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Abstract. We explore the class of probability distributions on the real line whose Laplace
transform admits a strong upper bound of subgaussian type. Using Hadamard’s factorization
theorem, sufficient conditions for this property are given in terms of location of zeros of the
associated characteristic functions in the complex plane.

1. Introduction

A random variable X is called subgaussian, if its distribution has subgaussian tails. More
precisely, the subgaussianity refers to the bound

P{|X| ≥ x} ≤ c1e
−x2/c20 , x ∈ R,

where the constants c0, c1 > 0 are independent of x. Without loss of generality, this inequality
may be stated with c1 = 2, by choosing a larger value of c0 if necessary. An equivalent
definition is that

E eX
2/c2 ≤ 2

for some constant c ≥ 0. In terms of the Orlicz norm

‖X‖ψ2 = inf{c > 0 : Eψ2(X/c) ≤ 1},
generated by the Young function ψ2(r) = exp{r2}−1, this bound may be stated as ‖X‖ψ2 ≤ c.

If X has mean zero, the subgaussian property is equivalent as well to the following bound
for the moment generating function (or the two-sided Laplace transform) of X, namely

E etX ≤ eσ2t2/2, t ∈ R, (1.1)

with some constant σ ≥ 0. It is easy to verify that the optimal value of σ in (1.1) satisfies

C0 ‖X‖ψ2 ≤ σ ≤ C1 ‖X‖ψ2

up to some absolute constants C1 > C0 > 0.
Immediate consequences of inequality (1.1) are the finiteness of moments of all orders of

X and in particular the relations

EX = 0 and EX2 ≤ σ2,

which follow by an expansion of both sides of (1.1) around t = 0. Here the case σ2 =
EX2 = Var(X) is of particular interest in terms of applications like the Rényi divergence
of the infinite order extending the results in Rényi divergence of finite order investigated
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in [1]. To distinguish this class of distributions, we introduce the following sharpening of the
subgaussian property.

Definition. We say that the random variableX is strongly subgaussian, or the distribution
of X is strongly subgaussian, if (1.1) holds with the optimal constant σ2 = Var(X).

Thus, the word “strong” reflects the requirement that the variance of X is exactly σ2 in
contrast with the usual subgaussianity, when (1.1) is required to hold for all t with some
constant σ2.

This class of probability distributions seems rather rich. After a short discussion of their
basic properties (Section 2), we list a number of interesting examples/subclasses in Section 3.

Equivalently, one could describe the class of all strongly subgaussian distributions, for
example, in terms of the characteristic function

f(z) = E eizX , z ∈ R. (1.2)

The subgaussian property (1.1) ensures that f has an analytic extension to the whole complex
plane C as an entire function of order at most 2, extending the definition (1.2) to arbitrary
complex values of z. Note that if the characteristic function f(z) of a subgaussian distribution
does not have any real or complex zeros, a well-known theorem due to Marcinkiewicz implies
that the distribution of X is already Gaussian, cf. [7]. Thus, richer classes of subgaussion
distributions like the strong subgaussian distributions need to have zeros. Interesting ques-
tions in this context studied in sections 8 and 9 are “what locations of a single zero of f(z)
would be compatible with the strong subgaussian property and the assumption that f(z)
is a characteristic function” and in section 5 “to what extent does the Hadamard product
representation of f(z) in terms of zeros correspond to a stochastic decomposition of X as a
sum of independent random variables?”

In particular, applying Goldberg-Ostrovskĭı’s refinement of Hadamard’s factorization the-
orem, we have the following simple sufficient condition for strong subgausssian distributions.

Theorem 1.1. Let X be a subgaussian random variable with mean zero. If all zeros of
f(z) are real, then X is strongly subgaussian.

This condition can easily be verified for many interesting classes including, for example,
arbitrary Bernoulli sums and (finite or infinite) convolutions of uniform distributions on
bounded symmetric intervals. It is however far from being necessary, as illustrated by the
next generalization of Theorem 1.1.

Theorem 1.2. Let X be a subgaussian random variable with a symmetric distribution.
If all zeros of f(z) with Re(z) ≥ 0 lie in the cone centered on the real axis defined by

|Arg(z)| ≤ π

8
, (1.3)

then X is strongly subgaussian.

On the other hand, it seems that (1.3) is close to a necessary condition for the strong
subgaussianity. At least, this is true for the following subclass of probability distributions.
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Theorem 1.3. Let X be a random variable with a symmetric subgaussian distribution.
Suppose that f has exactly one zero z = x+ iy in the positive quadrant x, y ≥ 0. Then X is
strongly subgaussian, if and only if (1.3) holds true.

In order to clarify this particular case, we shall study the hidden assumption that a given
entire function with exactly one non-trivial zero is positive definite on the real axis. These
issues are discussed in Sections 7-9 which include the proof of Theorem 1.3. As a consequence,
one can partially address the following question from the theory of entire characteristic func-
tions (which is one of the central problems in this area): What can one say about the possible
location of zeros of such functions?

Theorem 1.4. Let (zn) be a finite or infinite sequence of non-zero complex numbers in
the angle |Arg(zn)| ≤ π

8 such that ∑
n

1

|zn|2
<∞.

Then there exists a symmetric strongly subgaussian distribution whose characteristic function
has zeros exactly at the points ±zn, ±z̄n.

It will be shown that a random variable X with such distribution may be constructed
as the sum X =

∑
nXn of independent strongly subgaussian random variables Xn whose

characteristic functions have zeros at the points ±zn, ±z̄n for every n (and only at these
points). Moreover, one may require that

Var(X) = Λ
∑
n

1

|zn|2

with any prescribed value Λ ≥ Λ0 where Λ0 is a universal constant (Λ0 ∼ 5.83).
Returning to the setting of Theorems 1.1-1.2, it will also be shown that, if a strongly

subgaussian random variable X is not normal, the inequality (1.1) may further be sharpened
as follows: For any t0 > 0, there exists c = c(t0), 0 < c < σ2 = Var(X), such that

E etX ≤ ect2/2, |t| ≥ t0. (1.4)

Such a refinement is important in the study of local limit theorems (such as CLT for the
Rényi divergence, cf. [1]). We prefer to discuss these applications in detail in a separate
paper, and here let us only mention one result in this direction. Let (Xn)n≥1 be independent
copies of a random variable X with standard deviation σ, and suppose that the normalized
sums

Zn =
X1 + · · ·+Xn

σ
√
n

have densities pn for some and hence for all n large enough. If (1.4) holds true, then

ess supx∈R
pn(x)− ϕ(x)

ϕ(x)
→ 0 as n→∞, (1.5)

where ϕ is the standard normal density. Here, in general a two-sided bound does not hold
any more, in particular in the case of pn being compactly supported.

The non-uniform local limit theorem such as (1.5) can easily be shown to imply the strong
subgaussianity (1.1). On the other hand, we do not know whether or not (1.1) implies the
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stronger property (1.4) in the entire class of non-normal strongly subgaussian distributions,
or whether it implies even the weaker property

L(t) < eσ
2t2/2, t 6= 0, (1.6)

for the Laplace transform L(t) = E exp{tX}. Given a subgaussian random variable X with
mean zero, its cumulant generating function (or the log-Laplace transform) K(z) = logL(z)
is analytic for complex z in a domain of C not containing points z with L(z) = 0 and thus
contains at least a neighborhood of the real axis. Then its derivative K ′(z) is a meromorphic
function defined on C with poles at the zeros of L(z). Obviously we get by local expansion

K(0) = K ′(0) = 0, K ′′(0) = Var(X), as well as K(3)(0) = 0 for symmetric distributions
around zero. (The derivatives of K at zero are the cumulants of X).

If we define a stronger notion of subgaussian distribution via

K ′(t) ≤ σ2t, t > 0

(in the symmetric case), then we get of course (1.6). In fact, the assumptions of Theorem 1.2
ensure the stronger property that K(

√
t) is concave in t > 0, or equivalently tK ′′(t) ≤ K ′(t).

In this case we may derive as well the sharpened form (1.4) in the non-normal case, compare
Proposition 2.5 in the next section.

The proof of Theorem 1.4 is given in Section 11. Theorems 1.1 and 1.2 are proved in
Section 5 respectively Section 10. In Section 4 we recall basic results related to the Hadamard
factorization theorem, and include some remarks on the growth of moments of strongly
subgaussian random variables (Section 6). Thus, our plan is the following:

1. Introduction
2. Basic properties of strongly subgaussian distributions
3. Basic examples
4. Hadamard’s and Goldberg-Ostrovskĭı’s theorems
5. Characteristic functions with real zeros
6. Growth of moments
7. More examples of strongly subgaussian distributions
8. Characterization of characteristic functions
9. Strongly subgaussian symmetric distributions with

characteristic functions having exactly one non-trivial zero
10. General case of zeros in the angle |Arg(z)| ≤ π

8
11. Proof of Theorem 1.4

2. Basic properties of strong subgaussian distributions

In addition to the properties EX = 0 and EX2 ≤ σ2, the Taylor expansion of the exponential
function in (1.1) around zero implies as well that necessarily

EX3 = 0, EX4 ≤ 3σ4. (2.1)

Here an equality is attained for symmetric normal distributions (but not exclusively so).
Turning to other properties and some examples, first let us emphasize the following two

immediate consequences of (1.1).
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Proposition 2.1. If the random variables X1, . . . , Xn are independent and strongly
subgaussian, then their sum X = X1 + · · ·+Xn is strongly subgaussian, as well.

Proposition 2.2. If a sequence of strongly subgaussian random variables (Xn)n≥1

converges weakly in distribution to a random variable X with finite second moment, and
Var(Xn)→ Var(X) as n→∞, then X is strongly subgaussian.

Proof. Putting σ2
n = Var(Xn), we have

E etXn ≤ eσ2
nt

2/2, t ∈ R. (2.2)

By the assumption of weak convergence,

lim
n→∞

Eu(Xn) = Eu(X)

for any bounded, continuous function u on the real line. In particular, for any c ∈ R,

lim
n→∞

E etmin(Xn,c) = E etmin(X,c).

Hence, by (2.2), for any t ∈ R,

E etmin(X,c) ≤ lim inf
n→∞

E etXn ≤ eσ2t2/2.

Letting c→∞, we get (1.1). �

Combining Proposition 2.1 with Proposition 2.2, we obtain:

Corollary 2.3. Suppose that independent, strongly subgaussian random variables (Xn)n≥1

have variances satisfying
∑∞

n=1 Var(Xn) <∞. Then the series

X =
∞∑
n=1

Xn

represents a strongly subgaussian random variable.

Here, the assumption that
∑∞

n=1 Var(Xn) < ∞ ensures that the series
∑∞

n=1Xn is con-
vergent with probability one (by the Kolmogorov theorem), so that the partial sums of the
series are weakly convergent to the distribution of X.

Thus, the class of strongly subgaussian distributions is closed in the weak topology under
infinite convolutions. Obviously, it is also closed when taking convex mixtures.

Proposition 2.4. If Xn are strongly subgaussian random variables with Var(Xn) = σ2,
and µn are distributions of Xn, then for any sequence pn ≥ 0 such that

∑∞
n=1 pn = 1, the

random variable with distribution

µ =

∞∑
n=1

pnµn

is strongly subgaussian as well and has variance Var(X) = σ2.
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One should also mention that, if X is strongly subgaussian, then λX is strongly subgaus-
sian as well, for any λ ∈ R.

Finally, let us give a simple sufficient condition for the property (1.4). Recall the notation

K(t) = logE etX , t ∈ R.

Proposition 2.5. Let X be a non-normal strongly subgaussian random variable. If the
function t → K(

√
|t|) is concave on the half-axis t > 0 and concave on the half-axis t < 0,

then (1.4) holds true.

Proof. Let Var(X) = σ2. For t ≥ 0, write

E etX = e
1
2
σ2t2−W (t2).

By the assumption, W (s) is non-negative and convex in s ≥ 0, with W (0) = 0. In addition,
it is C∞-smooth on (0,∞). Since X is not normal, necessarily W (s) > 0 and W ′(s) > 0 for
all s > 0. Using that W ′(s) ↑ r as s→∞ for some r ∈ (0,∞], it follows that

r(s) ≡ 1

s
W (s) =

∫ 1

0
W ′(sv) dv ↑ r as s→∞.

In particular, given s0 > 0, we have 1
sW (s) ≥ r(s0) > 0 for all s ≥ s0, or equivalently

K(t) ≤
(1

2
σ2 − r(s0)

)
t2, t ≥

√
s0,

which is the desired conclusion. A similar argument works for t < 0 as well. �

3. Basic examples

An application of Corollary 2.3 allows to construct a rather rich family of strongly subgaussian
probability distributions.

Examples
3.1. First of all, if a random variable X has a normal distribution with mean zero and

variance σ2, that is, X ∼ N(0, σ2), then it is strongly subgaussian. In this case,

E etX = eσ
2t2/2, t ∈ R,

so that the inequality in (1.1) becomes an equality.
3.2. If X has a symmetric Bernoulli distribution, supported on two points, say a and −a,

then it is strongly subgaussian. If, for definiteness, a = 1, then Var(X) = 1, and the Laplace
transform of the distribution of X is given by

E etX = cosh(t) =
et + e−t

2
, t ∈ R.

3.3. If X is an infinite Bernoulli sum, that is,

X =

∞∑
n=1

anXn, P{Xn = ±1} =
1

2
,

∞∑
n=1

a2
n <∞,
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with Xn independent symmetric Bernoulli random variables, then it is strongly subgaussian
with variance σ2 = Var(X) =

∑∞
n=1 a

2
n. The corresponding Laplace transform and charac-

teristic function f of X are given by

E etX =
∞∏
n=1

cosh(ant), f(t) =
∞∏
n=1

cos(ant).

3.4. If the random variable X is uniformly distributed on a finite interval [−a, a], a > 0,
then it is strongly subgaussian. In this case it may be represented (in the sense of distribu-
tions) as the sum

X =

∞∑
n=1

a

2n
Xn, P{Xn = ±1} =

1

2
,

with Xn independent symmetric Bernoulli random variables. Hence, this case is covered by
the previous example. The corresponding Laplace transform is given by

E etX =
sinh(at)

at
.

3.5. If the random variables Xn are independent and uniformly distributed on the interval
[−1, 1], then the infinite sum

X =

∞∑
n=1

anXn with

∞∑
n=1

a2
n <∞

represents a strongly subgaussian random variable. The corresponding Laplace transform is
given by

E etX =
∞∏
n=1

sinh(ant)

ant
.

3.6. Suppose that X has density p(x) = x2ϕ(x), where ϕ(x) = 1√
2π
e−x

2/2 is the standard

normal density. Then EX = 0, σ2 = EX2 = 3, and the Laplace transform satisfies

E etX = (1 + t2) et
2/2 ≤ e3t2/2.

Hence, X is strongly subgaussian.
3.7. More generally, if X has a density of the form

p(x) =
1

(2d− 1)!!
x2dϕ(x), x ∈ R, d = 1, 2, . . . ,

then EX = 0, σ2 = EX2 = 2d+ 1, and the Laplace transform satisfies

E etX =
1

(2d− 1)!!
H2d(it) e

t2/2 ≤ e(2d+1) t2/2, t ∈ R.

Hence, X is strongly subgaussian. The last inequality follows from Theorem 1.1, since the
Chebyshev-Hermite polynomials have real zeros, only. Note that the characteristic function
of X is given by

E eitX =
1

(2d− 1)!!
H2d(t) e

−t2/2.
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4. Hadamard’s and Goldberg-Ostrovskĭı’s theorems

All the previous examples may be included as partial cases of a more general setup. First,
let us recall some basic definitions and notations related to the Hadamard theorem from the
theory of complex variables.

Given an entire function f(z), introduce

Mf (r) = max
|z|≤r
|f(z)| = max

|z|=r
|f(z)|, r ≥ 0,

which characterizes the growth of f at infinity. The order of f is defined by

ρ = lim sup
r→∞

log logMf (r)

log r
.

Thus, ρ ≥ 0 is an optimal value such that, for any ε > 0, we have Mf (r) < er
ρ+ε

for all
sufficiently large r.

If f is a polynomial, then ρ = 0. If ρ is finite, then the type of f is defined by

τ = lim sup
r→∞

logMf (r)

rρ
.

Thus, τ ≥ 0 is an optimal value such that, for any ε > 0, we have Mf (r) < e(τ+ε) rρ for all
sufficiently large r. If 0 < τ <∞, the function f is said to be of normal type.

For integers p ≥ 0, introduce the functions

Gp(u) = (1− u) exp
{
u+

u2

2
+ · · ·+ up

p

}
, u ∈ C,

called the primary factors, with the convention that G0(u) = 1 − u. Given a sequence of
complex numbers zn 6= 0 such that |zn| ↑ ∞, one considers a function of the form

Π(z) =
∞∏
n=1

Gp(z/zn) (4.1)

called a canonical product. An integer p ≥ 0 is called the genus of this product, if it is the
smallest integer such that

∞∑
n=1

1

|zn|p+1
<∞. (4.2)

There is a simple estimate log |Gp(u)| ≤ Ap |u|p+1 where the constant Ap depends on p only.
Therefore, the product in (4.1) is uniformly convergent as long as (4.2) is fulfilled.

See e.g. Levin [5] for the next classical theorem.

Theorem 4.1 (Hadamard). Any entire function f of a finite order ρ can be represented
in the form

f(z) = zm eP (z)
∏
n≥1

Gp(z/zn), z ∈ C. (4.3)

Here zn are the non zero roots of f(z), the genus of the canonical product satisfies p ≤ ρ,
P (z) is a polynomial of degree ≤ ρ, and m ≥ 0 is the multiplicity of the zero at the origin.
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In order to describe the convergence of the canonical product, assume that f(z) has an
infinite sequence of non zero roots zn arranged in increasing order of their moduli so that

0 < |z1| ≤ |z2| ≤ · · · ≤ |zn| → ∞ as n→∞.

Define the convergence exponent of the sequence an by

ρ1 = inf
{
λ > 0 :

∞∑
n=1

1

|zn|λ
<∞

}
.

A theorem due to Borel asserts that the order ρ of the canonical product Π(z) satisfies ρ ≤ ρ1.
Moreover, Theorem 6 from [5], p.16, states that the convergence exponent of the zeros of any
entire function f(z) does not exceed its order: ρ1 ≤ ρ. Thus, for canonical products the
convergence exponent of the zeros is equal to the order of the function: ρ1 = ρ (Theorem 7).

There is also the following elementary relation between the convergence exponent and the
genus of the canonical product:

p ≤ ρ1 ≤ p+ 1.

Assuming that ρ1 is an integer, we have that
∑∞

n=1 |zn|−ρ1 =∞⇒ p = ρ1, while p = ρ1 + 1
means that the latter series is convergent.

The next theorem due to Goldberg and Ostrovskĭı [2] refines Theorem 4.1 for the class of
ridge entire functions whose all zeros are real. Recall that f is a ridge function, if it satisfies

|f(x+ iy)| ≤ |f(iy)|, x, y ∈ R.

Theorem 4.2 (Goldberg-Ostrovskĭı). Suppose that an entire ridge function f of a finite
order has only real roots. Then it can be represented in the form

f(z) = c eiβz−γz
2/2
∏
n≥1

(
1− z2

z2
n

)
, z ∈ C, (4.4)

for some c ∈ C, β ∈ R, γ ≥ 0, and zn > 0 such that
∑

n≥1 z
−2
n <∞.

We refer to [2]. See also Kamynin [4] for generalizations of Theorem 4.2 to the case where
the zeros of f are not necessarily real.

5. Characteristic functions with real zeros

We are now prepared to prove Theorem 1.1, including the relation (1.4) in the non-Gaussian
case which is stronger than (1.1).

Thus, let X be a subgaussian random variable with mean zero and variance σ2 = Var(X).
Then the inequality (1.1) may be extended to the complex plane in the form

|E ezX | ≤ ebRe(z)2/2, z ∈ C,

for some constant b ≥ σ2. Equivalently, the characteristic function f of X admits the bound

|f(z)| ≤ eb Im(z)2/2.
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Hence, f is a ridge entire function of order ρ ≤ 2. We are therefore in position to apply
Theorem 4.2 which yields the representation

f(z) = c eiβz−γz
2/2
∏
n≥1

(
1− z2

z2
n

)
for some c ∈ C, γ ≥ 0, β ∈ R, and for some finite or infinite sequence zn > 0 such that∑

n≥1 z
−2
n < ∞. Note that f(zn) = f(−zn) = 0, so that {zn,−zn} are all zero of f (this set

may be empty). Since f(0) = 1 and f ′(0) = 0, we necessarily have c = 1 and β = 0. Hence,
this representation is simplified to

f(z) = e−γz
2/2
∏
n≥1

(
1− z2

z2
n

)
. (5.1)

Since f ′′(0) = −σ2, we also have

1

2
σ2 =

1

2
γ +

∑
n≥1

1

z2
n

, (5.2)

so that γ ≤ σ2. Applying (5.1) with z = −it, t ∈ R, we get a similar representation for the
Laplace transform

E etX = eγt
2/2
∏
n≥1

(
1 +

t2

z2
n

)
. (5.3)

Using 1 + x ≤ ex (x ∈ R), we see that the right-hand side above does not exceed

eγt
2/2
∏
n≥1

et
2/z2n = eσ

2t2/2,

where we used (5.2). Hence (5.3) leads to the desired bound (1.1), and Theorem 1.1 is proved.
Let us also verify the property (1.4) in the case where the random variable X is not

normal. Then the product in (5.3) is not empty and therefore γ < σ2. Let us rewrite (5.3) as

E etX = eV (t2), V (s) = γs+
∑
n≥1

log
(

1 +
s

z2
n

)
.

Since the function V is concave, it remains to refer to Proposition 2.5. �

Remark. Using (5.2), let us rewrite (5.1) with z = t ∈ R in the form

f(t) = exp
{
− 1

2

(
γ −

∑
n≥1

1

z2
n

)
t2
}∏
n≥1

(
1− t2

z2
n

)
e
− t2

2z2n

= e−(3γ−σ2) t2/4
∏
n≥1

(
1− t2

z2
n

)
e
− t2

2z2n . (5.4)

The terms in the product represent characteristic funtions of random variables 1
zn
Xn such

that all Xn have density p(x) = x2ϕ(x) which we discussed in Example 3.6. Hence, if

γ ≥
∑
n≥1

1

z2
n

or equivalently
1

3
σ2 ≤ γ ≤ σ2,
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the function f(t) in (5.4) represents the characteristic function of the random variable

X = cZ +
∑
n≥1

1

zn
Xn,

assuming that Xn are independent, and Z is a standard normal random variable independent
of all Xn. Necessarily, c2 = 3

2γ −
1
2σ

2.
On the other hand, the formula (5.1) does not always define a characteristic function. For

example, when there is only one term in the product, we obtain f(t) = e−γt
2/2(1 − t2

z21
). It

is a characteristic function, if and only if γ ≥ 1
z21

(cf. e.g. [6], p. 34). We will return to this

question in Section 8.

6. Growth of moments

Let X be a mean zero random variable with characteristic function f(t) = E eitX . Note that
X is subgaussian, when for some b ≥ 0 and t0 ≥ 0,

E etX ≤ ebt2/2, |t| ≥ t0. (6.1)

In terms of the characteristic function, this is equivalent to the statement that f can be
extended to the complex plane as an entire function of order ρ ≤ 2 and some finite type τ
(in the case ρ = 2). Assuming this, one can reformulate the refinement of Theorem 1.1 in
the form (1.4) as follows: If f has only real zeros, and X is not normal with ρ = 2, then

τ <
1

2
σ2, σ2 = Var(X).

On the other hand, both the order ρ and the type τ of f may be related to the coefficients
cn in the Taylor expansion

f(z) =
∞∑
n=1

cnz
n.

It is well-known (see e.g. [5], p.4) that

ρ = lim sup
n→∞

n log n

log 1
|cn|

, (τeρ)1/ρ = lim sup
n→∞

(
n1/ρ|cn|1/n

)
.

Introduce the moments and norms

αn = EXn, βn = E |X|n, ‖X‖n = β1/n
n ,

so that cn = in

n! αn, |cn| ≤ 1
n! βn. Starting from (6.1), we have

|E ezX | ≤ eb |z|2/2, z ∈ C, |z| ≥ t0.

Hence Mf (r) ≤ ebr2/2 for all r ≥ t0, and, by Cauchy’s theorem,

|c2n| ≤
Mf (r)

r2n
≤ ebr

2/2

r2n
.

Optimizing over all r ≥ t0 (attained when br2 = 2n when n is large enough), we get

β2n ≤ (2n)!
(be)n

(2n)n
, n ≥ n0,
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so that, by Stirling’s formula,

‖X‖2n ≤ dn

√
2bn

e
, dn → 1 as n→∞. (6.2)

Conversely, starting from (6.2) and using ‖X‖2n−1 ≤ ‖X‖2n, we have a similar upper
bound on the moments, and as a result, we arrive at (6.1) with any b′ > b in pace of b by
choosing a suitable value of t0 (see for details the proof of Theorem 2 in [5], pp. 4-5).

In order to compare with moments of Gaussian random variables, note that, if Z ∼ N(0, 1),
then

EZ2n = (2n− 1)!! =
(2n)!

2nn!
∼
√

2
(2n

e

)2n
,

so that

‖Z‖2n = dn

√
2n

e
, dn → 1 as n→∞.

Therefore, we have the following characterization of property (6.1) in terms of moments.

Proposition 6.1. Let X be a mean zero random variable. If it satisfies (6.1) with
parameter b ≥ 0, then, for any b′ > b, the inequality

‖X‖2n ≤
√
b′ ‖Z‖2n (6.3)

holds true for all n large enough. Conversely, the latter implies (6.1) for any prescribed value
b > b′ with some t0 > 0.

Thus, by (1.4), if the characteristic function f(z) of a subgaussian, non-normal random
variable X such that EX = 0, Var(X) = σ2 has only real zeros in the complex plane, then
(6.3) is fulfilled with some b′ < σ2 for all n large enough.

7. More examples of strongly subgaussian distributions

In connection with the problem of location of zeros, we now examine probability distributions
with characteristic functions of the form

f(t) = e−t
2/2 (1− αt2 + βt4), (7.1)

where α, β ∈ R are parameters. It was already mentioned that when β = 0, we obtain a
characteristic function

f(t) = e−t
2/2 (1− αt2),

if and only if 0 ≤ α ≤ 1. As we will see, in the general case, it is necessary that β ≥ 0 for
f(t) to be a characteristic function (although negative values of α are possible for small β).
Before deriving a full characterization, first let us emphasize the following.

Proposition 7.1. Given β ≥ 0, a random variable X with characteristic function of the
form (7.1) is strongly subgaussian, if and only if α satisfies α ≥

√
2β.

Proof. Recall that X is strongly subgaussian, if and only if, for all t ∈ R,

E etX ≤ eσ2t2/2, σ2 = −f ′′(0). (7.2)
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Near zero, the characteristic function f(t) as in (7.1) behaves like a quadratic polynomial

f(t) = 1− 1

2
t2 − αt2 +O(t4),

so that σ2 = 1 + 2α (in particular, α ≥ −1
2). Hence, applying (7.1) to the values −it instead

of t, one may rewrite (7.2) equivalently (multiplying both sides by exp(−t2/2)) as

1 + αt2 + βt4 ≤ eαt2 = 1 + αt2 +
1

2
α2t4 +

1

6
α3t6 + . . .

If α ≥ 0, this inequality holds for all t ∈ R, if and only if α2 ≥ 2β. As for the case α < 0,

this is impossible, since then eαt
2 → 0 as t→∞ exponentially fast. �

As already emphasized, if a random variable X is subgaussian (even if it is not strongly
subgaussian), its characteristic function f(t) may be extended to the complex plane as an
entire function

f(z) = E eizX , z ∈ C,

of order ρ ≤ 2 and of finite type, like in the strongly subgaussian case (7.2). If z = x + iy,
x, y ∈ R, is a zero of f , that is,

E cos(xX) e−yX = 0, E sin(xX) e−yX = 0,

then so is −x+ iy,

f(−x+ iy) = E ei(−x+iy)X

= E cos(xX) e−yX + iE sin(xX) e−yX = 0.

Thus, −z̄ is a zero of f as well. If in addition the distribution of X is symmetric about zero,
then −z and z̄ will also be zeros of f . Thus, in this case with every non-real zero z, the
characteristic function has 3 more distinct zeros, and hence we have 4 distinct zeros ±x± iy,
x, y > 0. One can now apply Proposition 7.1 to prove Theorem 1.3.

Proof of Theorem 1.3. Given a random variable X with a symmetric subgaussian
distribution, suppose that its characteristic function has exactly one zero z = x + iy in the
positive quadrant x, y ≥ 0. We need to show that X is strongly subgaussian, if and only if

0 ≤ Arg(z) ≤ π

8
. (7.3)

The case where z = x is real is covered by Theorem 1.1. The argument below also works
in this case, but for definiteness let us assume that z is complex, so that x, y > 0 (the case
x = 0 and y > 0 is impossible, since then f(z) = f(iy) ≥ 1).

Thus, let f(z) have four distinct roots z1 = z, z2 = −z = −x − iy, z3 = z̄ = x − iy,
z4 = −z̄ = −x+ iy. Applying Hadamard’s theorem, we get a representation

f(z) = eP (z)
(

1− z

z1

)(
1− z

z2

)(
1− z

z3

)(
1− z

z4

)
,

where P (z) is a quadratic polynomial. Since f(0) = 1, necessarily P (0) = 0. Also, by the
symmetry of the distribution of X, we have f(z) = f(−z), which implies P (z) = P (−z) for
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all z ∈ C. It follows that P (z) has no linear term, so that P (z) = −1
2γz

2 for some γ ∈ C.

Thus, putting w = a+ bi = 1
x+iy , we have

f(t) = e−γt
2/2 (1− wt)(1 + wt)(1− w̄t)(t+ w̄t)

= e−γt
2/2
(
1− (w2 + w̄2) t2 + |w|4t4

)
= e−γt

2/2
(
1− 2(a2 − b2) t2 + (a2 + b2)2 t4

)
. (7.4)

Comparing both sides of (7.4) near zero according to Taylor’s expansion, we get that

γ + 4(a2 − b2) = σ2. (7.5)

In particular, γ must be a real number, necessarily positive (since otherwise f(t) would not
be bounded on the real axis). Moreover, the case a = |b| is impossible, since then

f(t) = e−σ
2t2/2 (1 + 2b4t4).

Rescaling the variable and applying Proposition 7.1 with α = 0, we would conclude that the
random variable X is not strongly subgaussian.

Thus, let a 6= |b| (as we will see, necessarily γ > σ2). Again rescaling of the t-variable,
one may assume that γ = 1 in which case the representation (7.4) becomes

f(t) = e−t
2/2
(

1− 2(a2 − b2) t2 + (a2 + b2)2 t4
)
.

One can now apply Proposition 7.1 with parameters

α = 2(A−B), β = (A+B)2, where A = a2, B = b2.

Since the condition α ≥ 0 is necessary for f(t) to be a characteristic function of a strongly
subgaussian distribution, we may assume that A ≥ B (in fact, we have A > B, since a 6= |b|).
The condition β ≤ 1

2 α
2, that is, 2(A−B)2 ≥ (A+B)2 is equivalent to

(A+B)2 ≥ 8AB ⇐⇒ (a2 + b2)2 ≥ 8a2b2.

To express this in polar coordinates, put a = r cos θ, b = r sin θ with r2 = a2 +b2 and |θ| ≤ π
2 .

Since A ≥ B, that is a ≥ |b|, necessarily |θ| ≤ π
4 , and the above turns out to be the same as

cos2(θ) sin2(θ) ≤ 1

8
⇐⇒ sin2(2θ) ≤ 1

2
⇐⇒ |θ| ≤ π

8
.

Since θ = Arg(a+ bi) = −Arg(z), the desired characterization (7.3) follows. �

8. Characterization of characteristic functions

It remains to decide whether or not the characteristic functions in Proposition 7.1 with non-
real zeros do exist. Therefore, we now turn to the characterization of the property that the
functions of the form

f(t) = e−t
2/2 (1− αt2 + βt4) (8.1)

are positive definite (that is, they represent characteristic functions). Note that the more
general class of functions

f(t) = e−γt
2/2 (1− αt2 + βt4), γ > 0,

is reduced to (8.1) by rescaling the t-variable.
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Proposition 8.1. The equality (8.1) defines a characteristic function, if and only if the
point (α, β) belongs to one of the following two regions:

4β − 2
√
β(1− 2β) ≤ α ≤ 3β + 1, 0 ≤ β ≤ 1

3
, (8.2)

or

4β − 2
√
β(1− 2β) ≤ α ≤ 4β + 2

√
β(1− 2β),

1

3
≤ β ≤ 1

2
. (8.3)

The expression on the left-hand sides in (8.2)-(8.3) is negative, if and only if β < 1
6 . Hence,

for such values of β, the parameter α may be negative.
Combining Propositions 7.1 and 8.1, we obtain a full characterization of strongly sub-

gaussian distributions with characteristic functions of the form (8.1). To this aim, one should
complement (8.2)-(8.3) with the bound α ≥

√
2β. To describe the full region, we need to

solve the corresponding inequalities. First, it should be clear that
√

2β is smaller than the
right-hand sides of (8.2)-(8.3) for all 0 ≤ β ≤ 1

2 . In this β-interval, we also have

4β − 2
√
β(1− 2β) ≤

√
2β ⇐⇒ 16β2 ≤ 2β + 4β(1− 2β) + 4β

√
2(1− 2β)

⇐⇒ 12β − 3 ≤ 2
√

2(1− 2β).

The latter is fulfilled automatically for β ≤ 1
4 . For 1

4 ≤ β ≤
1
2 , squaring the above inequality,

we arrive at the quadratic inequality

144β2 − 56β + 1 ≤ 0.

The corresponding quadratic equation has two real roots, one of which 0.0188... is out of our
interval, while the other one

β0 =
1

36
(7 + 2

√
10) ∼ 0.3701...

belongs to the interval (1
3 ,

1
2). Therefore, the left-hand side in (8.2) should be replaced with√

2β on the whole interval 0 ≤ β ≤ 1
3 , while the lower bounds in (8.3) should be properly

changed for β ≤ β0 and β ≥ β0. That is, we obtain:

Proposition 8.2. The equality (8.1) defines a characteristic function of a strongly sub-
gaussian distribution, if and only if√

2β ≤ α ≤ 3β + 1, 0 ≤ β ≤ 1

3
, (8.4)√

2β ≤ α ≤ 4β + 2
√
β(1− 2β),

1

3
≤ β ≤ β0, (8.5)

4β − 2
√
β(1− 2β) ≤ α ≤ 4β + 2

√
β(1− 2β), β0 ≤ β ≤

1

2
. (8.6)

Proof of Proposition 8.1. Recall that the Chebyshev-Hermite polynomial Hk(x) of
degree k = 0, 1, 2, . . . is defined via the identity

ϕ(k)(x) = (−1)kHk(x)ϕ(x).

In particular, H0(x) = 1, H2(x) = x2 − 1, H4(x) = x4 − 6x2 + 3.
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Differentiating the equality

e−t
2/2 =

∫ ∞
−∞

eitxϕ(x) dx

k times, we therefore get the identity

(−1)kHk(t) e
−t2/2 =

∫ ∞
−∞

eitx (ix)kϕ(x) dx.

Hence, by the Fourier inversion formula,

(ix)kϕ(x) =
1

2π

∫ ∞
−∞

e−itx (−1)kHk(t) e
−t2/2 dt.

Applying this equality with even orders 2k and changing notations, we arrive at

t2k e−t
2/2 =

∫ ∞
−∞

(−1)kH2k(x)ϕ(x) eitx dx.

Therefore, the function in (8.1) represents the Fourier transform of the (continuous) function

p(x) =
(
1 + αH2(x) + βH4(x)

)
ϕ(x)

=
(
1 + α(x2 − 1) + β(x4 − 6x2 + 3)

)
ϕ(x)

=
(
(1− α+ 3β) + (α− 6β)x2 + βx4

)
ϕ(x),

whose total integral is f(0) = 1. As a consequence, p(x) represents a probability density, if
and only if

ψ(y) ≡ (1− α+ 3β) + (α− 6β)y + βy2 ≥ 0 for all y ≥ 0.

Choosing y = 0 and y →∞, we obtain necessary conditions

α ≤ 3β + 1, β ≥ 0. (8.7)

Assuming this, a sufficient condition for the inequality ψ(y) ≥ 0 to hold for all y ≥ 0 is
α ≥ 6β. As a result, we obtain a natural region for the parameters, namely

6β ≤ α ≤ 3β + 1, 0 ≤ β ≤ 1

3
, (8.8)

for which f(t) in (8.1) is a characteristic function.
In the case α < 6β, we obtain a second region. Note that the quadratic function ψ(y) =

c0 + 2c1y + c2y
2 with c0, c2 ≥ 0 and c1 < 0 is non-negative in y ≥ 0, if and only if c2

1 ≤ c0c2.
For the coefficients c2 = β > 0 and 2c1 = α− 6β < 0, the condition c2

1 ≤ c0c2 means that(α− 6β

2

)2
≤ (1− α+ 3β)β ⇐⇒ α2 − 8αβ + 24β2 ≤ 4β

⇐⇒ (α− 4β)2 ≤ 4β(1− 2β).

Thus, necessarily β ≤ 1
2 , and then admissible values of α are described by the relations

4β − 2
√
β(1− 2β) ≤ α ≤ 4β + 2

√
β(1− 2β) (8.9)

in addition to the assumption α < 6β and the necessary conditions in (8.7).
If 1

3 ≤ β ≤
1
2 , we arrive at the desired relations in (8.3), since

4β + 2
√
β(1− 2β) ≤ 3β + 1 ≤ 6β.
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If β ≤ 1
3 , then 6β ≤ 3β + 1. In the case α < 6β, the upper bound in (8.9) will hold

automatically, since

6β ≤ 4β + 2
√
β(1− 2β) for all 0 ≤ β ≤ 1

3
.

So, for the values α < 6β and β ≤ 1
3 , (8.9) simplifies to

4β − 2
√
β(1− 2β) ≤ α ≤ 6β, 0 < β ≤ 1

3
. (8.10)

It remains to take the union of the two regions described by (8.10) with (8.8), and then we
arrive at (8.2). �

9. Strongly subgaussian symmetric distributions with characteristic
functions having exactly one non-trivial zero

One may illustrate Proposition 8.2 by the following simple example. For β = 1
3 , admissible

values of α cover the interval
√

2/3 ≤ α ≤ 2, following both (8.4) and (8.5). Choosing

α =
√

2/3, we obtain the characteristic function

f(t) = e−t
2/2
(

1−
√

2

3
t2 +

1

3
t4
)

of a strongly subgaussian random variable. It has four distinct complex zeros zk defined by
z2 = r2 (1± i) with r2 = 1

3

√
2/3, so

z1 = (2r)1/4 eiπ/8, z2 = (2r)1/4 e−iπ/8, z3 = (2r)1/4 e7iπ/8, z4 = (2r)1/4 e−7iπ/8.

Note that |Arg(z1,2)| = π
8 . As already mentioned, it was necessary that |Arg(z)| ≤ π

8 for all
zeros with Re(z) > 0 in the class of all strongly subgaussian probability distributions with
characteristic functions of the form (8.1).

In order to describe the possible location of zeros, let us see what Proposition 8.2 is telling
us about the class of functions

f(t) = e−t
2/2 (1− wt)(1 + wt)(1− w̄t)(t+ w̄t), t ∈ R, (9.1)

with w = a + bi. Thus, in the complex plane f(z) has two or four distinct zeros z = ±1/w,
z = ±1/w̄ depending on whether b = 0 or b 6= 0. Note that

|Arg(z)| = |Arg(w)|
when z and w are taken from the half-plane Re(z) > 0 and Re(w) > 0.

Proposition 9.1. Let w = a + bi with a > 0. The function f(t) in (9.1) represents a
characteristic function of a strongly subgaussian random variable, if and only if

a ≤ 2−1/4 ∼ 0.8409,

while |b| is sufficiently small. More precisely, this is the case whenever |b| ≤ b(a) with a

certain function b(a) ≥ 0 such that b(2−1/4) = 0 and b(a) > 0 for 0 < a < 2−1/4.

Moreover, there exists a universal constant 0 < a0 < 2−1/4, a0 ∼ 0.7391, such that for
0 ≤ a ≤ a0 and only for these a-values, the property |b| ≤ b(a) is equivalent to the angle

requirement Arg(w) ≤ π
8 . As for the values a0 < a ≤ 2−1/4, this angle must be smaller.
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Proof. We may assume that b ≥ 0. The function in (9.1) may be expressed in the form

f(t) = e−t
2/2 (1− αt2 + βt4) (9.2)

with parameters

α = 2(A−B), β = (A+B)2, where A = a2, B = b2.

Since the condition α ≥ 0 is necessary for f(t) to be a characteristic function of a strongly
subgaussian distribution, we may require that a ≥ b, that is, A ≥ B. Recall that

Arg(w) ≤ π

8
⇐⇒ α ≥

√
2β ⇐⇒ b ≤ 1√

2 + 1
a. (9.3)

In fact, as easy to check, if w = reiθ, then

α2 − 2β = 2β cos(4θ).

In order to apply Proposition 8.2, first note that the above parameters satisfy α ≤ 2
√
β.

In this case, the upper bounds in (8.4)-(8.6) are fulfilled automatically. Therefore, we only
need to take into account the lower bounds in (8.4)-(8.6). Thus, f(t) in (9.2) represents the
characteristic function of a strongly subgaussian distribution, if and only if

1√
2

(A+B) ≤ A−B for 0 < A+B <
√
β0 (9.4)

or

2(A+B)2 − (A+B)
√

1− 2(A+B)2 ≤ A−B for
√
β0 ≤ A+B ≤ 1√

2
, (9.5)

where β0 = 1
36 (7 + 2

√
10) ∼ 0.3701... Since the condition A + B ≤ 2−1/2 is necessary, we

should require that a ≤ 2−1/4. Moreover, for a = 2−1/4, there is only one admissible value
b = 0, when w is a real number, w = 2−1/4.

Let us recall that √
2β < 4β − 2

√
β(1− 2β) for β0 < β ≤ 1

2
,

in which case there is a strict inequality α >
√

2β for admissible values of α in (8.6). Hence,
Arg(w) < π

8 according to (8.3). Thus, Arg(w) < π
8 for the region described in (9.5).

Turning to the region of couples (A,B) as in (9.4), let us fix a value 0 < A <
√
β0. The

first inequality in (9.4) is equivalent to

B ≤
√

2− 1√
2 + 1

A =
1

(
√

2 + 1)2
A,

which is the same as (9.3). The value B = 1
(
√

2+1)2
A does satisfy the second constraint, if

and only if (
1 +

1

(
√

2 + 1)2

)
A ≤

√
β0,

which is equivalent to 0 < a ≤ a0 with

a0 = β
1/4
0

√
2 + 1√

4 + 2
√

2
∼ 0.7391. (9.6)

Therefore, in this a-interval Proposition 9.1 holds true with b(a) = 1√
2+1

a.
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Now, let a0 < a < 2−1/4. Since A < 1
2 , both (9.4) and (9.5) are fulfilled for all B small

enough. Indeed, if A ≥
√
β0 and B = 0, (9.5) becomes

2A2 −A
√

1− 2A2 ≤ A,

which holds with a strict inequality sign. To show that (9.5) is solved as B ≤ B(A) for
a certain positive function B(A), it is sufficient to verify that the left-hand side of (9.5) is
increasing in B (since the right-hand side is decreasing in B). Consider the function

u(x) = 2x2 − x
√

1− 2x2,
√
β0 ≤ x <

1√
2
.

We have

u′(x) = 4x−
√

1− 2x2 +
2x2

√
1− 2x2

≥ 0

for x ≥ 1
2 , hence for x ≥

√
β0. Thus, u(A+B) is increasing in B, proving the claim. �

10. General case of zeros in the angle |Arg(z)| ≤ π
8

We are now prepared to prove Theorem 1.2, which covers the case where the zeros of the
characteristic function

f(z) = E eizX , z ∈ C,
of the subgaussian random variable X are not necessarily real, but belong to the angle
|Arg(z)| ≤ π

8 . Let us state it once more together with the stronger property (1.4).

Theorem 10.1. Let X be a subgaussian random variable with a symmetric distribution.
If all zeros of f(z) with Re(z) ≥ 0 lie in the angle |Arg(z)| ≤ π

8 , thenX is strongly subgaussian.

Moreover, if X is not normal, then for any t0 > 0, there exists c = c(t0), 0 < c < σ2 = Var(X),
such that

E etX ≤ ect2/2, |t| ≥ t0. (10.1)

In the proof of (10.1) we employ Proposition 2.5, which asserts that (10.1) would follow

from the property that the function t→ logE e
√
tX is concave on the positive half-axis t ≥ 0

(in the symmetric case). In this connection let us remind Proposition 7.1: A random variable
ξ with characteristic function

fξ(t) = e−t
2/2 (1− αt2 + βt4)

is strongly subgaussian, if and only if β ≥ 0 and α ≥
√

2β. In fact, the latter description is
also equivalent to the concavity of the function

t→ logE e
√
tξ = −1

2
t+ log(1 + αt+ βt2), t ≥ 0.

That is, we have:

Lemma 10.2. Given α, β ≥ 0, the function Q(t) = log(1+αt+βt2) is concave in t ≥ 0, if
and only if α ≥

√
2β, and then the function R(t) = αt−Q(t) is convex and non-decreasing.
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Indeed, by the direct differentiation,

R′(t) =
(α2 − 2β)t+ αβt

1 + αt+ βt2

and

Q′′(t) = −(α2 − 2β) + 2αβt+ 2β2t2

(1 + αt+ βt2)2
,

from which the claim readily follows.

Proof of Proposition 10.1. We may assume that X is not normal. By the symmetry
assumption, with every zero z = x + iy, we have more zeros ±x ± iy. So, one may arrange
all zeros in increasing order of their moduli and by coupling ±z1,±z̄1, . . . . Let us enumerate
only the zeros zn = xn + iyn lying in the quadrant xn ≥ 0, yn ≤ 0 and deal with −zn, z̄n,−z̄n
as associated zeros. If zn is real, then we have only one associated zero −zn. For simplicity
of notations, let us assume that all zeros are complex.

Since X is subgaussian, the characteristic function f(t) may be extended from the real
line to the complex plane as an entire function satisfying

|f(z)| ≤ eb Im(z)2/2, z ∈ C,
for some constant b ≥ 0. Therefore, f is a ridge entire function of order ρ ≤ 2 and of a finite
type like in the strongly subgaussian case. Thus, Hadamard’s theorem is applicable, with
parameters ρ ≤ 2 and p ≤ 2. In this case, the representation (4.1) takes the form

f(z) = eP (z)
∏
n≥1

Gp(z/zn)Gp(z/z̄n)Gp(−z/zn)Gp(−z/z̄n).

Here, the genus of the canonical product satisfies p ≤ 2, and P (z) is a polynomial of degree
at most 2 such that P (0) = 0. Thus, putting in the sequel

wn =
1

zn
= an + bni,

we have
f(z) = eiβz−γz

2/2
∏
n≥1

πp,n(z) (10.2)

for some β, γ ∈ C, where

πp,n(z) = Gp(wnz)Gp(−wnz)Gp(w̄nz)Gp(−w̄nz).
By the symmetry assumption, f(−z) = f(z) for all z ∈ C. Since also πp,n(−z) = πp,n(z), we
conclude that β = 0.

Put
αn = w2

n + w̄2
n = 2(a2

n − b2n), βn = |wn|4 = (a2
n + b2n)2.

There are three cases for the values of the genus, p = 0, p = 1, and p = 2, for which

G0(u) = 1− u, G1(u) = (1− u) eu, G2(u) = (1− u) eu+u2

2 .

Since
G1(u)G1(−u) = 1− u2 = G0(u)G0(−u)

and
G2(−u)G2(u) = (1− u2) eu

2
,
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(10.2) is simplified to

f(z) = e−γz
2/2
∏
n≥1

Qp,n(z), (10.3)

where

Q0,n(z) = Q1,n(z) = (1− w2
nz

2)(1− w̄2
nz

2)

= 1− (w2
n + w̄2

n)z2 + |w|4z4 = 1− αnz2 + βnz
4

and

Q2,n(z) = (1− w2
nz

2)(1− w̄2
nz

2) e(w2
n+w̄2

n)z2

= (1− αnz2 + βnz
4) eαnz

2
.

These functions are real-valued for z = t ∈ R, as well as f(t), by the symmetry assumption
on the distribution of X. Hence, necessarily γ ∈ R. Moreover, we have γ ≥ 0, since otherwise
f(t) would not be bounded on the real axis t ∈ R.

Since Arg(zn) = −Arg(wn), we have Arg(wn) ≤ π
8 , by the main angle hypothesis. In

particular, an > bn > 0 so that αn > 0 (since we have agreed that xn > 0, yn < 0). As
already noticed in the proof of Theorem 1.3, the angle hypothesis is equivalent to the relation

α2
n ≥ 2βn.

Applying (10.3) with z = it, t ∈ R, we get that

E etX = eγt
2/2
∏
n≥1

Qp,n(it) (10.4)

with positive factors given by

Q0,n(it) = Q1,n(it) = 1 + αnt
2 + βnt

4, Q2,n(it) = (1 + αnt
2 + βnt

4) e−αnt
2
.

We have already observed in the proof of Proposition 7.1 that, by the angle hypothesis,

1 + αnt
2 + βnt

4 < eαnt
2
, t > 0, (10.5)

so that Q2,n(it) < 1. Moreover, this inequality was strengthened by improving the constant
αn in the exponent, provided that t is bounded away from zero. We will thus repeat some
steps from the proof of Proposition 7.1. However, formally, we need to consider the three
cases separately according to the three possible values of p.

Genus p = 2. By the very definition of the genus, the following sum converges∑
n≥1

|wn|3 =
∑
n≥1

(a2
n + b2n)3/2 =

∑
n≥1

β3/4
n <∞.

Since
Q2,n(it) = 1 +O(|wn|4t4) = 1 +O(βnt

4) as t→ 0,

the product in (10.4) is absolutely convergent. Moreover, the right-hand side of (10.4) near
zero is 1 + γt2 +O(t3). Hence, necessarily γ = σ2, and (10.4) becomes

E etX = eσ
2t2/2

∏
n≥1

Q2,n(it). (10.6)

Recalling the bound Q2,n(it) ≤ 1, we conclude that

E etX ≤ eσ2t2/2, t ∈ R, (10.7)
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which means that X is strongly subgaussian.
For the second claim of the theorem, write

E etX = eV (t2), (10.8)

where

V (s) =
1

2
γs+

∑
n≥1

logQn(it)

=
1

2
σ2s+

∑
n≥1

[
log(1 + αns+ βns

2)− αns
]
, s ≥ 0,

and define

W (s) =
1

2
σ2s− V (s) =

∑
n≥1

Rn(s), Rn(s) = αns− log(1 + αns+ βns
2).

By Lemma 10.2, and using the assumption α2
n ≥ 2βn, all Rn(s) > 0 for s > 0, representing

convex increasing functions. Hence, W is a convex increasing function with W (0) = 0. It
remains to apply Proposition 2.5, and we obtain the property (10.1).

Genus p = 1. By definition, the following sum converges∑
n≥1

|wn|2 =
∑
n≥1

(a2
n + b2n) =

∑
n≥1

β1/2
n <∞.

Since

αn = 2(a2
n − b2n) ≤ 2(a2

n + b2n) = 2β1/2
n ,

the product in (10.4) is convergent. Moreover, the right-hand side of (10.4) near zero is

1 +
1

2
γt2 + t2

∑
n≥1

αn +O(t3).

Hence, necessarily

1

2
σ2 =

1

2
γ +

∑
n≥1

αn,

so that the characteristic function and the Laplace transform admit the same representation
(10.6). As a result, since the summation property defining the genus became stronger, we
immediately obtain (10.7) and its improvement (10.1) using the previous step.

Genus p = 0. By definition, the following sum converges∑
n≥1

|wn| =
∑
n≥1

(a2
n + b2n)1/2 =

∑
n≥1

β1/4
n <∞.

Since this assumption is stronger than the one of the previous step, while Q0,n = Q1,n, we
are reduced to the previous step. �
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11. Proof of Theorem 1.4

As in the proof of Proposition 10.1, let us enumerate the points zn = xn + iyn lying in the
quadrant xn ≥ 0, yn ≤ 0 and deal with −zn, z̄n,−z̄n as associated zeros. For simplicity of
notations, we assume that all these numbers are complex. Put

wn =
1

zn
= an + bni

and define

fn(z) = e−γnz
2/2 (1− wnz)(1 + wnz)(1− w̄nz)(1 + w̄nz)

= e−γnz
2/2 (1− αnz2 + βnz

4), z ∈ C,

for a given sequence γn > 0 (to be precised later on). Here as before

αn = 2(a2
n − b2n), βn = (a2

n + b2n)2.

By the assumption, an, bn > 0. Moreover, the angle assumption |Arg(zn)| = Arg(wn) ≤ π
8

equivalent to α2
n ≥ 2βn, which may also be written as

bn ≤
1√

2 + 1
an. (11.1)

Now, if γn is sufficiently large, fn(t), t ∈ R, will be the characteristic function of a strongly
subgaussian distribution. A full description of the minimal possible value of γn is provided
in Proposition 9.1. More precisely, consider the function

gn(t) = fn

( t
√
γn

)
= e−t

2/2 (1− w′nt)(1 + w′nt)(1− w̄′nt)(1 + w̄′nt)

= e−t
2/2 (1− α′nt2 + β′nt

4)

with

w′n = a′n + b′ni, a′n =
an√
γn
, b′n =

bn√
γn

and

α′n =
2(a2

n − b2n)

γn
, β′n =

(a2
n + b2n)2

γ2
n

.

As we know, gn(t) represents the characteristic function of a strongly subgaussian random
variable X ′n, as long as

b′n ≤
1√

2 + 1
a′n, a′n ≤ a0,

where the universal constant a0 was explicitly identified in (9.6), a0 ∼ 0.7391. Here, the first
condition is satisfied in view of (11.1), while the second one is equivalent to

γn ≥
a2
n

a2
0

. (11.2)

Moreover, X ′n has variance

Var(X ′n) = −g′′n(0) = 2α′n + 1 =
4(a2

n − b2n)

γn
+ 1.
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Thus, subject to (11.2), fn(t) will be the characteristic function of the strongly subgaussian
random variable Xn =

√
γnX

′
n, whose variance is given by

Var(Xn) = 4(a2
n − b2n) + γn. (11.3)

Now, assuming that Λ ≥ 4 + 1
a30
∼ 5.83, let us choose

γn = (Λ− 4)a2
n + (Λ + 4)b2n,

so that the expression in (11.3) would be equal to Λ(a2
n + b2n) = Λ|wn|2. Then the condition

(11.2) is satisfied, and also ∑
n

γn <∞.

As a result, the series
∑

nXn is convergent with probability one, and the sum of the series,
call it X, represents a strongly subgaussian random variable with characteristic function

f(z) =
∏
n

fn(z)

(cf. Proposition 2.2). By the construction, all fn(z) have exactly prescribed zeros, and

Var(X) =
∑
n

Var(Xn) = Λ
∑
n

|wn|2.

�
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