form w(ε) ≤
√
C ′′ ε1/6,

0 < ε < ε0, with some universal ε0 ∈ (0, 1), C ′′ > 1. So, when v1 ≤ w(ε), 0 < ε < ε0, we have

1

v1

√

log 1
ε

≥ 1

w(ε)
√

log 1
ε

≥ 1

ε1/6
√

C ′′ log 1
ε

.

Here, the last expression is greated than 1, as long as ε is sufficiently small, say, for all
0 < ε < ε1, where ε1 is determined by (C ′′, ε0). Hence, for all such ε, we have a better bound

‖F − Φ0,v1‖ ≤ C

v1

√

log 1
ε

.

It remains to increase the constant C ′ in order to involve the remaining values of ε. A
similar conclusion is true for the distribution G. Theorem 2.3 is thus proved completely. �

4. Stability in Cramer’s theorem for the Lévy distance

Let X and Y be independent random variables with distribution functions F and G. It
turns out that in the bound of Theorem 2.2, the parameter σ1 can be completely removed, if
we consider the stability problem for the Lévy distance. More precisely, the following theorem
was established in [C-G].
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Theorem 4.1. Assume that ‖F ∗G− Φ‖ ≤ ε < 1. If F has median zero, then with some

absolute constant C

L(F,Φa1,σ1
) ≤ C

(log log 4
ε )

2

√

log 1
ε

.

Recall that

a1 =

∫ N

−N
x dF (x), σ21 =

∫ N

−N
x2 dF (x)− a21 (σ1 ≥ 0),

and similarly (a2, σ
2
2) for the distribution function G, where N = 1 +

√

2 log(1/ε).
As we have already discussed, the assumption about the median may be relaxed to the

condition that the median is bounded (by a universal constant).
The first quantitative stability result for the Lévy distance, namely,

L(F,Φa1,σ1
) ≤ C log−1/8(1/ε),

was obtained in 1968 by Zolotarev [Z1], who applied his famous Berry-Esseen-type bound. The
power 1/8 was later improved to 1/4 by Senatov [Se1] and even more by Shiganov [Sh1-2].
The stated asymptotic in Theorem 4.1 is unimprovable, which was also shown in [C-G].

Note that in the assumption of Theorem 4.1, the Kolmogorov distance can be replaced with
the Lévy distance L(F,Φ) in view of the general relations

L(F,Φ) ≤ ‖F ∗G− Φ‖ ≤ (1 +M)L(F,Φ), M = ‖Φ‖Lip =
1√
2π
.

However, in the conclusion such replacement cannot be done at the expense of a universal
constant, since we only have

‖F − Φa1,σ1
‖ ≤ (1 +M)L(F,Φa1,σ1

), M = ‖Φa1,σ1
‖Lip =

1

σ1
√
2π
.

Now, our aim is to replace in Theorem 4.1 the parameters (a1, σ1), which depend on ε,
with (0, v1) like in Theorem 2.3. That is, we have the following:

Question. Assume that EX = EY = 0, Var(X + Y ) = 1, and L(F ∗ G,Φ) ≤ ε < 1. Is it
true that

L(F,Φv1) ≤ C
(log log 4

ε )
2

√

log 1
ε

with some absolute constant C, where v21 = Var(X)?

In a sense, it is the question on the closeness of σ1 to v1 in the situation, where σ1 is small.
Indeed, using the triangle inequality, one can write

L(F,Φv1) ≤ L(F,Φa1,σ1
) + L(Φa1,σ1

,Φ0,σ1
) + L(Φσ1

,Φv1).

Here, the first term may be estimated according to Theorem 4.1. For the second one, we have
a trivial uniform bound (over all σ1),

L(Φa1,σ1
,Φ0,σ1

) ≤ |a1|,
which follows from the definition of the Lévy metric. In turn, the parameter a1 admits the
bound, which was already used in the proof of Theorem 2.3, namely, |a1| < 1√

log e
ε

. This bound

behaves better than the one in Theorem 4.1, so we obtain:
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Lemma 4.2. If EX = EY = 0, Var(X + Y ) = 1, and L(F ∗G,Φ) ≤ ε < 1, then

L(F,Φv1) ≤ C
(log log 4

ε )
2

√

log 1
ε

+ L(Φσ1
,Φv1).

Thus, we are reduced to estimating the distance L(Φσ1
,Φv1), which in fact should be done

in terms of v21 − σ21 .

Lemma 4.3. Given v ≥ σ ≥ 0, such that v2 − σ2 ≤ 1, we have

L(Φσ,Φv)
2 ≤ (v2 − σ2) log

2

v2 − σ2
.

Proof. It will be clear that the asymptotic in terms of α =
√
v2 − σ2 is correct.

Since the normal distributions with mean zero are symmetric about the origin, the Lévy
distance L(Φσ,Φv) represents an optimal value h ≥ 0, such that the inequality

Φσ(x) ≤ Φv(x+ h) + h (4.1)

holds true for all x. (The other inequality, Φv(x) ≤ Φσ(x + h) + h, is equivalent to (4.1)).
Moreover, for x ≤ 0, we have Φσ(x) ≤ Φv(x), so only x > 0 should be taken into consideration.

We may assume v > σ, i.e., α > 0. Changing the variable x = σy, y > 0, (4.1) becomes

Φ(y) ≤ Φ

(

σy + h

v

)

+ h. (4.2)

Here h needs to serve for all σ > 0, while α is fixed. So, we need to minimize the function
ψ(σ) = σy+h

v = σy+h√
σ2+α2

. By the direct differentiation, we find that

ψ′(σ) =
yα2 − σh

(σ2 + α2)3/2
= 0 ⇐⇒ σ = σ0 ≡

yα2

h
, ψ(σ0) =

√

y2 + (h/α)2 ≥ y.

Since ψ′(0) > 0, we may conclude that ψ is increasing for σ ≤ σ0 and is decreasing for σ ≥ σ0.
Hence, the inequality (4.2) will only be strengthened, if we replace it with

Φ(y) ≤ inf
σ≥0

Φ(ψ(σ)) + h = min{Φ(ψ(0)),Φ(ψ(∞))} + h = min
{

Φ
(h

α

)

,Φ(y)
}

+ h.

That is, Φ(y) ≤ Φ(hα) + h, and since y > 0 is arbitrary, it is equivalent to 1 ≤ Φ(hα) + h. In
other words,

L(Φσ,Φv) ≤ L(Φ0,Φα),

where Φ0 denotes the unit mass at the origin.
Thus, we are reduced to the case σ = 0. But then the Lévy distance h0 = L(Φ0,Φα) repre-

sents the (unique) solution to the equation 1 = Φ
(

h
α

)

+h. To estimate it, we may use the bound

1−Φ(hα) ≤ 1
2 e

−h2/2α2

which gives 2h0 ≤ e−h2

0
/2α2

. After the change h0 = α
√

2 log(c0/α), and
using α ≤ 1, we obtain

1 ≥ 2c0

√

2 log
c0
α

≥ 2c0
√

2 log c0,

so, 4c20 log c20 ≤ 1. It follows that c20 < 2 and h0 ≤ α
√

log(2/α2), as was claimed. �

Remark. Attempts to derive bounds on the Lévy distance L(Φσ,Φv) by virtue of standard
general relations, such as Zolotarev’s Berry-Esseen-type estimate [Z2], lead to worse depen-
dences of α2 = v2 − σ2. For example, using a general relation L(F,G)2 ≤ W1(F,G), cf.
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Proposition A.1.1, together with the Kantorovich-Rubinshtein theorem, we get that

L(Φσ,Φv)
2 ≤W1(Φσ,Φv) ≤ E |σZ − vZ| ≤ v − σ =

v2 − σ2

v + σ
,

where Z ∼ N(0, 1) and where we did not loose much when bounding W1. This estimate has
a disadvantage in comparison with Lemma 4.3 because of a possible small denominator.

In view of Lemmas 4.2-4.3, in order to proceed, one needs to bound v21 − σ21 in terms of ε.
However, this does not seem to be possible in general without stronger hypotheses. Note that

v21 − σ21 =

∫

{|x|>N}
x2 dF (x) + a21.

Hence, we need to deal with the quadratic tail function

δX(T ) =

∫

{|x|>T}
x2 dF (x), T ≥ 0,

whose behavior at infinity will play an important role in the sequel.
Now, combining Lemmas 4.2 and 4.3, we obtain

L(F,Φv1) ≤ C
(log log 4

ε )
2

√

log 1
ε

+R
(

δX(N) + a21
)

,

where R(t) =
√

t log(2/t). This function is non-negative and concave in the interval 0 ≤ t ≤ 2,
with R(0) = 0. Hence, it is subadditive in the sense that R(ξ + η) ≤ R(ξ) + R(η), for all
ξ, η ≥ 0, ξ + η ≤ 2. Hence,

R
(

δX(N) + a21
)

≤ R(δX(N)) +R(a21)

=

(

δX(N) log
2

δX(N)

)1/2

+

√

a21 log
2

a21
.

As we have already noticed, |a1| ≤ A = 1√
log e

ε

. In particular, |a1| ≤ 1. Since the function

t → t log(e/t) is increasing in 0 ≤ t ≤ 1,

a21 log
2

a21
≤ a21 log

e

a21
≤ A2 log

e

A2
=

1

log e
ε

(

1 + log log
e

ε

)

.

Taking the square root of the right-hand side, we obtain a function which can be majorized
and absorbed by the bound given in Theorem 4.1. As a result, we have arrived at the following
consequence of this theorem.

Theorem 4.4. Assume independent random variables X and Y have distribution functions

F and G with mean zero and with Var(X + Y ) = 1. If L(F ∗ G,Φ) ≤ ε < 1, then with some

absolute constant C

L(F,Φv1) ≤ C
(log log 4

ε )
2

√

log 1
ε

+
√

δX(N) log(2/δX (N)) ,

where v1 =
√

Var(X), N = 1 +
√

2 log(1/ε), and δX(N) =
∫

{|x|>N} x
2 dF (x).

It seems that in general it is not enough to know that Var(X) ≤ 1 and L(F ∗G,Φ) ≤ ε < 1,
in order to judge the decay of the quadratic tail function δX(T ) as T → ∞. So, some additional
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properties should be involved. As we will see, the entropic distance perfectly suits this idea,
so that one can start with the entropic assumption D(X + Y ) ≤ ε.

5. Application of Sapogov-type results to Gaussian regularization

In this section we consider the stability problem in Cramer’s theorem for the regularized
distributions with respect to the total variation norm. As a basic tool, we use Theorem 2.3.

Thus, let X and Y be independent random variables with distribution functions F and G,
and with variances Var(X) = v21 , Var(Y ) = v22 (v1, v2 > 0, v21 + v22 = 1), so that X + Y has
variance 1. What is not important (and is assumed for simplicity of notations, only), let both
X and Y have mean zero. As we know from Theorem 2.3, the main stability result asserts
that if ‖F ∗G− Φ‖ ≤ ε < 1, then

‖F − Φv1‖ ≤ Cm(v1, ε)

v1

√

log 1
ε

, ‖G− Φv2‖ ≤ Cm(v2, ε)

v2

√

log 1
ε

for some absolute constant C. Here, as before

m(v, ε) = min
{ 1√

v
, log log

ee

ε

}

, v > 0, 0 < ε ≤ 1.

On the other hand, such a statement – even in the case of equal variances – is no longer
true for the total variation norm. So, it is natural to use the Gaussian regularizations

Xσ = X + σZ, Yσ = Y + σZ,

where Z ∼ N(0, 1) is independent of X and Y , and where σ is a (small) positive parameter.
For definiteness, we assume that 0 < σ ≤ 1. Note that

Var(Xσ) = v21 + σ2, Var(Yσ) = v22 + σ2 and Var(Xσ + Yσ) = 1 + 2σ2.

Denote by Fσ and Gσ the distributions of Xσ and Yσ, respectively. Assume Xσ +Yσ is almost
normal in the sense of the total variation norm and hence in the Kolmogorov distance, namely,

‖Fσ ∗Gσ −N(0, 1 + 2σ2)‖ ≤ 1

2
‖Fσ ∗Gσ −N(0, 1 + 2σ2)‖TV ≤ ε ≤ 1.

Note that Xσ + Yσ = (X + Y ) + σ
√
2Z represents the Gaussian regularization of the sum

X+Y with parameter σ
√
2. One may also write Xσ +Yσ = X+(Y +σ

√
2Z), or equivalently,

Xσ + Yσ√
1 + 2σ2

= X ′ + Y ′, where X ′ =
X√

1 + 2σ2
, Y ′ =

Y + σ
√
2Z√

1 + 2σ2
.

Thus, we are in position to apply Theorem 2.3 to the distributions of the random variables X ′

and Y ′ with variances

v′21 =
v21

1 + 2σ2
and v′22 =

v22 + 2σ2

1 + 2σ2
.

Using 1 + 2σ2 ≤ 3, it gives

‖F − Φv1‖ ≤ Cm(v′1, ε)

v′1

√

log 1
ε

≤ 3Cm(v1, ε)

v1

√

log 1
ε

.

Now, we apply Proposition A.2.2 b) to the distributions F and G = Φv1 with B = v1 and get

∥

∥Fσ −N(0, v21 + σ2)
∥

∥

TV
≤ 4v1

σ
‖F − Φv1‖1/2 ≤ 4v1

σ

√

3Cm(v1, ε)

v
1/2
1 (log 1

ε )
1/4

.
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One may simplify this bound by using v1
√

m(v1, ε) ≤
√
v1, and then we may conclude:

Theorem 5.1. Let F and G be distribution functions with mean zero and variances v21 , v
2
2,

respectively, such that v21 + v22 = 1. Let 0 < σ ≤ 1. If the regularized distributions satisfy

1

2

∥

∥Fσ ∗Gσ −N(0, 1 + 2σ2)
∥

∥

TV
≤ ε ≤ 1,

then with some absolute constant C

∥

∥Fσ −N(0, v21 + σ2)
∥

∥

TV
≤ C

σ

(

1

log 1
ε

)1/4

,
∥

∥Gσ −N(0, v22 + σ2)
∥

∥

TV
≤ C

σ

(

1

log 1
ε

)1/4

.

6. Control of tails and entropic Chebyshev-type inequality

One of our further aims is to find an entropic version of the Sapogov stability theorem for
regularized distributions. As part of the problem, we need to bound the quadratic tail function

δX(T ) = EX2 1{|X|≥T}

quantitatively in terms of the entropic distance D(X). Thus, assume a random variable X
has mean zero and variance Var(X) = 1, with a finite distance to the standard normal law

D(X) = h(Z)− h(X) =

∫ ∞

−∞
p(x) log

p(x)

ϕ(x)
dx,

where p is density of X and ϕ is the density of N(0, 1). One can also write another represen-
tation, D(X) = Entγ(f), where f = p

ϕ , with respect to the standard Gaussian measure γ on

the real line. Let us recall that the entropy functional

Entµ(f) = Eµf log f −Eµf logEµf

is well-defined for any measurable function f ≥ 0 on an abstract probability space (Ω, µ),
where Eµ stands for the expectation (integral) with respect to µ.

We are going to involve a variational formula for this functional (cf. e.g. [Le]): For all
measurable functions f ≥ 0 and g on Ω, such that Entµ(f) and Eµ e

g are finite,

Eµfg ≤ Entµ(f) +Eµf logEµ e
g.

Applying it on Ω = R with µ = γ and f = p
ϕ , we notice that Eµf = 1 and get that

∫ ∞

−∞
p(x) g(x) dx ≤ D(X) + log

∫ ∞

−∞
eg(x) ϕ(x) dx.

Take g(x) = α
2 x

2 1{|x|≥T} with a parameter α ∈ (0, 1). Then,
∫ ∞

−∞
eg(x) ϕ(x) dx = γ[−T, T ] +

∫

{|x|≥T}
e

α
2
x2

ϕ(x) dx

= γ[−T, T ] + 2√
2π

∫ ∞

T
e−(1−α) x2/2 dx = γ[−T, T ] + 2√

1− α

(

1− Φ
(

T
√
1− α

))

.

Using γ[−T, T ] < 1 and the inequality log(1 + t) ≤ t, we obtain that

log

∫ ∞

−∞
eg(x) ϕ(x) dx ≤ 2√

1− α

(

1− Φ
(

T
√
1− α

))

.

Therefore,
1

2
δX(T ) ≤ 1

α
D(X) +

2

α
√
1− α

(

1− Φ
(

T
√
1− α

))

.
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Now, we need to optimize the right-hand side over all α ∈ (0, 1). First, the standard bound
1− Φ(t) ≤ ϕ(t)/t gives

1

2
δX(T ) ≤ 1

α
D(X) +

2√
2π

1

Tα(1− α)
e−(1−α) T 2/2. (6.1)

Choosing just α = 1/2, we get

1

2
δX(T ) ≤ 2D(X) +

8

T
√
2π

e−T 2/4 ≤ 2D(X) + 2 e−T 2/4,

where the last bounds is fulfilled for T ≥ 4/
√
2π. For the remaining T the obtained inequality

is fulfilled automatically, since then 2e−T 2/4 ≥ 2e−4/2π > 1, while 1
2 δX(T ) ≤ 1

2 EX
2 = 1

2 .
Thus, we have proved the following:

Proposition 6.1. If X is a random variable with EX = 0 and Var(X) = 1, having density

p(x), then for all T > 0,

∫

{|x|≥T}
x2 p(x) dx ≤ 4D(X) + 4 e−T 2/4.

In particular, the above integral does not exceed 8D(X) for T = 2
√

log+(1/D(X)).

The choice α = 2/T 2 in (6.1) would lead to a better asymptotic in T . Indeed, if T ≥ 2,
then Tα(1− α) ≥ 1/T , so

1

2
δX(T ) ≤ T 2

2
D(X) +

2e T√
2π

e−T 2/2 ≤ T 2

2
D(X) + 3T e−T 2/2.

Hence, we also have:

Proposition 6.2. If X is a random variable with EX = 0 and Var(X) = 1, having density

p(x), then for all T ≥ 2,

∫

{|x|≥T}
x2 p(x) dx ≤ T 2D(X) + 6T e−T 2/2.

In the Gaussian case X = Z this gives an asymptotically correct bound for T → ∞ (up
to a factor). Note as well that in the non-Gaussian case, from Proposition 6.1 we obtain an
entropic Chebyshev-type inequality

P
{

|X| ≥ 2
√

log(1/D(X))
}

≤ 2D(X)

log(1/D(X))
(D(X) < 1).

Finally, let us give a more flexible variant of Propositions 6.1 with an arbitrary variance
B2 = Var(X) (B > 0), but still with mean zero. Applying the obtained statements to the
random variable X/B and replacing the variable T with T/B, we then get that

1

B2

∫

{|x|≥T}
x2 p(x) dx ≤ 4D(X) + 4 e−T 2/4B2

.



Stability in Cramer’s theorem 15

7. Entropic control of tails for sums of independent summands

We apply Proposition 6.1 in the following situation. Assume we have two independent
random variables X and Y with mean zero, but perhaps with different variances Var(X) and
Var(Y ). Assume they have densities. The question is: Can we bound the tail functions δX and
δY in terms of D(X + Y ), rather than in terms of D(X) and D(Y )? In case Var(X + Y ) = 1,
by Proposition 6.1, applied to the sum X + Y ,

δX+Y (T ) = E (X + Y )2 1{|X+Y |≥T} ≤ 4D(X + Y ) + 4 e−T 2/4. (7.1)

Hence, to answer the question, it would be sufficient to bound from below the tail functions
δX+Y in terms of δX and δY .

Assume for a while that Var(X + Y ) = 1/2. In particular, Var(Y ) ≤ 1/2, and according to
the usual Chebyshev’s inequality, P{Y ≥ −1} ≥ 1

2 . Hence, for all T ≥ 0,

E (X + Y )2 1{X+Y ≥T} ≥ E (X + Y )2 1{X≥T+1, Y≥−1}

≥ E (X − 1)2 1{X≥T+1, Y≥−1} ≥ 1

2
E (X − 1)2 1{X≥T+1}.

IfX ≥ T+1 ≥ 4, then clearly (X−1)2 ≥ 1
2 X

2, hence, E (X−1)2 1{X≥T+1} ≥ 1
2 EX

2 1{X≥T+1}.
With a similar bound for the range X ≤ −(T + 1), we get

δX+Y (T ) ≥
1

4
δX(T + 1), T ≥ 3. (7.2)

Now, change T + 1 with T (assuming that T ≥ 4) and apply (7.1) to
√
2 (X + Y ). Together

with (7.2) it gives 1
4 δ

√
2X(T ) ≤ 4D

(√
2 (X + Y )

)

+ 4 e−(T−1)2/4. But the entropic distance to

the normal is invariant under rescaling of coordinates, i.e., D(
√
2 (X+Y )) = D(X+Y ). Since

also δ√2X(T ) = 2 δX (T/
√
2), we obtain that

δX(T/
√
2) ≤ 8D(X + Y ) + 8 e−(T−1)2/4,

provided that T ≥ 4. Simplifying by e−(T−1)2/4 ≤ e−T 2/8 (valid for T ≥ 4), and then replacing
T with T

√
2, we arrive at

δX(T ) ≤ 8D(X + Y ) + 8 e−T 2/4, T ≥ 4/
√
2.

Finally, to involve the values 0 ≤ T ≤ 4/
√
2, just use e2 < 8, so that the above inequality

holds automatically for this range: δX(T ) ≤ Var(X) ≤ 1 < 8 e−T 2/4. Moreover, in order to
allow an arbitrary variance Var(X + Y ) = B2 (B > 0), the above estimate should be applied
to X/B

√
2 and Y/B

√
2 with T replaced by T/B

√
2. Then it takes the form

1

2B2
δX(T ) ≤ 8D(X + Y ) + 8 e−T 2/8B2

.

We can summarize.

Proposition 7.1. Let X and Y be independent random variables with mean zero and with

Var(X + Y ) = B2 (B > 0). Assume X has a density p. Then, for all T ≥ 0,

1

B2

∫

{|x|≥T}
x2 p(x) dx ≤ 16D(X + Y ) + 16 e−T 2/8B2

.
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8. Stability for Lévy distance under entropic hypothesis

Now we can return to the variant of the Chistyakov-Golinski result, as in Theorem 4.4.
Let the independent random variables X and Y have mean zero, with Var(X + Y ) = 1, and
denote by F and G their distribution functions. Also assume X has a density p. In order to
control the term δX(N) in Theorem 4.4, we are going to impose the stronger condition

D(X + Y ) ≤ 2ε.

Using Pinsker’s inequality, this yields bounds for the total variation and Kolmogorov distances

‖F ∗G− Φ‖ ≤ 1

2
‖F ∗G− Φ‖TV ≤ 1

2

√

2D(X + Y ) ≤
√
ε = ε′.

Hence, the assumption of Theorem 4.4 is fulfilled, whenever ε < 1.
As for the conclusion, first apply Proposition 7.1 with B = 1, which gives

δX(T ) =

∫

{|x|≥T}
x2 p(x) dx ≤ 16D(X + Y ) + 16 e−T 2/8 ≤ 16 ε + 16 e−T 2/8.

In our situation, N = 1+
√

2 log(1/ε′) = 1+
√

log(1/ε), so, δX(N) ≤ 16 ε+16 e−N2/8 ≤ Cε1/8.
Thus, we arrive at:

Proposition 8.1. Let the independent random variables X and Y have mean zero, with

Var(X+Y ) = 1, and assume that X has a density with distribution function F . If D(X+Y ) ≤
2ε < 2, then

L(F,Φv1) ≤ C
(log log 4

ε )
2

√

log 1
ε

,

where v1 =
√

Var(X) and C is an absolute constant.

In general, in the conclusion one cannot replace the Lévy distance L(F,Φv1) with the
entropic destance D(X). However, this is indeed possible for regularized distributions, as we
will see in the next sections.

9. Entropic distance and uniform deviation of densities

Let X and Y be independent random variables with mean zero, finite variances, and assume
X has a bounded density p. Our next aim is to estimate the entropic distance to the normal,
D(X), in terms of D(X + Y ) and the uniform deviation of p above the normal density

∆(X) = ess supx (p(x)− ϕv(x)),

where v2 = Var(X) and ϕv stands for the density of the normal law N(0, v2).
For a while, assume that Var(X) = 1. Proposition A.3.2 gives the preliminary estimate

D(X) ≤ ∆(X)
[√

2π + 2T + 2T log
(

1 + ∆(X)
√
2π eT

2/2
)]

+
1

2
δX(T ),

involving the quadratic tail function δX(T ). In the general situation one cannot say anything
definite about the decay of this function. However, it can be bounded in terms of D(X + Y )
by virtue of Proposition 7.1: we know that, for all T ≥ 0,

1

2B2
δX(T ) ≤ 8D(X + Y ) + 8 e−T 2/8B2

,



Stability in Cramer’s theorem 17

where B2 = Var(X + Y ) = 1 + Var(Y ). So, combining the two estimates yields

D(X) ≤ 8B2D(X + Y ) + 8B2 e−T 2/8B2

+ ∆
[√

2π + 2T + 2T log
(

1 + ∆
√
2π eT

2/2
)

]

, where ∆ = ∆(X).

First assume ∆ ≤ 1 and apply the above with T 2 = 8B2 log 1
∆ . Then 8B2 e−T 2/8B2

= 8B2∆,

and putting β = 4B2 − 1 ≥ 3, we also have

log
(

1 +∆
√
2π eT

2/2
)

= log
(

1 + ∆−β
√
2π

)

= β log
(

1 + ∆−β
√
2π

)1/β

< β log

(

1 +
(2π)1/2β

∆

)

< β log

(

1 +
2

∆

)

.

Collecting all the terms and using B ≥ 1, we are lead to the estimate of the form

D(X) ≤ 8B2D(X + Y ) + CB3∆ log3/2
(

2 +
1

∆

)

,

where C > 0 is an absolute constant. It holds also in case ∆ > 1 in view of the logarithmic
bound of Proposition A.3.1,

D(X) ≤ log
(

1 + ∆
√
2π

)

+
1

2
.

Therefore, the obtained bound holds true without any restriction on ∆.
Now, to relax the variance assumption, assume Var(X) = v21 , Var(Y ) = v22 (v1, v2 > 0),

and without loss of generality, let Var(X + Y ) = v21 + v22 = 1. Apply the above to X ′ = X
v1
,

Y ′ = Y
v1
. Then, B2 = 1/v21 and ∆(X ′) = v1 ∆(X), so with some absolute constant c > 0,

c v21 D(X) ≤ D(X + Y ) + ∆(X) log3/2
(

2 +
1

v1∆(X)

)

.

As a result, we arrive at:

Proposition 9.1. Let X,Y be independent random variables with mean zero, Var(X+Y ) =
1, and such that X has a bounded density. Then, with some absolute constant c > 0,

cVar(X)D(X) ≤ D(X + Y ) + ∆(X) log3/2
(

2 +
1

√

Var(X)∆(X)

)

.

Replacing the role of X and Y , and adding the two inequalities, we also have as corollary:

Proposition 9.2. Let X,Y be independent random variables with mean zero and positive

variances v21 = Var(X), v22 = Var(Y ), such that v21 + v22 = 1, and both with densities. Then,

with some absolute constant c > 0,

c (v21 D(X)+v22 D(Y )) ≤ D(X+Y )+∆(X) log3/2
(

2+
1

v1∆(X)

)

+∆(Y ) log3/2
(

2+
1

v2∆(Y )

)

.

This inequality may be viewed as the inverse to the general property of the entropic distance,
which we mentioned before, namely, v21 D(X)+v22 D(Y ) ≥ D(X+Y ), under the normalization
assumption v21 + v22 = 1. Let us also state separately Proposition 9.1 in the particular case of
equal unit variances, keeping the explicit constant 8B2 = 16 in front of D(X + Y ).
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Proposition 9.3. Let X,Y be independent random variables with mean zero and variances

Var(X) = Var(Y ) = 1, and such that X has a density. Then, with some absolute constant C

D(X) ≤ 16D(X + Y ) + C∆(X) log3/2
(

2 +
1

∆(X)

)

.

One may simplify the right-hand side for small values of ∆(X) and get a slightly weaker
inequality D(X) ≤ 16D(X + Y ) + Cα∆(X)α, 0 < α < 1, where the constants Cα depend
on α, only. For large values of ∆(X), the above inequality holds, as well, in view of the
logarithmic bound of Proposition of A.3.1.

10. The case of equal variances

We are prepared to derive an entropic variant of Sapogov-type stability theorem for regular-
ized distributions. That is, we are going to estimate D(Xσ) and D(Yσ) in terms of D(Xσ+Yσ)
for two independent random variables X and Y with distribution functions F and G, by in-
volving a small “smoothing” parameter σ > 0. It will not be important whether or not they
have densities. Since it will not be important for the final statements, let X and Y have mean
zero. Recall that, given σ > 0, the regularized random variables are defined by Xσ = X +σZ,
Yσ = Y +σZ, where Z is independent of X and Y , and has a standard normal density ϕ. The
distributions of Xσ, Yσ are denoted Fσ , Gσ, with densities pσ, qσ.

In this section, we consider the case of equal variances, say, Var(X) = Var(Y ) = 1. Put

σ1 =
√

1 + σ2, σ2 =
√

1 + 2σ2.

Since Var(Xσ) = Var(Yσ) = σ21, the corresponding entropic distances are given by

D(Xσ) = h(σ1Z)− h(Xσ) =

∫ ∞

−∞
pσ(x) log

pσ(x)

ϕσ1
(x)

dx,

and similarly for Yσ, where, as before, ϕv represents the density of N(0, v2). Assume that
D(Xσ+Yσ) is small in the sense that D(Xσ+Yσ) ≤ 2ε < 2. According to Pinsker’s inequality,
this yields bounds for the total variation and Kolmogorov distances

‖Fσ ∗Gσ − Φσ2
‖ ≤ 1

2
‖Fσ ∗Gσ − Φσ2

‖TV ≤
√
ε < 1.

In the sequel, let 0 < σ ≤ 1. This guarantees that the ratio of variances of the components
in the convolution Fσ ∗ Gσ = F ∗ (G ∗ Φσ

√
2 ) is bounded away from zero by an absolute

constant, so that we can apply Theorem 2.3. Namely, it gives that ‖F − Φ‖ ≤ C log−1/2(1ε ),
and similarly for G. (Note that raising ε to any positive power does not change the above
estimate.) Applying Proposition A.2.1 a), when one of the distributions is normal, we get

∆(Xσ) = sup
x

(pσ(x)− ϕσ1
(x)) ≤ 1

σ
‖F − Φ‖ ≤ C

σ
√

log 1
ε

.

We are in position to apply Proposition 9.3 to the random variables Xσ/σ1, Yσ/σ1. It gives

D(Xσ) ≤ 16D(Xσ + Yσ) + C∆(Xσ) log
3/2

(

2 +
1

∆(Xσ)

)

≤ 32 ε + C ′
log3/2

(

2 + σ
√

log 1
ε

)

σ
√

log 1
ε

,

where C ′ is an absolute constant. In the last expression the second term dominates the first
one, and at this point, the assumption on the means may be removed. We arrive at:
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Proposition 10.1. Let X,Y be independent random variables with mean zero and variance

one. Given 0 < ε < 1 and 0 < σ ≤ 1, the regularized random variables Xσ, Yσ satisfy

D(Xσ + Yσ) ≤ 2ε ⇒ D(Xσ) +D(Yσ) ≤ C
log3/2

(

2 + σ
√

log 1
ε

)

σ
√

log 1
ε

, (10.1)

where C is an absolute constant.

This statement may be formulated equivalently by solving the above inequality with respect
to ε. The function u(x) = x

log3/2(2+x)
is increasing in x ≥ 0, and, for any a ≥ 0, u(x) ≤ a ⇒

x ≤ 8 a log3/2(2 + a). Hence, assuming D(Xσ + Yσ) ≤ 1, we obtain from (10.1) that

σ

√

log
1

ε
≤ 8C

D
log3/2(2 + C/D) ≤ C ′

D
log3/2(2 + 1/D)

with some absolute constant C ′, where D = D(Xσ) +D(Yσ). As a result,

D(Xσ + Yσ) ≥ exp
{

− C ′2 log3(2 + 1/D)

σ2D2

}

.

Note also that this inequality is fulfilled automatically, if D(Xσ + Yσ) ≥ 1. Thus, we get:

Proposition 10.2. Let X,Y be independent random variables with Var(X) = Var(Y ) = 1.
Given 0 < σ ≤ 1, the regularized random variables Xσ and Yσ satisfy

D(Xσ + Yσ) ≥ exp
{

− C log3(2 + 1/D)

σ2D2

}

,

where D = D(Xσ) +D(Yσ) and C > 0 is an absolute constant.

11. Proof of Theorem 1.1

Now let us consider the case of arbitrary variances

Var(X) = v21, Var(Y ) = v22 (v1, v2 ≥ 0).

For normalization reasons, let v21 + v22 = 1. Then

Var(Xσ) = v21 + σ2, Var(Yσ) = v22 + σ2, Var(Xσ + Yσ) = σ22 ,

where σ2 =
√
1 + 2σ2. As before, we assume that both X and Y have mean zero, although

this will not be important for the final conclusion.
Again, we start with the hypothesis D(Xσ + Yσ) ≤ 2ε < 2 and apply Pinsker’s inequality:

‖Fσ ∗Gσ − Φσ2
‖ ≤ 1

2
‖Fσ ∗Gσ − Φσ2

‖TV ≤
√
ε < 1.

For 0 < σ ≤ 1, write Fσ ∗Gσ = F ∗ (G∗Φσ
√
2 ). Now, the ratio of variances of the components

in the convolution,
v2
1

1+2σ2 , may not be bounded away from zero, since v1 is allowed to be small.

Hence, the application of Theorem 2.3 will only give ‖F − Φv1‖ ≤ Cm(v1,ε)

v1

√

log 1

ε

and similarly for

G. The appearance of v1 on the right is however not desirable. So, it is better to involve the
Lévy distance, which is more appropriate in such a situation. Consider the random variables

X ′ =
X√

1 + 2σ2
, Y ′ =

Y + σ
√
2Z√

1 + 2σ2
,
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so that Var(X ′ + Y ′) = 1, and denote by F ′, G′ their distribution functions. Since the
Kolmogorov distance does not change after rescaling of the coordinates, we still have

L(F ′ ∗G′,Φ) ≤ ‖F ′ ∗G′ − Φ‖ = ‖Fσ ∗Gσ − Φσ2
‖ ≤

√
ε < 1.

In this situation, we may apply Proposition 8.1 to the couple (F ′, G′). It gives that

L(F ′,Φv′
1
) ≤ C

(

log log
4

ε

)2 (

log
1

ε

)−1/2

with some absolute constant C, where v′1 =
√

Var(X ′) = v1√
1+2σ2

. Since v′1 ≤ v1 ≤
√
3v′1,

we have a similar conclusion about the original distribution functions, i.e. L(F,Φv1) ≤
C (log log 4

ε )
2 (log 1

ε )
−1/2. Now we use Proposition A.2.3 (applied when one of the distribu-

tions is normal), which for σ ≤ 1 gives ∆(Xσ) ≤ 3
2σ2 L(F,Φv1), and similarly for Y . Hence,

∆(Xσ) ≤ C
(log log 4

ε )
2

σ2
√

log 1
ε

, ∆(Yσ) ≤ C
(log log 4

ε )
2

σ2
√

log 1
ε

. (11.1)

We are now in a position to apply Proposition 9.2 to the random variables X ′
σ = Xσ/

√
1 + σ2,

Y ′
σ = Yσ/

√
1 + σ2, which ensures that with some absolute constant c > 0

c (v1(σ)
2D(Xσ) + v2(σ)

2D(Yσ)) ≤ D(Xσ + Yσ)

+ ∆(Xσ) log
3/2

(

2 +
1

v1(σ)∆(Xσ)

)

+∆(Yσ) log
3/2

(

2 +
1

v2(σ)∆(Yσ)

)

,

where v1(σ)
2 = Var(X ′

σ) =
v2
1
+σ2

1+σ2 and v2(σ)
2 = Var(Y ′

σ) =
v2
2
+σ2

1+σ2 (v1(σ), v2(σ) ≥ 0). Note that

v1(σ) ≥ σ/
√
2. Applying the bounds in (11.1), we obtain that

c (v1(σ)
2D(Xσ) + v2(σ)

2D(Yσ)) ≤ D(Xσ + Yσ) +
(log log 4

ε )
2

σ2
√

log 1
ε

log3/2
(

2 +
σ
√

log 1
ε

(log log 4
ε )

2

)

with some other absolute constant c > 0. Here, D(Xσ + Yσ) ≤ 2ε, which is dominated by the
last expression, and we arrive at:

Proposition 11.1. Let X,Y be independent random variables with total variance one.

Given 0 < σ ≤ 1, if the regularized random variables Xσ, Yσ satisfy D(Xσ + Yσ) ≤ 2ε < 2,
then with some absolute constant C

Var(Xσ)D(Xσ) + Var(Yσ)D(Yσ) ≤ C
(log log 4

ε )
2

σ2
√

log 1
ε

log3/2
(

2 +
σ
√

log 1
ε

(log log 4
ε )

2

)

. (11.2)

It remains to solve this inequality with respect to ε. Denote byD′ the left-hand side of (11.2)
and let D = σ2D′. Assuming that D(Xσ + Yσ) < 2 and arguing as in the proof of Proposition

10.2, we get
σ
√

log 1

ε

(log log 4

ε
)2

≤ 8C
σD′ log

3/2(2 +C/D′), hence
log 1

ε

(log log 4

ε
)4

≤ A ≡ C′

D2 log3(2 + 1/D) with

some absolute constant C ′. The latter inequality implies with some absolute constants

log
1

ε
≤ C ′′A log4(2 +A) ≤ C ′′′

D2
log7(2 + 1/D),

and we arrive at the inequality of Theorem 1.1 (which holds automatically, if D(Xσ+Yσ) ≥ 1).
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12. Appendix I: General bounds for distances between distribution functions

Here we collect a few elementary and basically known relations for classical metrics, intro-
duced at the beginning of Section 2. Let F and G be arbitrary distribution functions of some
random variablesX and Y . First of all, the Lévy, Kolmogorov, and the total variation distances
are connected by the chain of the inequalities 0 ≤ L(F,G) ≤ ‖F −G‖ ≤ 1

2 ‖F −G‖TV ≤ 1. As
for the Kantorovich-Rubinshtein distance, there is the following well-known bound.

Proposition A.1.1. We have L(F,G) ≤W1(F,G)
1/2.

Proposition A.1.2. If
∫∞
−∞ x2 dF (x) ≤ B2 and

∫∞
−∞ x2 dG(x) ≤ B2 (B ≥ 0), then

a) W1(F,G) ≤ 2L(F,G) + 4B L(F,G)1/2 and b) W1(F,G) ≤ 4B ‖F −G‖1/2.

Proof. It follows from the definition of the Lévy distance h = L(F,G) that, for all x ∈ R,

|F (x) −G(x)| ≤ (F (x+ h)− F (x)) + (G(x+ h)−G(x)) + h.

Integrating this inequality over a finite interval (a, b), a < b, and using a general relation
∫∞
−∞(F (x+ y)− F (x)) dx = y (y ≥ 0), we get

∫ b

a
|F (x)−G(x)| dx ≤ h (2 + (b− a)).

By Chebyshev’s inequality, P{X ≥ x} ≤ B2

x2 and P{X ≤ −x} ≤ B2

x2 (x > 0), and similarly for

Y . Hence, |F (x)−G(x)| ≤ B2

x2 , and for any b > 0,
∫

{|x|>b}
|F (x)−G(x)| dx ≤

∫

{|x|>b}

B2

x2
dx =

2B2

b
.

Using the previous estimate over the finite interval with a = −b, we arrive at
∫ ∞

−∞
|F (x)−G(x)| dx ≤ 2h (1 + b) +

2B2

b
.

This bound can be optimized over all b > 0 by taking b = B/
√
h, and then we get the estimate

in a). In case of the Kolmogorov distance, one can use similar arguments. Indeed,
∫ b

−b
|F (x)−G(x)| dx ≤ 2hb with h = ‖F −G‖.

Hence,
∫∞
−∞ |F (x)−G(x)| dx ≤ 2hb+ 2B2

b . The optimal choice b = B/
√
h leads to the second

bound of the proposition. �

13. Appendix II: Relations for distances between regularized distributions

Now, let us turn to the regularized random variables Xσ = X + σZ, Yσ = Y + σZ, where
σ > 0 is a fixed parameter and Z ∼ N(0, 1) is a standard normal random variable independent
of X and Y . They have distribution functions

Fσ(x) =

∫ ∞

−∞
F (x− y) dΦσ(y) =

∫ ∞

−∞
Φσ(x− y) dF (y),

Gσ(x) =

∫ ∞

−∞
G(x− y) dΦσ(y) =

∫ ∞

−∞
Φσ(x− y) dG(y),
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and densities

pσ(x) =

∫ ∞

−∞
ϕσ(x− y) dF (y) = − 1

σ2

∫ ∞

−∞
F (x− y) y ϕσ(y) dy,

qσ(x) =

∫ ∞

−∞
ϕσ(x− y) dG(y) = − 1

σ2

∫ ∞

−∞
G(x− y) y ϕσ(y) dy.

So, in terms of the Kolmogorov distance,

|pσ(x)− qσ(x)| ≤
‖F −G‖

σ2

∫ ∞

−∞
|y|ϕσ(y) dy =

2√
2π

‖F −G‖
σ

.

Similarly,
∫ ∞

−∞
|pσ(x)− qσ(x)| dx ≤ 1

σ2

∫ ∞

−∞
|F (x) −G(x)| dx

∫ ∞

−∞
|y|ϕσ(y) dy =

2√
2π

W1(F,G)

σ
.

Simplifying with the help of 2√
2π
< 1, let us state these bounds once more.

Proposition A.2.1. We have

a) supx |pσ(x)− qσ(x)| ≤ 1
σ ‖F −G‖. b) ‖Fσ −Gσ‖TV ≤ 1

σ W1(F,G).

Thus, if F is close to G in a weak sense, then the regularized distributions will be closed in a
much stronger sense, at least when σ is not very small. Now, applying the general Proposition
A.1.2, one may replace W1(F,G) in part b) with other metrics:

Proposition A.2.2. If
∫∞
−∞ x2 dF (x) ≤ B2 and

∫∞
−∞ x2 dG(x) ≤ B2 (B ≥ 0), then

a) ‖Fσ −Gσ‖TV ≤ 2
σ

[

L(F,G) + 2B L(F,G)1/2
]

;

b) ‖Fσ −Gσ‖TV ≤ 4B
σ ‖F −G‖1/2.

Combining Propositions A.1.2 and A.2.1, one may bound supx |pσ(x) − qσ(x)| in terms of
the Lévy distance L(F,G), as well. However, in order to get rid of the unnecessary parameter
B, one may argue as follows. Recall that

pσ(x)− qσ(x) =
1

σ2

∫ ∞

−∞
(G(x− y)− F (x− y)) y ϕσ(y) dy.

From the definition of h = L(F,G), it follows that |G(u)−F (u)| ≤ (G(u+h)−G(u−h))+h,
for all u ∈ R, which gives

σ2 |pσ(x)− qσ(x)| ≤
∫ ∞

−∞

(

G(x− y + h)−G(x− y − h)) + h
)

|y|ϕσ(y) dy

≤ max
y

|y|ϕσ(y)

∫ ∞

−∞
(G(x− y + h)−G(x− y − h)) dy + h

∫ ∞

−∞
|y|ϕσ(y) dy

=
2h√
2πe

+ h
2σ√
2π
.

Here we used the property that the function |y|ϕσ(y) is maximized at y = ±σ. Simplifying
absolute factors, the right-hand side can be bounded by h

2 + σh. We thus obtained:
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Proposition A.2.3. We have

sup
x

|pσ(x)− qσ(x)| ≤
L(F,G)

σ

(

1 +
1

2σ

)

.

14. Appendix III: Special bounds for entropic distance to the normal

Let X be a random variable with mean zero and variance Var(X) = v2 (v > 0) and with a
bounded density p. In this section we derive bounds for the entropic distance D(X) in terms of
the quadratic tail function δX(T ) =

∫

{|x|≥T} x
2 p(x) dx and another quantity, which is directly

responsible for the closeness to the normal law, ∆(X) = ess supx (p(x)−ϕv(x)). As before, ϕv

stands for the density of a normally distributed random variable Z ∼ N(0, v2), and we write
ϕ in the standard case v = 1. The functional ∆ = ∆(X) is homogeneous with respect to X
with power of homogeneity −1 in the sense that in general ∆(λX) = ∆(X)/λ (λ > 0). Hence,

the functional ∆ =
√

Var(X) ∆(X) is invariant under rescaling of the coordinates.

To relate the two quantites, D(X) and ∆ = ∆(X), first write p(x) ≤ ϕv(x)+∆ ≤ 1
v
√
2π

+∆,

which gives p(x) · v
√
2π ≤ 1 + ∆ v

√
2π. Hence,

∫ ∞

−∞
p(x) log

p(x)

ϕv(x)
dx =

∫ ∞

−∞
p(x)

(

log
(

p(x) v
√
2π

)

+
x2

2v2

)

dx ≤ log
(

1 + ∆v
√
2π

)

+
1

2
.

Thus we have:

Proposition A.3.1. Let X be a random variable with mean zero and variance Var(X) = v2

(v > 0), having a bounded density. Then

D(X) ≤ log
(

1 + v∆(X)
√
2π

)

+
1

2
.

This estimate might be good, when both D(X) and ∆(X) are large, but it cannot be used
to see that X is almost normal. So, we need to considerably refine Proposition A.3.1 for the
case, where ∆(X) is small. For definiteness, consider the standard case v = 1. Take any T ≥ 0.
Using once more the bound p(x)

√
2π ≤ 1 + ∆

√
2π, where ∆ = ∆(X), we may write

∫

{|x|≥T}
p(x) log

p(x)

ϕ(x)
dx =

∫

{|x|≥T}
p(x)

(

log
(

p(x)
√
2π

)

+
x2

2

)

dx

≤ log
(

1 + ∆
√
2π

)

+
1

2
δX(T ) ≤ ∆

√
2π +

1

2
δX(T ).

On the last step we used log(1 + t) ≤ t to simplify the bound.

For |x| ≤ T , we use p(x)
ϕ(x) ≤ 1 + ∆

ϕ(x) , so that log p(x)
ϕ(x) ≤ log(1 + ∆

ϕ(x)) ≤ ∆
ϕ(x) . This gives

p(x) log
p(x)

ϕ(x)
≤ (ϕ(x) + ∆) log

(

1 +
∆

ϕ(x)

)

≤ ϕ(x) log
(

1 +
∆

ϕ(x)

)

+∆ log
(

1 + ∆
√
2π eT

2/2
)

≤ ∆+∆ log
(

1 + ∆
√
2π eT

2/2
)

,

and after integration over [−T, T ]
∫

{|x|≤T}
p(x) log

p(x)

ϕ(x)
dx ≤ 2∆T + 2∆T log

(

1 + ∆
√
2π eT

2/2
)

.

Collecting the two bounds, we arrive at:
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Proposition A.3.2. Let X be a random variable with mean zero and variance Var(X) = 1,
having a bounded density. For all T ≥ 0,

D(X) ≤ ∆(X)
[√

2π + 2T + 2T log
(

1 + ∆(X)
√
2π eT

2/2
)

]

+
1

2
δX(T ).

Hence, if ∆(X) is small and T is large, but not much, the right-hand side can be made

small. When ∆(X) ≤ 1
2 , one may take T =

√

2 log(1/∆(X)) which leads to the estimate

D(X) ≤ C∆(X)
√

log(1/∆(X)) +
1

2
δX(T ),

where C is absolute constant. If X satisfies the tail condition P{|X| ≥ t} ≤ Ae−t2/2 (t > 0),

we have δX(T ) ≤ cA (1 + T 2) e−T 2/2, and then D(X) ≤ C∆(X) log 1
∆(X) , where C depends

on the parameter A, only.
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