
REFINEMENTS OF BERRY–ESSEEN INEQUALITIES

IN TERMS OF LYAPUNOV COEFFICIENTS

SERGEY G. BOBKOV

Abstract. We discuss some variants of the Berry-Esseen inequality in terms of Lyapunov
coefficients which may provide sharp rates of normal approximation.

1. Introduction

Given independent random variables (Xk)1≤k≤n with mean EXk = 0 and finite variances
σ2
k = Var(Xk), denote by Fn(x) = P{Sn ≤ x} the distribution function of the sum

Sn = X1 + · · ·+Xn. (1.1)

For normalization reason, we assume that ES2
n = σ2

1 + · · ·+ σ2
n = 1.

It is well-known that, under the Lindeberg condition, Fn is close in the weak topology to
the standard normal distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−y

2/2 dy, x ∈ R.

In order to quantify the normal approximation, one often considers upper bounds for the
Kolmogorov distance

∆n = sup
x
|Fn(x)− Φ(x)|

in terms of the Lyapunov coefficients

Lp =

n∑
k=1

E |Xk|p, p > 2.

In the case of independent, identically distributed (i.i.d.) summands Xk = 1√
n
ξk with finite

absolute moment βp = E |ξ1|p, these quantities have a polynomial decay with respect to n,

Lp = βp n
− p−2

2 .

A basic fundamental relation in this direction is the classical Berry-Esseen inequality which
indicates that

∆n ≤ cL3, (1.2)

cf. e.g. [16]. Here and below, we use c to denote positive absolute constants which may vary
from place to place (otherwise, we add parameters which these constants may depend on).
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In the i.i.d. scenario, (1.2) leads to the standard rate of normal approximation under the 3rd
moment assumption,

∆n ≤ c
β3√
n
. (1.3)

Much of the work has been done in order to polish the constants in these inequalities. The
best known results in this respect are due to Shevtsova [20], who showed that one may take
c = 0.56 in (1.2) and c = 0.47 in (1.3).

The Berry-Esseen inequality (1.2) may be sharpened as a non-uniform bound

sup
x

[
(1 + |x|3) |Fn(x)− Φ(x)|

]
≤ cL3,

which is due to Nagaev [12] in the i.i.d. case and Bikelis [2] in general. See also [13], [17].
On the other hand, (1.2) can be sharpened and generalized by removing the hypothesis

on the finiteness of the 3rd absolute moments. This may be done, for example, in terms of
the truncated Lyapunov coefficients

R3 =

n∑
k=1

E min{1, |Xk|}X2
k .

While L3 may be large and even infinite, we have 0 ≤ R3 ≤ min(1, L3). A suitable application
of Jensen’s inequality leads to the lower bound R3 ≥ c√

n
similarly to L3 ≥ 1√

n
. An appropriate

sharpening of (1.1) is

∆n ≤ cR3. (1.4)

Representing a natural quantified form of the Lindeberg theorem, this inequality has a long
and rich history; it goes back to the works by Katz [9], Petrov [15], Studnev [21], [22],
Osipov [14], Feller [7], among others, although (1.4) is often stated in the equivalent setting
of normalized sums Sn = 1

Bn

∑n
k=1 ξk. Let us only mention that one may take c = 2.02, as

was shown in [11]; cf. also [8] for discussions and related results.
For an illustration of the advantage of (1.4) over (1.2), one may note that R3 ≤ L2+δ for

any δ ∈ (0, 1], which follows from min{1, |x|}x2 + |x|2+δ, x ∈ R. Hence, (1.4) yields another
useful relation

∆n ≤ cL2+δ,

which in the i.i.d. case becomes

∆n ≤ c
β2+δ

nδ/2
.

2. Combination of several Lyapunov coefficients

In general, the standard rate as in (1.3) cannot be improved, even if higher order moments
of the random variables Xk are finite (for example, for normalized sums of i.i.d. Bernoulli
random variables). Similarly, one may not replace L3 with other Lyapunov coefficients in the
more general bound (1.2). Nevertheless, in the non-i.i.d. case, (1.2) may be sharpened by
using L4 in combination with other Lp’s. Note that, in a typical situation, the quantities Lp

are getting smaller for growing values of p, while in general L
1

p−2
p is decreasing in p > 2 (cf.

Remark 6.2 below). In particular,

L
1/δ
2+δ ≤ L3 ≤

√
L4 for any δ ∈ (0, 1].
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To describe the possible range of ∆n, first let us complement (1.2) with two natural lower
bounds for the weighted sums

Sn = a1ξ1 + · · ·+ anξn, a2
1 + · · ·+ a2

n = 1 (ak ∈ R), (2.1)

assuming that the random variables ξk are i.i.d., have mean zero and variance one. Put
α3 = Eξ3

1 and as before βp = E |ξ1|p.

Theorem 2.1. a) Let α3 6= 0 and β4 <∞. If the coefficients ak in (2.1) have equal signs,
then

c′L3 ≤ ∆n ≤ cL3, (2.2)

where the constant c′ > 0 depends on α3 and β4 only. b) If β4 6= 3 and β5 <∞, then

c′L4 ≤ ∆n ≤ cL3, (2.3)

where the constant c′ > 0 depends on β4 and β5 only.

Thus, in some sense the Berry-Esseen bound (1.2) is sharp for the sums as in (2.1) under
the condition α3 6= 0 and when all ak have equal signs. Otherwise, for example, when the
distribution of ξ1 is symmetric about the origin, (2.2) is not applicable, while (2.3) may
describe a large interval which the values of ∆n belong to. This concerns, in particular, the
Bernoulli distribution with atoms at ±1, in which case

Lp = |a1|p + · · ·+ |an|p,

and c′ is a certain universal constant. Since |ak| ≤ L
1/3
3 for all k ≤ n, necessarily L4 ≤ L

4/3
3 ,

so that L4 is essentially smaller than L3 (when the latter is small).
The main purpose of this note is to replace L3 in (1.2) with potentially smaller quantities.

Let us return to the general scheme of the sums as in (1.1).

Theorem 2.2. Suppose that the random variables Xk have finite 4-th moments with
EX3

k = 0. Then, for any δ ∈ (0, 1],

∆n ≤ c
(1

δ
L4 + L

1/δ
2+δ

)
. (2.4)

Moreover, if the distributions of Xk are symmetric about the origin, then

∆n ≤ c
(1

δ
R4 + L

1/δ
2+δ

)
. (2.5)

Here, we use the 4-th order truncated Lyapunov coefficient

R4 =
n∑
k=1

E min{1, X2
k}X2

k ,

which does not require the finiteness of any absolute moments of Xk of order higher than 2
and satisfies R4 ≤ R3 ≤ L3 and R4 ≤ L4. Thus, the inequality (2.5) is sharper than (2.4)
under the symmetry hypothesis and only requires the finiteness of absolute moments of order
2 + δ. Note also that (2.5) with δ = 1 is equivalent to the Berry-Esseen bound (1.2).
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As for the term L
1/δ
2+δ, it is not only smaller than L3, but may also be of the same order

or even smaller than R4. On the other hand, this quantity admits a simple lower bound

L
1/δ
2+δ ≥

1√
n
. (2.6)

Hence, the bounds (2.4)-(2.5) may not provide rates for ∆n which would be better than the
standard 1√

n
-rate.

Example 2.3. Let the i.i.d. random variables ξk have mean zero, variance one, with
Eξ3

1 = 0 and β4 = Eξ4
1 <∞. We examine an asymptotic behaviour of ∆n as n→∞ for the

weighted sums of the form

Sn =
1

bn

n∑
k=1

1

kq
ξk

with a fixed positive parameter q < 1
2 . The normalizing constant in front of the sum should

be chosen such that

b2n =
n∑
k=1

1

k2q
, bn ∼ n

1
2
−q.

Here and below, we write Q1 ∼ Q2 for any two quantities Qj = Qj(n), if c1Q1 ≤ Q2 ≤ c2Q1

for all n for some positive constants cj depending on q and βp only.
As a main case, let 1

3 < q < 1
2 . Then

L3 ∼ n−3 ( 1
2
−q), L4 ∼ n−4 ( 1

2
−q) ∼ L4/3

3 , L
1/δ
2+δ ∼

1√
n

= o(L3)

for any fixed δ ∈ (0, 1
q − 2). So, with this choice of δ, (2.4) is sharper than (1.2). Moreover,

as n→∞,

L
1/δ
2+δ = O(L4) ⇐⇒ q ≥ 3

8
.

Hence, in the region 3
8 ≤ q < 1

2 , and if β4 6= 3, β5 <∞, we get that ∆n ∼ L4, which follows
from (2.4) and the lower bound in (2.2).

However, a similar conclusion cannot be made for the region 1
4 < q < 1

3 . Then

L3 ∼ L1/δ
2+δ ∼

1√
n
,

while L4 ∼ n−4 ( 1
2
−q) is of a smaller order.

As we will see, the inequality (2.4) may further be sharpened under higher order moment
assumptions when replacing the normal distribution function Φ(x) by the corresponding
Chebyshev-Edgeworth correction (this may be illustrated on the same example as above).
One should emphasize, however, that this improvement may not be better than the standard
rate (in view of the lower bound (2.6)). Let us mention in this connection that, for the
sums Sn as in (2.1), the rate of normal approximation may be of the order 1/n (even in the
Bernoulli case). This can be achieved either for some explicit coefficients ak (with a certain
arithmetic structure), or for typical coefficients randomly selected as coordinates of a point
on the unit sphere in Rn (cf. [10], [5]).

In the next section we remind basic Fourier-analytic tools and discuss upper bounds for the
deviations of the characteristic functions fn(t) of Sn from the standard normal characteristic
function in terms of R3 and R4. Some technical preparations are put in Sections 4-5. In
Sections 6-7 we collect basic properties of the truncated Lyapunov coefficients. Section 8
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deals with general Gaussian-type upper bounds on |fn(t)|, and then we turn to the proof of
Theorem 2.2 in the symmetric case (Section 9). The construction of Chebyshev-Edgeworth
corrections is discussed separately in Section 10, which are used to state and prove a more
general version of the first part in Theorem 2.2 in Section 11. The proof of the Theorem 2.1
is postponed to the last Section 12.

3. Berry-Esseen bounds in terms of Fourier-Stieltjes transforms

The basic Fourier analytic approach to the estimation of the Kolmogorov distance

ρ(F,G) = sup
x
|F (x)−G(x)|

is a general Berry-Esseen bound

ρ(F,G) ≤ c
∫ T

−T

∣∣∣f(t)− g(t)

t

∣∣∣ dt+
cA

T
, (3.1)

holding true with some absolute constant c > 0 for all T > 0 (cf. [16], p. 104). Here F
and G may be respectively an arbitrary non-decreasing bounded function and a function of
bounded total variation on the real line with finite Lipschitz semi-norm A = ‖G‖Lip such
that F (−∞) = G(−∞), with Fourier-Stieltjes transforms

f(t) =

∫ ∞
−∞

eitx dF (x), g(t) =

∫ ∞
−∞

eitx dG(x).

As before, let Sn = X1 + · · ·+Xn be the sum of the independent random variables as in
(1.1), that is, with mean zero and variances σ2

k = Var(Xk) such that σ2
1 + · · ·+ σ2

n = 1. The
relation (3.1) may be applied to the distribution function F = Fn of Sn with its characteristic
function

fn(t) = E eitSn =

∫ ∞
−∞

eitx dFn(x)

and with the standard normal distribution function G = Φ. Then (3.1) provides a well-known
upper bound for the Kolmogorov distance ∆n = ρ(Fn,Φ), namely

∆n ≤ c
∫ T

−T

∣∣∣fn(t)− e−t2/2

t

∣∣∣ dt+
c

T
. (3.2)

It is also a standard fact that

|fn(t)− e−t2/2| ≤ cL3 min(1, t3) e−t
2/6, |t| ≤ 1

L3
. (3.3)

Here, the coefficent 1/6 in the exponent may be chosen to be as close to 1/2 as we wish by
reducing the interval to the form |t| ≤ c

L3
with a sufficiently small c > 0. Applying (3.3) in

(3.2) with T = 1/L3, one obtains the Berry-Esseen bound (1.2) in terms of the Lyapunov
coefficient L3.

Similarly, (1.4) follows from (3.2) with T = 1/R3 and the following statement of indepen-
dent interest (which is stronger and more general compared to (3.3)).

Proposition 3.1. We have

|fn(t)− e−t2/2| ≤ cR3 min(1, t2) e−t
2/6, |t| ≤ 1

16R3
. (3.4)
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In a slightly different form, this relation was derived by Osipov [14] as a main step in the
proof of the Berry-Esseen-type bound (1.4). In other works, (1.4) is obtained on the basis
of (1.2) by using a truncation argument. Nevertheless, (3.4) seems more relevant, since the
finiteness of the 3rd moments of Xk is not required and since this inequality may have further
applications such as local limit theorems, for example. For completeness, we will include the
proof of Proposition 2.1 together with a closely related assertion in the symmetric case, which
will be needed for the derivation of the inequality (2.3) of Theorem 2.2.

Proposition 3.2. Suppose that the distributions of the random variables Xk are sym-
metric about the origin. Then

|fn(t)− e−t2/2| ≤ cR4 min(1, t2) e−t
2/6, |t| ≤ 1

16R3
. (3.5)

4. Characteristic functions for single random variables

Turning to the proofs, as a preliminary step, it is useful to fix a few elementary assertions
about characteristic functions for single random variables. In this section, we suppose that a
random variable X has mean zero and (finite) variance σ2 = Var(X). Introduce its charac-
teristic function

f(t) = E eitX , t ∈ R.

Lemma 4.1. For all t ∈ R, with some complex number θ = θ(t), |θ| ≤ 1, we have

f(t) = 1− σ2t2

2
+
θt2

2
E min{2, |tX|}X2. (4.1)

Moreover, if the distribution of X is symmetric about the origin, then

f(t) = 1− σ2t2

2
+ θt2 E min

{
1,

1

4
(tX)2

}
X2. (4.2)

As a consequence, we get:

Lemma 4.2. For all t ∈ R,

|f(t)|2 ≤ 1− σ2t2 + 2t2 E min{1, (tX)2}X2

≤ 1− σ2t2 + 2t2 E min{1, |t|X|}X2. (4.3)

Proof. Let F (x) = P{X ≤ x}, x ∈ R, denote the distribution function of X. By the
integral Taylor’s formula, for all t ∈ R,

f(t) = 1− σ2t2

2
− t2

∫ 1

0
(f ′′(0)− f ′′(st)) (1− s) ds,

which implies that

f(t) = 1− σ2t2

2
+
θt2

2
max

0≤s≤|t|
|f ′′(0)− f ′′(s)| (4.4)

with some complex number θ such that |θ| ≤ 1.
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To bound the last term in (4.4), suppose that u(t) is the characteristic function of a
random variable with distribution function U(x), that is,

1− u(t) =

∫ ∞
−∞

(1− eitx) dU(x).

Hence

|1− u(t)| ≤
∫ ∞
−∞

min{2, |tx|} dU(x).

If the measure U is symmetric about the origin, u(t) is real-valued and then this inequality
may be sharpened. Using

1− u(t) = 2

∫ ∞
−∞

sin2
( tx

2

)
dU(x),

we therefore have

|1− u(t)| ≤ 2

∫ ∞
−∞

min
{

1,
(tx)2

4

}
dU(x).

Since the right-hand sides in both inequalities represent non-decreasing functions in t ≥ 0,
we get formally stronger bounds

max
|s|≤|t|

|1− u(s)| ≤
∫ ∞
−∞

min{2, |tx|} dU(x),

max
|s|≤|t|

|1− u(s)| ≤ 2

∫ ∞
−∞

min
{

1,
(tx)2

4

}
dU(x).

To obtain (4.1)-(4.2), it remains to apply these bounds with

dU(x) =
1

σ2
x2dF (x), u(t) = − 1

σ2
f ′′(t).

Turning to the next lemma, let X ′ be an independent copy of X. Applying (4.2) to the
random variable Y = X −X ′, we have

|f(t)|2 = 1− σ2t2 + θt2 Eψ(Y ), (4.5)

where

ψ(x) = min
{

1,
(tx)2

4

}
x2.

This function is non-negative, even, and non-decreasing in x > 0. Put

w(x) = min{1, (tx)2}x2

and note that ψ(2x) = w(x). The function w(x) is also non-negative, even, and non-decre-
asing in x > 0. Hence, given x1 ≥ x2 ≥ 0, we have

ψ(x1 + x2) ≤ ψ(2x1) = w(x1) ≤ w(x1) + w(x2).

The resulting inequality holds for x2 ≥ x1 ≥ 0 as well. Therefore, for all x1, x2 ∈ R,,

ψ(x1 + x2) = ψ(|x1 + x2|) ≤ ψ(|x1|+ |x2|)
≤ w(|x1|) + w(|x2|) = w(x1) + w(x2).

Applying this subadditivity property in (4.5), we obtain that

Eψ(Y ) ≤ Ew(X) + Ew(X ′) = 2Ew(X),

so that
|f(t)|2 = 1− σ2t2 + 2θt2 Ew(X).
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�

5. Some moment inequalities

Towards the proof of Theorem 2.2, we will need the following moment inequality due to Cox
and Kemperman [6].

Proposition 5.1. Given independent random variables X and Y with mean zero and
finite absolute moments of order p ≥ 2, we have

E |X + Y |p ≤ 2p−2
(
E |X|p + E |Y |p

)
. (5.1)

With a worse constant, (5.1) is immediately obtained by applying Jensen’s inequality. In
the present formulation, it is sharp, and an equality is attained when both X and Y have a
symmetric Bernoulli distribution. Note also that (5.1) becomes an equality for p = 2. Hence,
we obtain an inequality for the derivatives of both sides at this point, that is,

E |X + Y |2 log |X + Y | ≤ E |X|2 log(2|X|) + E |Y |2 log(2|Y |),

where the symmetric Bernoulli distribution still plays an extremal role.
As was shown in [6], the inequality (5.1) follows from the “non-random” relation

|x+ y|p ≤ 2p−2
(
|x|p + |y|p + x sign(y) |y|p−1 + y sign(x) |x|p−1

)
,

which is valid for all x, y ∈ R. For the sake of completeness, let us describe an alternative
argument which covers the range 2 ≤ p ≤ 4. It is based on the following:

Lemma 5.2. Let 2 ≤ p ≤ 4. If X ′ and Y ′ are respectively independent copies of
independent random variables X and Y with mean zero, then

E |X + Y |p ≤ 1

2
E |X −X ′|p +

1

2
E |Y − Y ′|p. (5.2)

This interesting relation was obtained by Ushakov in [25], where it was additionally as-
sumed that X and Y have symmetric distributions, and by Pinelis [18] in the general case.
Their proofs are similar and short, so, we reproduce here.

Proof. Given a random variable X with finite value βp = E |X|p, p > 0, define the

moments αk = EXk for integers 0 ≤ k ≤ p (with the convention that α0 = 1). It is known
that the moment βp may be expressed in terms of the characteristic function f(t) = E eitX .
The following representation was given by von Bahr [26]: If p is not an even integer, then

βp = C(p)

∫ ∞
−∞

[
Re(f(t))−

[p/2]∑
k=0

(−1)kα2k
t2k

(2k)!

]
dt

tp+1
, (5.3)

where

C(p) =
1

π
Γ(p+ 1) cos

((p+ 1)π

2

)
. (5.4)
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In particular, C(p) > 0 for 2 < p < 4, and if X has mean zero and variance σ2 = Var(X),
the equality (5.3) takes the form

βp = C(p)

∫ ∞
−∞

[
Re(f(t))− 1 +

σ2t2

2

]
dt

tp+1
. (5.5)

Moreover, it was shown by Ushakov [24], p. 89, that in the case where X has mean zero and
variance σ2, we have

Re(f(t)) ≥ 1− σ2t2

2
for all t ∈ R. Hence, the integrand in (5.5) is non-negative.

Returning to (5.2), we may assume that X and Y have finite absolute moments of order
p ∈ (2, 4). Put σ2

1 = Var(X), σ2
2 = Var(Y ), so that X + Y has variance σ2 = σ2

1 + σ2
2.

Let f1(t) and f2(t) be the characteristic functions of X and Y , respectively. Then X −X ′
and Y − Y ′ have characteristic functions |f1(t)|2 and |f2(t)|2, while X + Y has characteristic
function f1(t)f2(t). Using

|f1(t)|2 + |f2(t)|2 ≥ 2 |f1(t)f2(t)| ≥ 2 Re(f1(t)f2(t))

and applying (5.5) to X −X ′, Y − Y ′ and X + Y , it follows that

E |X −X ′|p + E |Y − Y ′|p = C(p)

∫ ∞
−∞

[
|f1(t)|2 − 1 + σ2

1t
2
] dt

tp+1

+ C(p)

∫ ∞
−∞

[
|f2(t)|2 − 1 + σ2

2t
2
] dt

tp+1

≥ 2C(p)

∫ ∞
−∞

[
Re(f1(t)f2(t))− 1 +

σ2t2

2

]
dt

tp+1

= 2E |X + Y |p.
�

Proof of Proposition 5.1 for the region 2 ≤ p ≤ 4. As a first step, let us show that, if
a random variable X takes at most two values, and X ′ is an independent copy of X, then,
for any p ≥ 2,

E |X −X ′|p ≤ 2p−1 E |X|p. (5.6)

Note that, by Jensen’s inequality, one has a similar relation with an additional factor of 2 on
the right-hand side.

Suppose that X takes two non-zero values x1 and x2 with respective probabilities q1 > 0
and q2 > 0. Then the inequality of the form

E |X −X ′|p ≤ cE |X|p

may be rewritten as

2q1q2 |x1 − x2|p ≤ c
(
q1|x1|p + q2|x2|p

)
,

that is,

2 |x1 − x2|p ≤ c
( |x1|p

q2
+
|x2|p

q1

)
. (5.7)

Here, the minimum to the right-hand side is attained for

q1 =
|x2|p/2

|x1|p/2 + |x2|p/2
, q2 =

|x1|p/2

|x1|p/2 + |x2|p/2
,
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and then (5.7) becomes

2 |x1 − x2|p ≤ c
(
|x1|p/2 + |x2|p/2

)2
.

Without loss of generality, one may assume that x1 > 0 > x2. Putting x2 = −sx1, s > 0, the
above is equivalent to

2 (1 + s)p ≤ c
(
1 + sp/2

)2
(5.8)

or √
2 (1 + s)p/2 ≤

√
c
(
1 + sp/2

)
.

Consider a function of the form

u(s) =
(1 + s)α

1 + sα
, s ≥ 0,

with parameter α ≥ 1. We have u(0) = u(∞) = 1, and u′(s) = 0 if and only if s = 1. Hence,
s = 1 is the point of extremum. Since u(1) = 2α−1 ≥ 1, this point provides maximum to
u(s). Hence, s = 1 is the worst choice in (5.8), which gives the best constant c = 2p−1.

Turning to the inequality (5.1), we assume that 2 < p < 4 and that both X and Y are
bounded and take values in some closed interval ∆. Denote by µ and ν the distributions of
X and Y and rewrite (5.1) as

22−p
∫

∆
|x+ y|p dµ(x) dν(y) ≤

∫
∆
|x|p dµ(x) +

∫
∆
|x|p dν(x). (5.9)

Let P denote the collection of all Borel probability measures on ∆ with barycenter at the
origin. It represents a convex compact set in the locally convex space of all signed Borel
measures on ∆. For a fixed ν ∈ P, consider an affine continuous functional on P

Q(µ) = 22−p
∫

∆
|x+ y|p dµ(x) dν(y)−

∫
∆
|x|p dµ(x) +

∫
∆
|x|p dν(x).

Hence, Q(µ) ≤ 0 for all µ in P, if and only if this inequality is fulfilled for all extreme points of
P. But, such points have at most two atoms, in view of the linear constraint

∫
∆ x dµ(x) = 0.

Thus, it is sufficient to derive (5.9) in the case where µ has at most two atoms.
Let us fix such a measure µ. By a similar argument, (5.9) holds true for all ν in P, if it

is fulfilled for all probability measures on ∆ with mean zero which have at most two atoms.
As a consequence, we are reduced in (5.9) to the case where both µ and ν have at most two
atoms. Equivalently, we may assume that the random variables X and Y in (5.1) take at
most two values. In this case, let X ′ and Y ′ be independent copies of X and Y , respectively.
Combining the inequalities (5.2) and (5.6), we then get

E |X + Y |p ≤ 1

2
E |X −X ′|p +

1

2
E |Y − Y ′|p

≤ 2p−2 E |X|p + 2p−2 E |Y |p.

�

6. Truncated Lyapunov coefficients

Let us now return to the scheme of independent random variables X1, . . . , Xn that are defined
on some probability space (Ω,P) and are such that

EXk = 0, EX2
k = σ2

k, σ2
1 + · · ·+ σ2

n = 1.
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The truncated Lyapunov coefficient of order p > 2 for the sequence (Xk)k≤n is defined by

Rp =
n∑
k=1

E min{1, |Xk|p−2}X2
k .

More generally, define the truncated Lyapunov function by

Rp(t) =
n∑
k=1

E min{1, |tXk|p−2}X2
k , t ∈ R, (6.1)

so that Rp = Rp(1). Note that

0 ≤ Rp(t) ≤ 1, Rp(0) = 0, Rp(∞) = 1.

Hence Rp may be treated as a distribution function.
In the special case p = 3, it is connected with the Lindeberg function

L(x) =

n∑
k=1

∫
|y|≥x

y2 dFk(y),

where Fk(x) = P{Xk ≤ x} stand for the distribution functions of Xk. Namely, we have

R3(t) = |t|
∫ 1
|t|

0
L(x) dx.

In addition,

lim
p→∞

Rp(t) = L(1/|t|).

Let us give a few basic properties of the truncated Lyapunov functions.

Proposition 6.1. For each t ∈ R, the function p → Rp(t) is non-increasing, while the

function p→ Rp(t)
1

p−2 is non-decreasing in p > 2. In particular,

R4(t) ≤ R3(t) ≤ R4(t)1/2. (6.2)

Proof. The first claim is obvious. To explain the second one, let ξ be a random variable
with distribution

dF (x) =
n∑
k=1

x2 dFk(x).

Then

Rp(t)
1

p−2 =
(
E min(1, |tξ|)p−2

) 1
p−2

.

Here, the right-hand side represents the Lp−2-norm of the random variable min(1, |tξ|), so, it
is non-decreasing in p. �

Remark 6.2. The second claim in Proposition 6.1 is analogous to the property of the

Lyapunov coefficients that the function p → L
1

p−2
p is non-decreasing in p > 2. This follows

from the representation

L
1

p−2
p =

(
E |ξ|p−2

) 1
p−2 .
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Proposition 6.3. There is a smallest value T ∈ (0,∞] such that Rp(t) is increasing and
continuous in 0 ≤ t < T , with Rp(T−) = 1. Moreover, T does not depend on p.

Proof. Clearly, Rp(t) is non-decreasing and continuous in t ≥ 0, by the Lebesgue domi-
nated convergence theorem. Moreover, suppose that it is constant on some interval, that is,

n∑
k=1

E min{1, |tXk|p−2}X2
k =

n∑
k=1

E min{1, |sXk|p−2}X2
k

for some 0 < t < s. Then a.s.
n∑
k=1

min{1, |tXk|p−2}X2
k =

n∑
k=1

min{1, |sXk|p−2}X2
k .

But this is equivalent to the statement that a.s. min{1, t|Xk|} = min{1, s|Xk|} for any k ≤ n.
If Xk(ω) 6= 0, ω ∈ Ω, the latter is only possible when t|Xk(ω)| ≥ 1, that is,

t ≥ T ≡ max
1≤k≤n

ess sup
ω∈Ω

[
1

|Xk(ω)|
1{Xk(ω)6=0}

]
.

In addition, if T is finite and t ≥ T , then Rp(t) = 1. �

Proposition 6.4. For any p > 2 and α ∈ [0, 1), the equation Rp(t) = α has a unique
solution t ∈ [0,∞). Moreover, if Rp ≤ α, then

t ≥
( α

2Rp

) 1
p−2

. (6.3)

Proof. By Proposition 6.3, the inequality Rp(t) ≤ α covers a certain finite interval [−T, T ]
such that Rp(T ) = α and Rp(t) > α for |t| > T . Hence T ≥ 1.

Recalling the definition (6.1), we also see that

u(t) = Rp(t
1

p−2 ) =
n∑
k=1

E min{1, t|Xk|p−2}X2
k

is a continuous, non-decreasing function in t ≥ 0 such that u(0) = 0. Moreover, it is concave
due to the concavity of the functions t→ min{1, t|Xk|p−2}. Therefore, u is subadditive:

u(t1 + t2) ≤ u(t1) + u(t2) for all t1, t2 ≥ 0.

The latter implies that u(ls) ≤ lu(s) for all integers l ≥ 1. Hence, for all t ≥ 1, putting
l = 2[t] and s = t/l, we have u(t) = u(ls) ≤ 2tu(1), or equivalently,

Rp(t) ≤ 2tp−2Rp, t ≥ 1.

In particular, α = Rp(T ) ≤ 2T p−2Rp, which is the same as (6.3). �

7. Bounds on variances in terms of Lyapunov coefficients

Let us keep notations and assumptions as in the previous section. An important property of
the Lyapunov coefficients

Lp =
n∑
k=1

E |Xk|p, p > 2, (7.1)
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is that these quantities may be used to control the variances σ2
k = EX2

k . Indeed, since

E |Xk|p ≥ (EX2
k)p/2, it follows from (7.1) that

max
1≤k≤n

σk ≤
(∑
k=1

σpk

)1/p
≤ L1/p

p .

Thus, the smallness of Lp implies that all variances σ2
k are uniformly small.

We will need a certain analog of this property for the truncated Lyapunov coefficients, as
well as for the whole functions

Rp(t) =

n∑
k=1

E min{1, |tXk|p−2}X2
k , t ∈ R.

Given p > 2, t 6= 0, define q = p−2
2 , s = |t|p−2, and consider

u(y) = min{1, syq} y, y ≥ 0.

This function is nearly convex and therefore satisfies a weak form of Jensen’s inequality.
Indeed, it has derivative

u′(y) =

{
s(q + 1) yq for 0 < y < s−1/q,

1 for y > s−1/q.

In particular, u′(s−1/q−) > u′(s−1/q+), which shows that u is not convex. Let us modify it
to get a convex function. Put

y0 = (s(q + 1))−1/q

and define the function ũ on the positive half-axis by ũ(0) = 0 and

ũ′(y) =

{
s(q + 1) yq for 0 < y < y0,

1 for y > y0.

By the construction,

ũ(y) =

{
s yq+1 for 0 ≤ y ≤ y0,

s yq+1
0 + (y − y0) for y ≥ y0.

In particular, ũ(y) = u(y) for 0 ≤ y ≤ y0, while on the interval y0 ≤ y ≤ s−1/q,

ũ(y)

u(y)
=
y − q

q+1 y0

s yq+1
=

1

s
y−q − qy0

s(q + 1)
y−q−1 ≡ g(y).

We have
g′(y) = −q

s
y−q−1 +

qy0

s
y−q−2 = 0 ⇐⇒ y = y0.

This shows that g(y) is monotone on this interval with values at the end points

g(y0) = 1, g(s−1/q) =
(

1− q

(q + 1)1+1/q

)
≡ d(q).

Also, on the interval y ≥ s−1/q,

ũ(y)

u(y)
=
s yq+1

0 + (y − y0)

y
,= 1− qy0

q + 1
y−1

which is an increasing function. This implies that

ũ(y) ≥ d(q)u(y) for all y ≥ 0,

with equality attainable at y = s−1/q.
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One may now apply Jensen’s inequality. Since u ≥ ũ, while ũ is convex, we get

E min{1, |tXk|}X2
k = Eu(X2

k)

≥ E ũ(X2
k) ≥ ũ(σ2

k) ≥ d(q)u(σ2
k).

One may summarize. Recall that 1− d(q) = p−2
p (2

p)
2

p−2 .

Lemma 7.1. For every t ∈ R and k ≤ n,

cp min{1, (|t|σk)p−2}σ2
k ≤ E min{1, |tXk|p−2}X2

k

with constant

cp = 1− p− 2

p

(2

p

) 2
p−2

.

In particular,
n∑
k=1

σ3
k ≤

27

23
R3,

n∑
k=1

σ4
k ≤

4

3
R4.

More generally, we have

Rp ≥ cp
n∑
k=1

σpk ≥ cp n
− p−2

2 ,

where the equality in the last inequality is attained for equal variances σ2
k = 1/n.

8. Upper bounds for the product of characteristic functions

As before, let X1, . . . , Xn be independent random variables with mean zero and variances
σ2
k = EX2

k such that σ2
1 + · · · + σ2

n = 1. Then the sum Sn = X1 + · · · + Xn has mean zero,
variance one, and characteristic function

fn(t) = v1(t) . . . vn(t), t ∈ R,
where vk(t) = E eitXk denote the characteristic functions of Xk.

Lemma 4.2 and Proposition 6.4 may be used to bound the absolute value of fn(t).

Proposition 8.1. We have

|fn(t)| ≤ 2e−t
2/4, |t| ≤ 1

16R3
. (8.1)

Proof. By the inequality (4.3) applied to Xk, we have

|vk(t)|2 ≤ 1− σ2
kt

2 + 2t2 E min{1, |tXk|}X2
k

≤ exp{−σ2
kt

2 + 2t2 E min{1, |tXk|}X2
k .

Multiplying these inequalities, we obtain that

|fn(t)| ≤ exp
{
− t2

2
+ 2t2R3(t)

}
.

Let T be the positive solution to the equation R3(T ) = 1
8 . Hence, in the interval |t| ≤ T , we

have a subgaussian bound

|fn(t)| ≤ e−t2/4. (8.2)
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Note that T ≥ 1
16R3

as long as R3 ≤ 1
8 , according to Proposition 6.4 with p = 3 and α = 1

8 .

Thus, (8.1) is fulfilled in the interval |t| ≤ 1
16R3

, if R3 ≤ 1
8 .

In the non-interesting case R3 >
1
8 , the inequality (8.2) remains valid in the same interval

in a slightly weaker form such as (8.1). Indeed, in that case 1
16R3

< 1
2 and therefore the

right-hand side of (8.1) is greater than 2 · e−1/16 > 1. �

As is well-known, the inequality (8.1) holds true for |t| ≤ c/L3. In fact, this interval may
be enlarged in terms of other Lyapunov coefficients, if we allow a slower decay.

Proposition 8.2. For all δ ∈ (0, 2], we have

|fn(t)| ≤ e−δt2/3, |t| ≤ 1

L
1/δ
2+δ

. (8.3)

In particular,

|fn(t)| ≤ e−t2/3, |t| ≤ 1

L3
.

Proof. Suppose that every summand Xk has a finite absolute moment of order 2 + δ. We
employ Proposition 5.1 which provides the moment inequality

E |Xk − Yk|2+δ ≤ 21+δ E |Xk|2+δ, 0 ≤ δ ≤ 2, (8.4)

where Yk is an independent copy of Xk.
We need an upper bound for the cosine function of the form

cosx ≤ 1− 1

2
x2 +

1

2
cδ |x|2+δ, x ∈ R. (8.5)

By Taylor’s formula, for all x ∈ R,

cosx ≤ 1− 1

2
x2 +

1

24
x4.

Fix a parameter a > 1. For all |x| ≤ a,

1

24
x4 ≤ 1

2
c |x|2+δ ⇐⇒ 1

12
a2−δ ≤ c.

Hence, in this interval one may put cδ = a2

12 · a
−δ. For |x| ≥ a, one may use cosx ≤ 1 and

1 ≤ 1− 1

2
x2 +

1

2
c |x|2+δ ⇐⇒ |x|−δ ≤ c.

Hence, in this region may put cδ = a−δ. Equalizing the two choices, one should take a =
√

12.
Thus, we obtain (8.5), that is,

cosx ≤ 1− 1

2
x2 +

1

2
· 12−δ/2 |x|2+δ.
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As a consequence, applying this inequality with x = t(Xk − Yk) and then (8.4), we get

|vk(t)|2 = E cos(t(Xk − Yk))

≤ 1− σ2
kt

2 +
1

2
· 12−δ/2 |t|2+δ E |Xk − Yk|2+δ

≤ 1− σ2
kt

2 + 3−δ/2 |t|2+δ E |Xk|2+δ

≤ exp
{
− σ2

kt
2 + 3−δ/2 |t|2+δ E |Xk|2+δ

}
.

Thus, for all t ∈ R,

|vk(t)| ≤ exp
{
−
σ2
kt

2

2
+

1

2
· 3−δ/2 |t|2+δ E |Xk|2+δ

}
.

Multiplying these inequalities over k = 1, . . . , n, we conclude that

|fn(t)| ≤ exp
{
− 1

2
t2 +

1

2
· 3−δ/2 |t|2+δ L2+δ

}
.

As a result, if |t|δ L2+δ ≤ 1, we arrive at the general subgaussian bound

|f(t)| ≤ exp
{
− 1

2
(1− 3−δ/2) t2

}
.

To simplify, one may use 1
2 (1−3−δ/2) ≥ 1

3 δ for the range 0 < δ ≤ 2, which leads to (8.3). �

9. Proof of Propositions 3.1-3.2 and Theorem 2.2 (symmetric case)

Our next step is to derive an approximation for the product characteristic function

fn(t) = v1(t) . . . vn(t)

by the characteristic function of the standard normal law by means of the truncated Lyapunov
coefficients R3 and R4. First, we refine the bound of Propositions 8.1 on smaller intervals.

As before, we denote by vk(t) = E eitXk the characteristic functions of the independent
random variables Xk with mean zero and variances σ2

k such that σ2
1 + · · ·+ σ2

n = 1.

Lemma 9.1. We have

|fn(t)− e−t2/2| ≤ cR3 max(t2, |t|3) e−t
2/2, |t| ≤ R−1/3

3 . (9.1)

Moreover, if the distributions of all Xk are symmetric about the origin, then

|fn(t)− e−t2/2| ≤ cR4 max(t2, t4) e−t
2/2, |t| ≤ R−1/4

4 . (9.2)

We employ the following elementary assertion.

Lemma 9.2. Given complex numbers zk, 1 ≤ k ≤ n, we have∣∣∣∣ n∏
k=1

(1 + zk)− 1

∣∣∣∣ ≤ ea − 1, a =

n∑
k=1

|zk|.
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Proof. Write
n∏
k=1

(1 + zk)− 1 =
n∑
k=1

∑
1≤i1<···<ik≤n

zi1 . . . zik .

For every k ≤ n, the inner sum does not exceed in absolute value the number

1

k!

∑
i1 6=···6=ik

|zi1 | . . . |zik | ≤
1

k!

∑
1≤i1,...,ik≤n

|zi1 | . . . |zik | =
ak

k!
.

Hence ∣∣∣∣ n∏
k=1

(1 + zk)− 1

∣∣∣∣ ≤ n∑
k=1

ak

k!
≤ ea − 1.

�

Proof of Lemma 9.1. By Lemma 7.1,

max
1≤k≤n

(σk|t|)3 ≤ |t|3
n∑
k=1

σ3
k ≤

27

23
|t|3R3 ≤

27

23

for |t| ≤ R−1/3
3 and

max
1≤k≤n

(σkt)
4 ≤ t4

n∑
k=1

σ4
k ≤

4

3
t4R4 ≤

4

3
(9.3)

for |t| ≤ R−1/4
4 in the second scenario. In both cases,

σk|t| ≤ α =
(4

3

)1/4
< 1.1, 1 ≤ k ≤ n.

Now, applying the representations (4.1)-(4.2) of Lemma 4.1 to the random variable Xk,
we have that, for some θk = θk(t), |θk| ≤ 1,

zk(t) ≡ eσ
2
kt

2/2vk(t) = eσ
2
kt

2/2
(

1−
σ2
kt

2

2

)
+ eσ

2
kt

2/2 δk(t) (9.4)

with

δk(t) = θkt
2 E min{1, |tXk|}X2

k

in general, and with

δk(t) = θkt
2 E min{1, (tXk)

2}X2
k

in the symmetric case.
The function w(s) = es(1− s) appearing on the right-hand side of (9.4) satisfies w(0) = 1,

w′(0) = 0, w′′(s) = −es(1 + s). Hence, by Taylor’s formula,

|w(s)− 1| ≤ 1

2
es0(1 + s0) s2, 0 ≤ s ≤ s0.

Changing the variable s =
σ2
kt

2

2 and using the above inequality with s0 = α2/2, we have∣∣∣eσ2
kt

2/2
(

1−
σ2
kt

2

2

)
− 1
∣∣∣ ≤ 1

8
eα

2/2
(

1 +
α2

2

)
σ4
kt

4 ≤ 1

2
σ4
kt

4,

and (9.4) gives

|zk(t)− 1| ≤ 1

2
σ4
kt

4 + 2δk(t).
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One may now apply Lemma 9.2 with zk = zk(t), z = fn(t) et
2/2, which yields

|z − 1| ≤ ea − 1, a =
n∑
k=1

(1

2
σ4
kt

4 + 2δk(t)
)
. (9.5)

For the first claim of Lemma 9.1, from (9.5) we have

a ≤ t2R4(t) + 2t2R3(t) ≤ 3t2R3(t), (9.6)

where we applied Lemma 7.1 with p = 4 together with R4(t) ≤ R3(t). If |t| ≥ 1, one may use
the relation R3(t) ≤ 2|t|R3, which gives a ≤ 6 |t|3R3 ≤ 6. Thus, by (9.5)-(9.6),

|z − 1| ≤ (e6 − 1) |t|3R3,

which is the required relation (9.1).
In the case |t| ≤ 1, one may return to (9.6) and use the monotonicity of the function R3(t)

on the positive half-axis, which implies that R3(t) ≤ R3 and leads to |z − 1| ≤ (e3 − 1) t2R3.

Thus, (9.1) is proved for all t in the region |t| ≤ R−1/3
3 .

Returning to (9.5), for the second claim of the lemma we have

a ≤ 3t2R4(t), (9.7)

where we applied Lemma 7.1 once more. If |t| ≥ 1, one may use the relation R4(t) ≤ 2t2R4,
which gives a ≤ 6 t4R4 ≤ 6. Thus, by (9.5)-(9.6),

|z − 1| ≤ (e6 − 1) t4R4,

which is the required relation (9.2). In the case |t| ≤ 1, one may return to (9.7) and use

R4(t) ≤ R4 which leads to |z−1| ≤ (e3−1) t2R4. Thus, (9.2) is proved for all |t| ≤ R−1/4
4 . �

Proof of Propositions 3.1-3.2. The inequality (9.1) implies a bound of the form

|fn(t)− e−t2/2| ≤ cR3 min(1, t2) e−t
2/6 (9.8)

in the interval |t| ≤ R−1/3
3 , while, by Proposition 8.1,

|fn(t)| ≤ 2e−t
2/4, |t| ≤ 1

16R3
. (9.9)

Hence, in order to extend (9.8) to the interval as in (9.9), we only need a bound

2e−t
2/4 + e−t

2/2 ≤ cR3 e
−t2/6

for the region |t| ≥ R−1/3
3 . Since R3 ≤ 1, the latter is obvious.

Similarly, (9.2) implies an upper bound of the form

|fn(t)− e−t2/2| ≤ cR4 min(1, t2) e−t
2/6 (9.10)

for |t| ≤ R
−1/4
4 . In view of (9.9), in order to extend the latter bound to the interval as in

(9.9), we only need a relation

2e−t
2/4 + e−t

2/2 ≤ cR4 e
−t2/6

for the region |t| ≥ R−1/4
4 . Since R4 ≤ 1, the latter is obvious. �
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Proof of Theorem 2.2 (the symmetric case). We are prepared to derive the inequality

(2.5). Put T0 = 1/(16R3) and choose T = L
−1/δ
2+δ in the Berry-Esseen inequality (3.2) with a

fixed value δ ∈ (0, 1]. Then we get

c∆n ≤
∫ T0

0

∣∣∣fn(t)− e−t2/2

t

∣∣∣ dt+

∫
T0<t<T

∣∣∣fn(t)− e−t2/2

t

∣∣∣ dt+
1

T
. (9.11)

Here, the first integral does not exceed a multiple of R4, according to Proposition 3.2, cf.
(9.10). Applying the inequality (8.3) of Proposition 8.2, we also see that the second integral
does not exceed

2

∫ ∞
T0

e−δt
2/3

t
dt ≤ c e−δT 2

0 /3 ≤ 3c

δT 2
0

.

It remains to recall that R2
3 ≤ R4, cf. (6.2). �

10. Chebyshev-Edgeworth corrections

If the random variables Xk have finite absolute moments of an integer p ≥ 4, the normal
approximation for the characteristic functions fn(t) as in (3.4) may be sharpened on the
interval |t| ≤ 1/L3 by means of the Lyapunov coefficient Lp. However, to this aim one should

properly modify the standard normal characteristic function g(t) = e−t
2/2. Namely, put

gp−1(t) = e−t
2/2 + e−t

2/2
∑ 1

k1! . . . kp−3!

(γ3

3!

)k1
. . .
( γp−1

(p− 1)!

)kp−3

(it)k (10.1)

with

k = 3k1 + · · ·+ (p− 1)kp−3,

where the summation runs over all collections of non-negative integers k1, . . . , kp−3 that are
not all zero and are such that

k1 + 2k2 + · · ·+ (p− 3)kp−3 ≤ p− 3.

The definition (10.1) involves the cumulants

γr = γr(Sn) =

n∑
k=1

γr(Xk), γr(Xk) =
dr

ir dtr
logE eitXk

∣∣
t=0

,

which are well-defined for r = 1, 2, . . . , p. Every cumulant γr(Xk) may be represented as a
polynomial in the first r moments of Xk. Note, however, that only the cumulants and the
moments of Xk up to order p−1 participate in the definition of gp−1. In particular, assuming
that EXk = 0 for all k ≤ n and EX2

k = σ2
k, we have

γ3 =

n∑
k=1

EX3
k , γ4 =

n∑
k=1

(
EX4

k − 3σ4
k

)
. (10.2)

The first two expansions in (10.1) corresponding to p = 4 and p = 5 are given by

g3(t) = e−t
2/2
(

1 + γ3
(it)3

3!

)
(10.3)

and

g4(t) = e−t
2/2
(

1 + γ3
(it)3

3!
+ γ4

(it)4

4!
+ γ2

3

(it)6

2! 3!2

)
. (10.4)
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The function gp−1 represents the Fourier-Stieltjes transform of a certain signed Borel
measure µp−1 on the real line, that is,

gp−1(t) =

∫ ∞
−∞

eitx dµp−1(x), t ∈ R.

This measure is called the Chebyshev-Edgeworth approximation of order p− 1 for the distri-
bution of the sum Sn = X1 + · · · + Xn (or an Edgeworth correction of the normal law). It
has a total mass one, and moreover, the moments of Sn and µp−1 coincide up to order p− 1.

Denote by

ϕ(x) =
1√
2π

e−x
2/2, x ∈ R,

the standard normal density on the real line, and by

Hk(x) = (−1)k (e−x
2/2)(k) ex

2/2, k = 0, 1, 2, . . .

the Chebyshev-Hermite polynomial of degree k. In particular, H1(x) = x,

H2(x) = x2 − 1, H4(x) = x4 − 6x2 + 3,

H3(x) = x3 − 3x, H5(x) = x5 − 10x3 + 15x.

From (10.1) it follows that µp−1 has density

ϕp−1(x) = ϕ(x) + ϕ(x)
∑ 1

k1! . . . kp−3!

(γ3

3!

)k1
. . .
( γp−1

(p− 1)!

)kp−3

Hk(x) (10.5)

with summation as in (10.1). The corresponding “distribution function” is given by

Φp−1(x) = µp−1((−∞, x])

= Φ(x)− ϕ(x)Qp−1(x), x ∈ R,

where

Qp−1(x) =
∑ 1

k1! . . . kp−3!

(γ3

3!

)k1
. . .
( γp−1

(p− 1)!

)kp−3

Hk−1(x).

It is a polynomial of degree at most 3(p−3)−1. For the first values, similarly to (10.3)-(10.4)
we have

Q3(x) =
γ3

3!
H2(x),

Q4(x) =
γ3

3!
H2(x) +

γ4

4!
H3(x) +

γ2
3

2! 3!2
H5(x).

If γ3 = 0 (for example, when the distributions of all Xk are symmetric about the origin),
we return to the standard normal distribution function Φ3 = Φ, while the next approximating
function is simplified to

Φ4(x) = Φ(x)− γ4

4!
H3(x)ϕ(x).

If Lp is small, the measure µp−1 is close to the standard normal law in weak metrics.
Indeed, from Bikjalis’ inequality |γr(Xk)| ≤ (r − 1)!E |Xk|r it follows that

|γr| ≤ (r − 1)!Lr, 3 ≤ r ≤ p, (10.6)

and therefore

|γr| ≤ (r − 1)!Lr ≤ (r − 1)!L
r−2
p−2
p , 3 ≤ r ≤ p− 1
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(cf. [4] and Remark 6.2 on the monotonicity property of the Lyapunov coefficients). Hence,
writing

k = d+ 2 (k1 + k2 + · · ·+ kp−3), d = k1 + 2k2 + · · ·+ (p− 3) kp−3,

we have ∣∣∣(γ3

3!

)k1
. . .
( γp−1

(p− 1)!

)kp−3
∣∣∣ ≤ (L3

3

)k1
. . .
( Lp−1

(p− 1)

)kp−3

≤ L
d

p−2
p

3k1 . . . (p− 1)kp−3
.

Since 3 ≤ k ≤ 3(p− 3), 1 ≤ d ≤ p− 3, and using the elementary bound∑ 1

k1! . . . kp−3!

1

3k1 . . . (p− 1)kp−3
< e1/3 . . . e1/(p−1) < p− 1,

from (10.1) we get

|gp−1(t)− g(t)| ≤ (p− 1) max
{
L

1
p−2
p , L

p−3
p−2
p

}
max{1, |t|3(p−3)} e−t2/2. (10.7)

By a similar argument, from (10.5) we get

|ϕp−1(x)− ϕ(x)| ≤ cp max
{
L

1
p−2
p , L

p−3
p−2
p

}
max{1, |x|3(p−3)}ϕ(x). (10.8)

We refer the interested reader to [4] for more details on this subject.

11. Generalization of Theorem 2.2

The importance of Edgeworth corrections is explained by the following standard result, cf.
e.g. [4]. As before, the independent random variables Xk have mean zero and variances σ2

k

such that σ2
1 + · · ·+ σ2

n = 1. We use notations and remarks from the previous section.

Lemma 11.1. If Lp < ∞ for an integer p ≥ 4, then the characteristic function fn(t) of
the sum Sn = X1 + · · ·+Xn satisfies

|fn(t)− gp−1(t)| ≤ cpLp min(1, tp) e−t
2/8, |t| ≤ 1

L3
, (11.1)

up to some constant cp > 0 depending on p only.

One can now give a more general version of the first claim in Theorem 2.2.

Theorem 11.2. Suppose that the random variablesXk have finite p-th absolute moments.
Then, for any δ ∈ (0, 1],

sup
x
|Fn(x)− Φp−1(x)| ≤ cp

(
δ−

p−2
2 Lp + L

1/δ
2+δ

)
, (11.2)

where the constant cp > 0 depends on p only.

Theorem 2.2 corresponds to (11.2) with p = 4 under an additional assumption EX3
k = 0

for all k ≤ n, which implies that Φ3 = Φ.
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Proof. If Lp > 1, the inequality (11.2) holds true automatically, since by (10.8), the
left-hand side of (11.2) is bounded by

sup
x
|Fn(x)− Φ(x)|+ sup

x
|Φp−1(x)− Φ(x)|

≤ 1 +

∫ ∞
−∞
|ϕp−1(x)− ϕ(x)| dx ≤ cp max(1, Lp).

Assuming that Lp ≤ 1, put T0 = 1/L3 and apply the Berry-Esseen inequality (3.1) with

f(t) = fn(t), g(t) = gp−1(t) and T = L
−1/δ
2+δ .

Then, the supremum in (11.2) can be bounded from above by a multiple of∫ T0

0

∣∣∣fn(t)− gp−1(t)

t

∣∣∣ dt+

∫
T0<t<T

|fn(t)|
t

dt+

∫ ∞
T0

|gp−1(t)|
t

dt+
A

T
(11.3)

with A = ‖Φp−1‖TV. Here, the first integral does not exceed cpLp, according to (11.1).
Applying the inequality (8.3), we also see that the second integral does not exceed∫ ∞

T0

e−δt
2/3

t
dt ≤ c e−δT 2

0 /3 = c e−δ/3L
2
3 . (11.4)

Using L2
3 ≤ L

2
p−2
p (cf. Remark 6.2) and x

p−2
2 e−x ≤ cp (x > 0), the last expression in (11.4)

can be bounded by cpLp δ
− p−2

2 up to some constant cp > 0 depending on p only. Thus, the

second integral does not exceed cpLp δ
− p−2

2 .
In order to bound the third integral, note that, by (10.7), for all t ∈ R.

|gp−1(t)| ≤ cp e−t
2/4.

Hence, the this integral does not exceed∫ ∞
T0

e−t
2/4

t
dt ≤ c e−1/4L2

3 ≤ cpL
p−2
2

3 ≤ cpLp,

where we used Remark 6.2 once more.
Finally, A = supx |ϕp−1(x)| is bounded by a p-dependent constant, according to (10.8). �

Example 11.3. Given a positive parameter q ∈ (1
3 ,

1
2), let us return to the weighted sums

Sn =
1

bn

n∑
k=1

1

kq
ξk, bn =

( n∑
k=1

1

k2q

)1/2
∼ n

1
2
−q,

assuming that ξk are i.i.d. random variables with mean zero, variance one, and with finite
moment βp = E |ξ1|p of an integer order p ≥ 4. The Berry-Esseen bound (1.2) gives

sup
x
|Fn(x)− Φ(x)| ≤ cqβ3

1

n3 ( 1
2
−q)

,

where the constant cq depends on q only. Here, the right-hand side is worse than the standard
rate. This bound may be improved by virtue of Theorem 11.2, by replacing the standard
normal distribution function with a suitable Chebyshev-Edgeworth correction. Using any
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fixed value δ ∈ (0, 1
q − 2), we have L

1/δ
2+δ ∼

1√
n

, while Lp ∼ n−p ( 1
2
−q) has a better decay for

p ≥ 1
1−2q . Hence, by (11.2),

sup
x
|Fn(x)− Φp−1(x)| ≤ cp,qβp

1√
n
, p ≥ 1

1− 2q
.

12. Lower bounds (proof of Theorem 2.1)

Lemma 11.1 can also be used to derive the lower bounds in Theorem 2.1. In addition, we
need the following general relation derived in [3].

Lemma 12.1. Let U be a function of bounded total variation on the real line with
U(−∞) = U(∞) = 0. For any T > 0, we have

sup
x
|U(x)| ≥ 1

3T

∣∣∣∣ ∫ T

0
u(t)

(
1− t

T

)
dt

∣∣∣∣,
where

u(t) =

∫ ∞
−∞

eitx dU(x), t ∈ R,

is the Fourier-Stieltjes transform of U .

Proof of Theorem 2.1. We apply Lemma 12.1 to the function u(t) = fn(t)− g(t) with

g(t) = e−t
2/2, which leads to

∆n ≥
1

3T

∣∣∣∣ ∫ T

0
(fn(t)− g(t))

(
1− t

T

)
dt

∣∣∣∣. (12.1)

To further bound from below the integral on the right-hand side, we use the approximation
of the characteristic function fn(t) by the Fourier-Stieltjes transforms g3(t) and g4(t) of the
Chebyshev-Erdgeworth corrections µ3 and µ4 in parts a) and b), respectively.

First, by the triangle inequality, from (12.1) we get

∆n ≥ 1

3T

∣∣∣∣ ∫ T

0
(g3(t)− g(t))

(
1− t

T

)
dt

∣∣∣∣
− 1

3T

∣∣∣∣ ∫ T

0
(fn(t)− g3(t))

(
1− t

T

)
dt

∣∣∣∣. (12.2)

For the value p = 4, the bound (11.1) yields

|fn(t)− g3(t)| ≤ cL4 t
4e−t

2/8, |t| ≤ T,

where we should assume that T ≤ min(1, 1/L3). In this case, the second term in (12.2) does
not exceed

cL4

3T

∫ T

0
t4e−t

2/8
(

1− t

T

)
dt ≤ cL4T

4.

According to (10.3), we have

g3(t)− g(t) = γ3 e
−t2/2 (it)3

3!
.
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Since 0 ≤ t ≤ 1, the first term in (12.2) is therefore greater than or equal to c |γ3|T 3. Thus,
from (12.2) we get that

1

cT 3
∆n ≥ |γ3| − cL4T, 0 < T ≤ min(1, 1/L3). (12.3)

Similarly, for part b) of the theorem, write

∆n ≥ 1

3T

∣∣∣∣ ∫ T

0
(g4(t)− g(t))

(
1− t

T

)
dt

∣∣∣∣
− 1

3T

∣∣∣∣ ∫ T

0
(fn(t)− g4(t))

(
1− t

T

)
dt

∣∣∣∣. (12.4)

For the value p = 5, the bound (11.1) yields

|fn(t)− g4(t)| ≤ cL5 t
5e−t

2/8, |t| ≤ T,
where T ≤ min(1, 1/L3). In this case, the second term in (12.4) does not exceed

cL5

3T

∫ T

0
t5e−t

2/8
(

1− t

T

)
dt ≤ cL5T

5.

According to (10.4), and using 0 ≤ t ≤ 1 together with γ2
3 ≤ 4L2

3 ≤ 4L4 (cf. (10.6) with
r = 3), we have

Re(g4(t)− g(t)) = e−t
2/2
(
γ4
t4

4!
− γ2

3

t6

2! 3!2

)
≥ e−1/2

( 1

24
γ4 t

4 − 1

18
L4 t

6
)
.

Hence, the first term in (12.4) is greater than or equal to c1 |γ4|T 4 − c2 L4 T
6. Thus, from

(12.4) we get that

1

cT 4
∆n ≥ |γ4| − c (L5T + L4T

2), T ≤ min(1, 1/L
1/2
4 ), (12.5)

where we strengthened the assumption on T by using L3 ≤ L1/2
4 .

One can now specialize the relations (12.3) and (12.5) to the scheme of the weighted sums

Sn = a1ξ1 + · · ·+ anξn, a2
1 + · · ·+ a2

n = 1,

where (ξk)1≤k≤n are i.i.d. random variables with mean zero and variance one, assuming that
the coefficients ak are non-negative in part a). Putting `p =

∑n
k=1 |ak|p, we then have

Lp = βp`p, γ3 = α3`3, γ4 = (β4 − 3) `4.

Note also that L3 ≤ β3, while β3 ≥ 1. Hence, in part a), using `4 ≤ `3, (12.3) yields

1

cT 3
∆n ≥ `3

(
|α3| − cβ4T

)
= L3

(
1− cβ4

|α3|
T
)
, 0 < T ≤ 1

β3
.

Choosing T = |α3|/(2cβ4), we arrive at the required lower bound in (2.2).
For part b), using `5 ≤ `4 and L4 ≤ β4, β2

3 ≤ β4, (12.5) implies that

1

cT 4
∆n ≥ `4

(
|β4 − 3| − cβ5T − cβ4T

2
)
, T ≤ 1

β
1/2
4

, (12.6)
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For a sufficiently small value of T = T (β4, β5), the expession in the brackets can be made
larger than cβ4 with a constant c > 0 depending on β4 and β5, only, and then (12.6) leads to
the lower bound in (2.3). �

Acknowledgement. We would lile to thank Iosif Pinelis for references related to the
Cox-Kemperman inequality.
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