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Abstract. We give a detailed exposition of the proof of Richter’s local limit theorem in a
refined form, and discuss related quantitative bounds for characteristic functions and Laplace
transforms.

1. Introduction

Let (Xn)n≥1 be independent copies of a random variable X with mean EX = 0 and variance
Var(X) = 1. Suppose that the normalized sum

Zn =
X1 + · · ·+Xn√

n

has a bounded density pn0 for some n = n0, that is, pn0(x) ≤ M for all x ∈ R with some
constant M . Then all Zn with n ≥ 2n0 have continuous bounded densities pn(x). An
asymptotic behavior of these densities describing their closeness to the normal density

ϕ(x) =
1√
2π

e−x
2/2, x ∈ R,

is governed by several local limit theorems. First of all, there is a uniform local limit theorem
due to Gnedenko

sup
x
|pn(x)− ϕ(x)| → 0 as n→∞.

Under higher order moment assumptions, say if E |X|m < ∞ for an integer m ≥ 3, this
statement may be considerably sharpened in the form of a non-uniform local limit theorem

sup
x

(1 + |x|m) |pn(x)− ϕm(x)| = o
(
n−

m−2
2
)
, (1.1)

where ϕm denotes the Edgeworth correction of ϕ of order m (cf. [10], [15], [16]). In various
applications, this relation is typically effective in the range |x| ≤

√
c log n, since then the ratio

pn(x)/ϕ(x) remains close to 1 (for a suitable c). For example, (1.1) is crucial in the study of
rates in the entropic central limit theorem, rates for Rényi divergences of finite orders and
for the relative Fisher information ([4]-[6]).
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As for larger regions, the asymptotic behavior of pn(x) is governed by the following re-
markable theorem due to Richter [17], assuming the finiteness of an exponential moment for
the random variable X.

Theorem 1.1. Suppose that, for some b > 0,

E eb|X| <∞. (1.2)

Then, for x = o(
√
n), the densities of Zn admit the representation

pn(x)

ϕ(x)
= exp

{ x3

√
n
λ
( x√

n

)}(
1 +O

(1 + |x|√
n

))
. (1.3)

Here, λ(τ) represents an analytic function in some neighborhood of zero.

It was shown by Amosova [1] that the condition (1.2) is necessary for the existence of a
representation like (1.3) in the region |x| = o(

√
n) with some analytic function λ.

The function λ in (1.3) is representable as a power series, called the Cramér series,

λ(τ) =
∞∑
k=0

λkτ
k, (1.4)

which is absolutely convergent in some disc |τ | < τ0 of the complex plane. It has appeared
in the work by Cramér [9] in a similar representation for the ratio of the tails of distribution
functions of Zn and the standard normal law (cf. also [11], [13], [14]).

Let us also mention that (1.3) is stated in Richter’s work in a slightly different form with

O( |x|√
n

) in the last brackets and for |x| > 1. A similar result is proved in the book by Ibragimov

and Linnik [12] under the assumption that X has a bounded continuous density.
As a consequence of (1.3), one immediately obtains, for example, that

pn(x)

ϕ(x)
→ 1 as n→∞ (1.5)

uniformly in the region |x| = o(n1/6). In the region c0n
1/6 ≤ |x| ≤ c1n

1/2, the bahavior may

be quite different, and in order to describe it, the appearence of the term O(1+|x|√
n

) in (1.3)

is non-desirable. The purpose of this paper is to give a detailed exposition of the proof of
Theorem 1.1, clarifying the meaning of the leading coefficient in (1.4) and replacing this term
with an n-depending quantity. We basically follow the presentation of [12] and derive the
following refinement.

Theorem 1.2. Let the conditions of Theorem 1.1 be fulfilled, and n ≥ 2n0. There is a
constant τ0 > 0 with the following property. With τ = x/

√
n, we have for |τ | ≤ τ0

pn(x)

ϕ(x)
= enτ

3λ(τ)−µ(τ)
(
1 +O(n−1(log n)3)

)
, (1.6)

where µ(τ) is an analytic function in |τ | ≤ τ0 such that µ(0) = 0.
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As we will see in Section 7,

λ(τ) =
1

m!
γmτ

m−3 +O(|τ |m−2),

µ(τ) =
1

2(m− 2)!
γmτ

m−2 +O(|τ |m−1),

where γm (m ≥ 3) is the first non-zero cumulant of the random variable X (assuming that it
is not normal). Equivalently, m is the smallest integer such that EXm 6= EZm, where Z is a
standard normal random variable, in which case

γm = EXm − EZm.

With this refinement, it should be clear that the relation (1.5) holds true uniformly over
all x in the potentially larger region

|x| ≤ εn n
1
2
− 1

m (εn → 0).

For example, if the distribution of X is symmetric about the origin, then γ3 = 0, so that
necessarily m ≥ 4.

Another consequence of (1.4), which does not follow from (1.3), is needed in the study of
the rate of convergence in the central limit theorem with respect to the Rényi divergence of
infinite order (which we do not discuss here).

Corollary 1.3. Under the conditions of Theorem 1.1, suppose that m is even and γm < 0.
There exist constants τ0 > 0 and c > 0 with the following property. If |τ | ≤ τ0, τ = x/

√
n,

then
pn(x)

ϕ(x)
≤ 1 +

c(log n)3

n
. (1.7)

Here, the conditions about cumulants are fulfilled, for example, when the random variable

X is strongly subgaussian in the sense that E etX ≤ et2/2 for all t ∈ R. This interesting class
of probability distributions is rather rich, and we refer the reader to [8] for discussions and
various examples.

In most cases, the involved constants such as τ0 in Theorem 1.2 may only depend on the
parameters n0, M , b, and the value of the integral in (1.2). In order to clarify the character
of this dependence and make the proofs/arguments more transparent and self-contained, we
include a short review of various related results – partly technical, but often interesting in
themselves – about maxima of densities, analytic characteristic functions and log-Laplace
transforms. With this in mind, we use the following plan:

Contents:

1. Introduction
2. Maximum of convolved densities
3. Lp-norms of characteristic functions
4. Exponential moments and Orlicz norms
5. Behavior of characteristic functions near zero
6. Saddle point
7. Taylor expansions around saddle point
8. Contour integration
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9. Estimation of the integral outside a neighborhood of the saddle point
10. Proof of Theorem 1.2
11. Proof of Corollary 1.3

2. Maximum of Convolved Densities

The convolved densities are known to have improved smoothing properties. First, let us
emphasize the following general fact (which explains the condition n ≥ 2n0 mentioned before
Theorem 1.1).

Proposition 2.1. If independent random variables ξ1 and ξ2 have bounded densities,
then the sum ξ = ξ1 + ξ2 has a bounded uniformly continuous density vanishing at infinity.

Proof. Denote by qk the densities of ξk and assume that qk(x) ≤ Mk for all x ∈ R with
some constants Mk (k = 1, 2). By the Plancherel theorem, for the characteristic functions
gk(t) = E eitξk , we have∫ ∞

−∞
|gk(t)|2 dt = 2π

∫ ∞
−∞

qk(x)2 dx ≤ 2π

∫ ∞
−∞

Mkqk(x) dx = 2πMk.

Hence, by Cauchy’s inequality, the characteristic function g(t) = g1(t)g2(t) of ξ is integrable
and has L1-norm∫ ∞

−∞
|g(t)| dt ≤

(∫ ∞
−∞
|g1(t)|2 dt

)1/2(∫ ∞
−∞
|g2(t)|2 dt

)1/2

≤ 2π
√
M1M2 <∞. (2.1)

One may conclude that the random variable ξ has a bounded, uniformly continuous density
expressed by the inversion Fourier formula

q(x) =
1

2π

∫ ∞
−∞

e−itxg(t) dt, x ∈ R. (2.2)

Since g is integrable, it also follows that q(x)→ 0 as |x| → ∞. �

Consider the functional

M(ξ) = ess supx q(x),

where ξ is a random variable with density q. Since, by (2.2),

q(x) ≤ 1

2π

∫ ∞
−∞
|g(t)| dt

for all x ∈ R, the inequality (2.1) also implies that

M(ξ1 + ξ2) ≤
√
M(ξ1)M(ξ2).

Using the Hausdorff-Young inequality, this relation may be extended to several independent
summands as

M(Sm) ≤ (M(ξ1) . . .M(ξm))1/m, (2.3)

where Sm = ξ1 + · · ·+ ξm. This show in particular that M(ξ) may not increase by adding to
ξ an independent random variable. However, the relation (2.3) does not correctly reflect the
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behavior of M(Sm) with respect to the growing parameter m, especially in the i.i.d. situation.
A more precise statement is described in the following relation, where the geometric mean of
maxima is replaced with the harmonic mean.

Proposition 2.2. Given independent random variables ξk, 1 ≤ k ≤ m, one has

1

M(Sm)2
≥ 1

2

m∑
k=1

1

M(ξk)2
. (2.4)

This bound may be viewed as a counterpart of the entropy power inequality in Information
Theory. It may be obtained by combining Rogozin’s maximum-of-density theorem with Ball’s
bound on the volume of slices of the cube. Namely, it was shown in [18] that, if the values
Mk = M(ξk) are fixed, M(Sm) is maximized for ξk uniformly distributed in the intervals of
length 1/Mk. Of course, in this case M(Sm) has a rather complicated structure as a function
of m variables Mk’s. On the other hand, if Tm = a1η1 + · · ·+amηm, where ηk are independent
and uniformly distributed in (0, 1), and the coefficients satisfy a2

1 + · · ·+ a2
m = 1, then

1 ≤M(Tm) ≤
√

2,

cf. [2]. In geometric language, this is the same as saying that 1 ≤ |Q ∩ H| ≤
√

2, where
Q = (0, 1)m is the unit cube, H is an arbitary hyperplane in Rm passing through the center
of the cube, and | · | stands for the (m− 1)-dimensional volume.

With this argument, the relation (2.4) is mentioned in [3], where its multidimensional
analog is derived by applying the Hausdorff-Young inequality with best constants (due to
Beckner and Lieb).

3. Lp-Norms of Characteristic Functions

One useful consequence of (2.4) is the next bound on L2m-norms of characteristic functions.

Proposition 3.1. If g(t) is the characteristic function of a random variable ξ, then for
any integer m ≥ 1,

1

2π

∫ ∞
−∞
|g(t)|2m dt ≤ 1√

m
M(ξ). (3.1)

Proof. We apply Proposition 2.2 to 2m summands ξ1,−ξ′1, . . . , ξm,−ξ′m, assuming that ξ′k
are independent copies of ξk, being independent of all ξj . Introduce the symmetrized random

variable S̃m = Sm − S′m, where S′m is an independent copy of Sm. By (2.4), we then get

M(S̃m) ≤ 1√
m
M(ξ).

In addition, S̃m has characteristic function |g(t)|2m. If M(ξ) is finite, one may apply Propo-

sition 2.1 and conclude that S̃m has a bounded continuous density qm(x) which is maximized
at x = 0. Moreover, its value at this point is described by the inversion formula (2.2) which
gives

M(S̃m) = qm(0) =
1

2π

∫ ∞
−∞
|g(t)|2m dt.
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�

Using (2.3), one can obtain a similar relation, but without the factor 1/
√
m in (3.1).

When M(ξ) is finite and m is large, this bound may be considerably sharpened asymp-
totically with respect to m when restricting the integration to the regions |t| ≥ ε > 0. Before
making this precise, first let us note that, since the randon variable ξ has a density, we have

δg(ε) = max
|t|≥ε
|g(t)| < 1 (3.2)

for all ε > 0. This holds by continuity of g, and since |g(t)| < 1 for all t 6= 0 (which is true for
any non-lattice distribution), while g(t) tends to zero as t → ∞, by the Riemann-Lebesgue
lemma. By the way, this property remains to hold in the more general situation, where the
m-fold convolution of the distribution of ξ with itself has a density (while the distribution of
ξ might be not absolutely continuous). Indeed, in that case, (3.2) may be applied to gm, and
it remains to notice that this relation does not depend on m.

The property (3.2) may be quantified using, for example, the following observation due to
Statuljavičus [19].

Proposition 3.2. If a random variable ξ has a bounded density with M = M(ξ) and
finite variance σ2 = Var(ξ), σ > 0, then its characteristic function g satisfies, for all ε > 0,

δg(ε) ≤ exp
{
− ε2

96M2 (2σε+ π)2

}
. (3.3)

Note that the functional ξ →Mσ is affine invariant. It is well-known that Mσ ≥ 1
12 , and

an equality is attained for the uniform distribution on any bounded interval.
This relation may be extended to non-bounded densities q, in which case the parameter

M should be replaced with quantiles of the random variable q(ξ). The moment condition
may also be removed, and instead it is sufficient to deal with quantiles of |ξ − ξ′|, where ξ′ is
an independent copy of ξ; cf. [4] for details.

Returning to (3.1) and applying (3.3), we then have∫
|t|≥ε
|g(t)|4m dt ≤ δg(ε)

2m

∫ ∞
−∞
|g(t)|2m dt ≤ 2πM√

m
exp

{
− mε2

CM2

}
with some absolute constant C. Thus, the resulting bound decays asymptotically fast in m.

Let us derive a similar bound in the scheme of independent copies (Xn)n≥1 of the random
variable X with Var(X) = 1, assuming that the normalized sum Zn has a bounded density
for n = n0 with M = M(Zn0). Consider the characteristic function f(t) = E eitX . We apply
Propositions 3.1-3.2 with ξ = X1 + · · ·+Xn0 in which case g(t) = f(t)n0 and M(ξ) = 1√

n0
M .

Then, for any 1 ≤ m ≤ n/2n0, by (3.1),∫
|t|≥ε
|f(t)|n dt =

∫
|t|≥ε
|f(t)|n−2mn0 |g(t)|2m dt

≤ δf (ε)n−2mn0

∫ ∞
−∞
|g(t)|2m dt ≤ 2πM

√
mn0

δf (ε)n−2mn0 .
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If n ≥ 4n0, let us choose m = [ n
4n0

]. Then n− 2mn0 ≥ n
2 , while m ≥ n

8n0
, and we arrive at∫

|t|≥ε
|f(t)|n dt ≤ 8πM√

n
δf (ε)n/2.

By (3.3) with ε ≤ 1, we also have

δf (ε) ≤ exp
{
− ε2

96M2 (2ε
√
n0 + π)2

}
≤ exp

{
− ε2

96 (2 + π)2n0M2

}
.

Combining the two bounds, one may summarize.

Corollary 3.3. Let Var(X) = 1, and suppose that Zn has a density for n = n0 bounded
by M . Then, for all 0 < ε ≤ 1 and n ≥ 4n0, the characteristic function f of X satisfies∫

|t|≥ε
|f(t)|n dt ≤ 8πM√

n
exp

{
− nε2

Cn0M2

}
, C = 5200. (3.4)

4. Exponential Moments and Orlicz Norms

Under the condition (1.2), the characteristic function

f(z) = E eizX , z = t+ iy, t, y ∈ R,

is well-defined and analytic in the strip |y| = |Re(z)| < b of the complex plane. One may
quantify its behavior near zero, assuming that, for some α > 0,

E eα|X| ≤ 2. (4.1)

We discuss this issue in the next section, and here make a few preliminary remarks about the
conditions (1.2) and (4.1).

WhenX has a finite exponential moment, and α is optimal, then (4.1) becomes an equality.
In this case, the quantity 1

α represents the Orlicz norm of the random variable X generated

by the Young function ψ(x) = e|x| − 1, x ∈ R:

‖X‖ψ = inf
{
λ > 0 : Eψ(X/λ) ≤ 1

}
.

If EX2 = 1, the parameter α may not be large, since the L2-norm is dominated by the
Lψ-norm. More precisely, using x2e−x ≤ 4e−2 (x ≥ 0), we have

α2 = E (αX)2 ≤ 4e−2 E eα|X| = 8e−2,

implying α ≤ 2e−1
√

2 < 1.05. In fact, this bound may be sharpened.

Lemma 4.1. If EX2 = 1, and (4.1) holds, then α < 1.

Proof. We may assume that X ≥ 0 and then we need to show that E eX > 2. It is
easy to check that x + 1

6 x
3 ≥ ax2 for all x ≥ 0 with the optimal constant a = 2√

6
. Since
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EXk ≥ (EX2)k/2 = 1 for k ≥ 2, we get

E eX = 1 +
1

2
EX2 + E

(
X +

1

6
X3
)

+
∞∑
k=4

1

k!
EXk

≥ 3

2
+ a+

∞∑
k=4

1

k!
= e− 7

6
+

2√
6
> 2.36.

�

Note that if we start with a more general condition B = Eeb|X| < ∞ as in Theorem 1.1,
(4.1) is fulfilled for a certain constant α > 0. Indeed, if B ≤ 2, then one may take α = b.
Otherwise,

E eεb|X| ≤ (E eb|X|)ε ≤ Bε = 2

for ε = 1
log2(B) . Hence α = εb = b

log2(B) works as well. The two cases may be united by taking

α =
b

log2(max(B, 2))
.

5. Behavior of Characteristic Functions near Zero

To start with, first let us quantify the closeness of the characteristic function f(z) of the
random variable X to 1 for small values of |z|. We assume throughout that

E eα|X| ≤ 2 (α > 0). (5.1)

Using xe−x ≤ 2e−1 (x ≥ 0) and writing z = t+ iy with |y| ≤ α
2 , we then have

|f ′(z)| = |EXeizX | ≤ E |X| e|yX| ≤ E |X| eα|X|/2

= E |X| e−α|X|/2 eα|X| ≤ 4

αe
.

Hence |f(z)− 1| ≤ 4
αe |z| (since f(0) = 1). Thus, we obtain:

Lemma 5.1. For all complex numbers z in the disc |z| ≤ α
2 ,

|f ′(z)| ≤ 4

αe
, |f(z)− 1| ≤ 2

e
.

This allows one to consider the log-Laplace transform

K(z) = logE ezX = log f(−iz)

as an analytic function in the disc |z| ≤ α
2 . Since it has derivative K ′(z) = −i f

′(−iz)
f(−iz) , from

Lemma 5.1 we get that in this disc

|K ′(z)| ≤ 6

α
, |K(z)| ≤ 3. (5.2)

One may also bound the derivatives of all orders, using Cauchy’s formula

K(k)(z) =
k!

2π

∫
|w−z|=r

K(w)

wk+1
dw,
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where we need to assume that |z|+ r ≤ α
2 . Choosing r = α

4 and applying (5.2), we obtain:

Lemma 5.2. For all complex numbers z in the disc |z| ≤ α
4 ,

|K(k)(z)| ≤ 3k!
( 4

α

)k
, k = 1, 2, . . . (5.3)

Thus, these derivatives have at most a factorial growth in absolute value with respect to
the growing parameter k. For the particular orders k = 2 and k = 3, and under our standard
moment assumptions, the bound (5.3) may be refined (in a smaller disc).

Lemma 5.3. If EX = 0, EX2 = 1, then for all complex numbers z in the disc |z| ≤ α
16 ,

|K ′′′(z)| ≤ 8

α3
. (5.4)

As a consequence,

|K ′′(z)− 1| ≤ 1

2
, |z| ≤ α3

16
. (5.5)

Proof. In terms of the Laplace transform L(z) = E ezX , we have K ′ = L′/L and

K ′′′ =
L′′′

L
− 3

L′′L′

L2
+ 2

L′3

L3
.

For x ≥ 0 and p = 1, 2, 3, we use the elementary inequality xpe−x ≤ (p/e)p. Suppose that

|z| ≤ (1− c)α with 0 < c < 1. Since L(p)(z) = EXp ezX , we then have

|L(p)(z)| ≤ E |X|p e(1−c)α|X|.

Hence, by (5.1),

|L(p)(z)| ≤ E |X|p e−cα|X| eα|X| ≤ 2
( p

cαe

)p
.

In particular,

|L′(z)| ≤ 2

cαe
, |L′′(z)| ≤ 8

(cαe)2
, |L′′′(z)| ≤ 54

(cαe)3
,

so

|L(z)− 1| ≤ 2

cαe
|z| ≤ 2(1− c)

ce
, |L(z)| ≥ 1− 2(1− c)

ce
.

Putting q−1 = 1− 2(1−c)
ce , it follows that

|K ′′′(z)| ≤ (cαe)−3 (54 q + 48 q2 + 16 q3).

Choosing c = 15/16, we have q = (1− 2
15 e)

−1 < 1.06, and the last expression becomes smaller

than 8α−3. Hence

|K ′′′(z)| ≤ 8

α3
, |K ′′(z)− 1| ≤ 8

α3
|z|,

for |z| ≤ α
16 , where we used K ′′(0) = 1. The last inequality readily implies (5.5). �

We shall now show that |f(z)| is bounded away from 1 in a certain region near zero.
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Lemma 5.4. Let EX = 0, EX2 = 1. For all complex numbers z = t + iy with |t| ≤ α3

18 ,

|y| ≤ 1
2 |t|, we have

|f(z)| ≤ e−t2/5. (5.6)

Proof. One may start with an integral Taylor formula

f(z) = 1− 1

2
z2 +

1

2
z3

∫ 1

0
f ′′′(sz)(1− s)2 ds,

where we used f ′(0) = 0, f ′′(0) = −1. Here, by Lemma 5.3, cf. (5.4),

|f ′′′(sz)| ≤ 8

α3
for |z| ≤ α

16
.

Hence, by the triangle inequality, in this disc

|f(z)| ≤
∣∣∣1− 1

2
z2
∣∣∣+

4

3α3
|z|3. (5.7)

Suppose that |y| ≤ 1
2 |t| and |t| ≤ α3

18 . Then |z| ≤ α3

18

√
5/4 < α

16 , so that the above bound
is applicable. Next, we use

t2 − y2 ≥ 3

4
t2, |ty| ≤ 1

2
t2, |z|3 ≤

(5

4

)3/2
|t|3.

This gives ∣∣∣1− 1

2
z2
∣∣∣2 = 1− (t2 − y2) +

1

4
(t2 − y2)2 + (ty)2

≤ 1− 3

4
t2 +

1

2
t4 ≤

(
1− 1

3
t2
)2
,

where we used |t| ≤ 1
18 . Hence, from (5.7),

|f(z)| ≤ 1− 1

3
t2 +

4

3α3

(5

4

)3/2
|t|3

≤ 1− 1

3
t2 +

2

27

(5

4

)3/2
t2 ≤ 1− 1

5
t2.

�

6. Saddle Point

Assume that EX = 0, EX2 = 1, and E eα|X| ≤ 2 (α > 0). Since the log-Laplace transform
K(z) = logE ezX was defined as an analytic function in the disc |z| ≤ α

2 of the complex plane,
it may be expanded as an absolutely convergent power series

K(z) =
1

2
z2 +

∞∑
k=3

γk
k!
zk.

Here, the coefficents γk = Kk)(0) are called cumulants of X. Every γk represents a certain
polynomial in moments of X up to order k. In particular, γ3 = EX3 and γ4 = EX4 − 3.
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Similarly,

K ′(z) = z +
∞∑
k=2

γk+1

k!
zk.

The next object is important for contour integration.

Definition 6.1. Given τ ∈ C, a saddle point is a solution z0 = z0(τ) of the equation

K ′(z) = τ. (6.1)

Thus, a saddle point is the solution of

τ = z +

∞∑
k=2

γk+1

k!
zk. (6.2)

Proposition 6.2. In the disc |τ | ≤ α3

32 , the equation (6.1) has a unique solution z0(τ).
Moreover, it represents an injective analytic function satisfying z′0(0) = 1 and

|z0(τ)| ≤ 2τ ≤ α3

16
, |τ | ≤ α3

32
. (6.3)

Proof. Let us use (6.2) as the definition of the analytic function τ = K ′(z). If τ is
sufficiently small, say |τ | ≤ τ0, this equality may be inverted as a power series in τ ,

z = z0(τ) = τ − γ3

2
τ2 +

3γ2
3 − γ4

6
τ3 + . . .

Let us indicate an explicit expression for τ0 in the form of a positive function of α.
By Lemma 5.3, cf. (5.4),

|τ ′(z)− 1| ≤ 8

α3
|z|, |z| ≤ α

16
. (6.4)

One may use this relation for |z| ≤ α3

16 , since α < 1, by Lemma 4.1. Given two points z1 and

z2 in the disc |z| ≤ α3

16 , define the path zt = (1− t)z1 + tz2 connecting these points. We have

τ(z2)− τ(z1) = (z2 − z1)
(

1 +

∫ 1

0
(τ ′(zt)− 1) dt

)
, (6.5)

implying

|τ(z2)− τ(z1)| ≥ |z2 − z1|
(

1−
∫ 1

0
|τ ′(zt)− 1| dt

)
.

Since |zt| ≤ α3

16 , it follows from (6.4) that

|τ(z2)− τ(z1)| ≥ 1

2
|z2 − z1|.

As a consequence, the map z → τ(z) is injective in the disc |z| ≤ α3

16 . In addition, since
τ(0) = 0, we have

|τ(z)| ≥ 1

2
|z|. (6.6)
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Therefore, the image of the circle |z| = α3

16 under this map represents a closed curve on the

complex plane outside the circle |τ | = α3

32 . Since the image of the disc |z| ≤ α3

16 under τ is

a connected set, while τ(0) = 0, this set must contain the disc |τ | ≤ α3

32 . Thus, the inverse

map z0(τ) = τ−1 is well-defined and represents a holomorphic injective function in |τ | ≤ α3

32

satisfying (6.3), by (6.6), and z′0(0) = 1, by (6.4). Hence, one may take τ0 = α3

32 .
In addition, z0(τ) takes real values for real τ . Indeed, since all cumulants are real numbers,

τ(z) is real for real z, so is the inverse function z0. Also, by (6.5),

τ = z0(τ)
(

1 +

∫ 1

0
(τ ′(tz0(τ))− 1) dt

)
,

which shows that z0(τ) > 0 as long as 0 < τ ≤ α3

32 (since the expression under the integral
sign is a real-valued function whose absolute value does not exceed 1/2). �

7. Taylor Expansions around Saddle Point

It is natural to determine the leading term in the Taylor expansion for z0(τ) when expanding
this function as a power series in τ . Assuming that a non-normal random variable X has mean
zero, variance one, and a finite exponential moment, let γm (m ≥ 3) be the first non-zero
cumulant of X. Then, as |z| → 0,

K(z) =
1

2
z2 +

γm
m!

zm +O(|z|m+1),

so that
K ′(z) = z +

γm
(m− 1)!

zm−1 +O(|z|m) (7.1)

and
K ′′(z) = 1 +

γm
(m− 2)!

zm−2 +O(|z|m−1). (7.2)

Since, by Proposition 6.2, z0(τ) = τ +O(|τ |2) as τ → 0, we get from (7.1)

τ = K ′(z0(τ)) = z0(τ) +
γm

(m− 1)!
z0(τ)m−1 +O(|z0(τ)|m)

= z0(τ) +
γm

(m− 1)!
τm−1 +O(|τ |m).

Therefore,

z0(τ) = τ − γm
(m− 1)!

τm−1 +O(|τ |m). (7.3)

Also, write down the Taylor expansion around the point z0 = z0(τ):

K(z)− τz = K(z0)− τz0 +
∞∑
k=2

ρk
k!

(z − z0)k, ρk = K(k)(z0). (7.4)

Here, we used the property that the function K(z)− τz has derivative K ′(z0)− τ = 0 at the
saddle point z = z0. Thus, the linear term in (7.4) corresponding to k = 1 is vanishing. As
for the free term corresponding to k = 0, let us recall that that

K(z0) =

∞∑
k=2

γk
k!
zk0
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and

τz0 = z0K
′(z0) =

∞∑
k=2

γk
(k − 1)!

zk0 .

Hence

K(z0)− τz0 = −
∞∑
k=2

k − 1

k!
γkz

k
0 = −1

2
z2

0 −
1

3
γ3z

3
0 + . . . (7.5)

Using (7.3) and (7.5), we actually have

K(z0)− τz0 = −1

2
z2

0 −
m− 1

m!
γmz

m
0 + . . .

= −1

2

(
τ − γm

(m− 1)!
τm−1 +O(|τ |m)

)2

− m− 1

m!
γm

(
τ − γm

(m− 1)!
τm−1 +O(|τ |m)

)m
+ . . .

which simplifies to

K(z0)− τz0 = −1

2
τ2 +

1

m!
γmτ

m +O(|τ |m+1)

= −1

2
τ2 + τ3λ(τ). (7.6)

Thus, applying Proposition 6.2 and recalling that K(z) is analytic in |z| ≤ α
2 (Lemma 5.1),

we obtain:

Proposition 7.1. The function

λ(τ) =
1

τ3

(
K(z0(τ))− τz0(τ) +

1

2
τ2
)

is well-defined and analytic in the disc |τ | ≤ α3

32 . Moreover, as τ → 0,

λ(τ) =
1

m!
γmτ

m−3 +O(|τ |m−2). (7.7)

Definition 7.2. Being an analytic function, λ(τ) is represented as a power series in the

disc |τ | ≤ α3

32 . It is called Cramér’s series.

Let us also introduce another analytic function which appears in the representation (1.6)
of Theorem 1.2.

Proposition 7.3. The function

µ(τ) =
1

2
logK ′′(z0(τ))

is well-defined and analytic in the disc |τ | ≤ α3

32 . Moreover, as τ → 0,

µ(τ) =
1

2(m− 2)!
γmτ

m−2 +O(|τ |m−1). (7.8)
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Proof. By (6.3), |z0(τ)| ≤ α3

16 . Hence, by Lemma 5.3, K ′′(z0(τ)) takes values in the disc
with center at 1 of radius 1/2. Thus, the principal value of logK ′′(z0(τ)) is well-defined and

represents an analytic function in |τ | ≤ α3

32 . Moreover, by (7.2)-(7.3),

K ′′(z0(τ)) = 1 +
γm

(m− 2)!
z0(τ)m−2 +O(|z0(τ)|m−1)

= 1 +
γm

(m− 2)!
τm−2 +O(|τ |m−1).

Taking the logarithm of this expression, we arrive at (7.8). �

Let us also mention that the function K(z) is convex and has a positive second derivative
on the real line, more precisely – on the interval where it is finite. Hence µ(τ) is real-valued
for real τ .

8. Contour Integration

Let (Xn)n≥1 be independent copies of a random variable X with EX = 0, Var(X) = 1, and
characteristic function f(t) = E eitX . Supposed that the normalized sum

Zn =
X1 + · · ·+Xn√

n

has a bounded density for n = n0. As already discussed in Section 2, in this case all Zn with
n ≥ 2n0 have continuous bounded densities expressed by the inversion formula

pn(x) =
1

2π

∫ ∞
−∞

e−itxfn(t) dt, x ∈ R,

where

fn(t) = f
( t√

n

)n
denotes the characteristic functions of Zn. Equivalently,

pn(x) =

√
n

2π

∫ ∞
−∞

e−itx
√
n f(t)n dt. (8.1)

Using contour integration, one can cast this formula in a different form envolving the
log-Laplace transform K(z) = logE ezX and the saddle point z0 = z0(τ) for the real value
τ = x/

√
n. This is a preliminary step towards Theorem 1.2.

As before, let E eα|X| ≤ 2 with a parameter α > 0.

Lemma 8.1 Let n ≥ 4n0. If 0 < ε ≤ α3

18 and |τ | ≤ ε
2 , then

pn(x) =

√
n

2π

∫ ε

−ε
exp

{
n(K(z0 + it)− τ(z0 + it))

}
dt+ θRn (8.2)

with |θ| ≤ 1 and

Rn = 5M exp
{
− nε2

Cn0M2

}
, C = 5200. (8.3)
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Proof. Applying Corollary 3.3, we get from (8.1) that, for any ε ∈ (0, 1],∣∣∣ pn(x)−
√
n

2π

∫ ε

−ε
e−itx

√
n f(t)n dt

∣∣∣ ≤ 4M exp
{
− nε2

Cn0M2

}
(8.4)

with an absolute constant, say C = 5200.
Due to the assumption on ε, we may apply Lemma 5.4 which gives

|f(±ε+ iy)| ≤ e−ε2/5 whenever |y| ≤ ε

2
. (8.5)

Assuming for definiteness that x ≥ 0, we take the rectangle contour

L = L1 + L2 + L3 + L4

with segment parts

L1 = [−ε, ε], L2 = [ε, ε− ih],
L3 = [ε− ih,−ε− ih], L4 = [−ε− ih,−ε],

where h > 0 is chosen to satisfy h ≤ ε
2 . With this choice the complex numbers z = t + iy

with |t| ≤ ε, |y| ≤ h lie in the domain of the definition of K(z). Then, by Cauchy’s theorem,∫
L1

e−izx
√
n f(z)n dz +

∫
L2

e−izx
√
n f(z)n dz

+

∫
L3

e−izx
√
n f(z)n dz +

∫
L4

e−izx
√
n f(z)n dz = 0.

Note that in the lower half-plane z = t− iy, 0 ≤ y ≤ h, we have |e−izx
√
n| = e−yx

√
n ≤ 1.

Moreover, |f(z)| is bounded away from 1 on L2 and L4 according to (8.5) which gives∣∣∣ ∫
L2

∣∣∣+
∣∣∣ ∫

L4

∣∣∣ ≤ ε e−nε2/5 ≤ 1

18
e−nε

2/5.

To simplify, note that

4M exp
{
− nε2

Cn0M2

}
+

1

18
e−nε

2/5 ≤ Rn,

where we used M ≥ 1
12 . Combining this bound with (8.4), we arrive at

pn(x) =

√
n

2π

∫ ε

−ε
e−i(t−ih)x

√
n f(t− ih)n dt+ θRn.

Using the log-Laplace transform, let us rewrite the above as a contour integral

pn(x) =

√
n

2πi

∫ h+iε

h−iε
exp{n(K(z)− τz)} dz + θRn

with τ = x/
√
n and apply it with h = z0 = z0(τ). Due to the requirement 0 ≤ τ ≤ ε

2 , we

have 0 ≤ τ ≤ α3

32 and 0 ≤ z0 ≤ α3

16 , according to (6.3), so that Proposition 6.2 is applicable.
After the change of variable, we thus obtain (8.2)-(8.3).
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9. Estimation of the Integral outside a Neighborhood of the Saddle Point

As a next step, let us show that, at the expense of a small error, the integration in (8.2) may
be restricted to the interval |t| ≤ tn with

tn = n−1/2
√

8 log n.

Using (7.4) and (7.6) in the representation (8.2), one may rewrite (8.2) as

pn(x) =

√
n

2π

∫ ε

−ε
exp

{
n
( ∞∑
k=2

ρk
(it)k

k!

)}
dt en (− 1

2
τ2+τ3λ(τ)) + θRn,

where τ = x
√
n and ρk = K(k)(z0), assuming for definiteness that x > 0. Equivalently

pn(x)

ϕ(x)
=

√
n√
2π

enτ
3λ(τ)

∫ ε

−ε
exp

{
n
( ∞∑
k=2

ρk
(it)k

k!

)}
dt+ θRne

x2/2. (9.1)

In order to force the new remainder term

Rne
x2/2 = 5M exp

{
− nε2

Cn0M2
+ nτ2

}
, C = 5200,

to be exponentially small with respect to n, let us strengthen the assumption |τ | ≤ ε
2 in

Lemma 8.1 to 0 ≤ τ ≤ ε
80n0M

(recall that M ≥ 1/12). In this case, the expression in the

exponent will be still of order at most − cnε2

n0M2 up to an absolute constant c > 0. Thus, (9.1)

yields

pn(x)

ϕ(x)
=

√
n√
2π

enτ
3λ(τ)

∫ ε

−ε
exp

{
n
( ∞∑
k=2

ρk
(it)k

k!

)}
dt+ θRn, (9.2)

under the conditions

0 ≤ τ ≤ ε

80n0M2
, 0 ≤ ε ≤ α3

18
, (9.3)

where

Rn = 5M exp
{
− cnε2

n0M2

}
. (9.4)

Now, by Lemmas 5.2-5.3,

1

2
≤ ρ2 ≤

3

2
, |ρk| ≤ 3k!

( 4

α

)k
(k ≥ 3). (9.5)

It follows that

Re

( ∞∑
k=2

ρk
(it)k

k!

)
= −ρ2

t2

2
+

∞∑
k=2

(−1)kρ2k
t2k

(2k)!

≤ −1

4
t2 + 3

∞∑
k=2

(4t

α

)2k
≤ −1

8
t2,

where we used |t| ≤ ε ≤ α3

18 and α < 1. Hence, when restricted to |t| ≥ tn, the absolute value
of the integral in (9.3) does not exceed

2

∫ ∞
tn

e−nt
2/8 dt =

1√
n

∫ ∞
tn
2

√
n
e−s

2/2 ds <

√
2π

2
√
n
e−nt

2
n/8 =

√
2π

2n3/2
.
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As a result, assuming the conditions (9.3),

pn(x)

ϕ(x)
=

√
n√
2π

enτ
3λ(τ)

∫
|t|≤t1

exp

{
n
( ∞∑
k=2

ρk
(it)k

k!

)}
dt

+ θ1n
−1enτ

3λ(τ) + θ2Rn, (9.6)

where t′n = min(tn, ε), |θj | ≤ 1, Rn is now defined in (9.4).

10. Proof of Theorem 1.2

As a final step, we need to explore an asymptotic behavior of the integral in (9.6), where we

recall that ρk = K(k)(z0), z0 = z0(τ) being the saddle point for τ = x/
√
n. In view of the

conditions in (9.3), we choose

ε =
α3

18
, τ0 =

ε

80n0M2
=

c α3

n0M2
,

where c > 0 is an absolute constant. Thus, suppose that x ≥ 0 and τ ≤ τ0.
The integrand in (9.5) may be written as

un(t) = exp
{
− nρ2

t2

2
+ nρ3

(it)3

6
+ nv(t)

}
with

v(t) =

∞∑
k=4

ρk
(it)k

k!
.

Let us assume that n ≥ n1 = max(4n0, ε
−4) which insures that t′n = tn. As |t| ≤ tn, from

(9.5) it follows that

nv(t) = O(nt4) =
B

n
(log n)2,

where B denotes a bounded quantity with involved constants depending on α only. We also
have nt3 = O(n−1/2(log n)3/2). Using ex = 1 + x+O(x2) as x→ 0 with

x = nρ3
(it)3

6
+ nv(t),

we have

un(t) = e−nρ2t
2/2+x

= e−nρ2t
2/2
(
1 + x+Bx2

)
= e−nρ2t

2/2
(

1 + nρ3
(it)3

6
+Bn−1(log n)3

)
.

Hence ∫
|t|≤tn

un(t) dt =
(
1 +Bn−1(log n)3

) ∫
|t|≤tn

e−nρ2t
2/2 dt,

and (9.6) simplifies to

pn(x)

ϕ(x)
=

√
n√
2π

enτ
3λ(τ)

(
1 +Bn−1(log n)3

) ∫
|t|≤t0

e−nρ2t
2/2 dt

+ θ1n
−1enτ

3λ(τ) + θ2Rn, (10.1)
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Next, one may extend the integration in (10.1) to the whole real line at the expense of an
error not exceeding∫

|t|≥tn
e−nρ2t

2/2 dt =
2
√
ρ2n

∫ ∞
tn
√
ρ2n

e−s
2/2 ds

<

√
2π

√
ρ2n

e−nρ2t
2
n/2 <

√
π√
n
e−nt

2
n/4 =

√
π√
n
n−2,

where we used 1
2 ≤ ρ2 ≤ 3

2 . Since the integral over the whole real line is equal to
√

2π√
ρ2n

, we

obtain from (10.1) that

pn(x)

ϕ(x)
=

1
√
ρ2
enτ

3λ(τ)
(
1 +Bn−1(log n)3

)
+ θ1n

−1enτ
3λ(τ) + θ2Rn.

Here, the first remainder term may be absorbed in the brackets, so that this formula is further
simplified to

pn(x)

ϕ(x)
=

1
√
ρ2
enτ

3λ(τ)
(

1 +Bn−1(log n)3 + 2θ2Rn e
−nτ3λ(τ)

)
.

Returning to the definition (7.6) and recalling (5.2) and (6.3), let us note that

τ3λ(τ) = K(z0)− τz0 +
1

2
τ2

is bounded in absolute value by 3 + 5
2τ

2 < 4. Hence, choosing a smaller constant c in (9.4),

the last term Rn e
−nτ3λ(τ) will be dominated by the second last term. This leads to

pn(x)

ϕ(x)
=

1
√
ρ2
enτ

3λ(τ)
(
1 +Bn−1(log n)3

)
. (10.2)

It remains to recall Proposition 7.3 according to which ρ
−1/2
2 = K ′′(z0(τ))−1/2 = e−µ(τ).

Finally, let us note that the case 2n0 ≤ n < n1 is not interesting, since then |x| ≤ τ0n1,
and (1.6) holds true by choosing a suitable constant in O in (1.6). Theorem 1.2 is proved.

11. Proof of Corollary 1.3

Starting from (7.7) and (7.8), we have

nτ3λ(τ)− µ(τ) =
n

m!
γmτ

m +O(|τ |m+1)− 1

2(m− 2)!
γmτ

m−2 +O(|τ |m−1)

=
γm
m!

τm−2 Λ(τ).

Here

Λ(τ) = nτ2 − m(m− 1)

2
+ nO(τ3) +O(τ)

≥ 1

2

[
nτ2 − m(m− 1)

2

]
,

which is bounded away from zero, if |τ | ≤ τ1 for some constant τ1 > 0 and nτ2 = x2 ≥ m2.
In this case, (1.6) immediately yields the desired relation (1.7).
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In the remaining bounded interval |x| ≤ m, this argument does not work, and it is better
to employ the Chebyshev-Edgeworth expansion for the correction ϕm(x) in (1.1) (which
depends on n as well). In terms of the first non-zero cumulant, (1.1) may be written more
accurately as

pn(x) = ϕ(x) +
γm
m!

Hm(x)ϕ(x)n−
m−2

2 +
1

1 + |x|m
o
(
n−

m−2
2
)
,

where Hm(x) denotes the Chebyshev-Hermite polynomial of degree m. As a consequence, for
any constant x0 > 0,

sup
|x|≤x0

|pn(x)− ϕ(x)|
ϕ(x)

= O
(
n−

m−2
2
)
,

which is stronger than (1.7), since m is even (hence m ≥ 4).
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