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Constrained Spectral Clustering

• Partitioning of undirected graphs finds many applications in social
networks, machine learning, . . .

• Wish to find partition in which size of cut
sizes of halves

is small.

• Spectral Clustering is commonly used as a fast approximation, based
on a quadratic cost fcn ((Shi & Malik, 2000) & others).

• A little prior knowledge can yield marked improvements in clusters
(e.g. (Wagstaff et al., 2001; Yu & Shi, 2001; Ji & Xu, 2006)).

◦ Prior knowledge in spectral clustering have been mostly limited tomust-link
constraints (Kamvar et al., 2003; Xu et al., 2005; Ji & Xu, 2006; Shi et al., 2010)

◦ Previous method admitting cannot-link constraints used quadratic but

indefinite cost function, and needed many eigenvectors (Wang & Davidson,

2010).
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Goals

• Find an approximate minimal normalized cut while limiting the number
of violations of known constraints.

• Handle both must-link and cannot-link constraints.

• Avoid forcing all constraints to be exactly satisfied, allowing some
noise in the constraints.

• Design method that is also applicable to co-clustering.

◦ Design penalty term for constraint violations that cannot dominate original
quadratic cost fcn from graph.

◦ Get inspiration from sparse least squares and convex relaxations of combinatorial

problems.
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Method

• Minimize a quadratic function (spectral cut) subject to a constraint-violation
penalty (count of violations).

• Relax the sparsity count to an L1 penalty.

◦ Quadratic function is the real relaxation of the normalized cut.

◦ Sparsity penalty is applied to violations of must-link and cannot-link constraints.

◦ Inspired by previous work in sparse least squares, like LASSO (Tibshirani, 1996), basis pursuit,
compressed sensing, etc.

Issues

• Without constraints, get a [generalized] eigenvalue problem.

• With L1 constraint penalty, get a non-convex optimization problem.

• Our simple solution: solve by a series of convex subproblems.
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Spectral Clustering – Preliminaries

• Graph G = {V,E,W} = {vertices, edges, edge affinities}.

• Affinity between two clusters S1, S2 is

|edges in cut| = W (S1, S2) =
∑

u∈S1,v∈S2

wuv

• For binary cuts, normalized cut is size of cut relative to size of partitions:

NCnode = |V |W (S1,S2)
|S1|·|S2| = |vertices| |edges in cut|

|vertices1|·|vertices2|

NCedge = sum(W ) W (S1,S2)
W (S1,V )W (S2,V )

= |edges| |edges in cut|
|edges1|·|edges2|

• Both are measures of the form size of cut
sizes of halves

.

• Differ in the measure of “sizes of halves”: count of vertices or edges.

• For simplicity, this talk will focus on NCnode.
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Matrix Equivalent
• Define A = [weighted] adjacency matrix

d = A · 1 = vector of degrees
D = Diag(d)
L = D − A = unnormalized Laplacian

• Then problem is:

minimize NCnode =
xTLx

xTx
, s.t. x ⊥ 1

subject to x ∈ {α,−β}n taking only 2 discrete values, with α, β > 0.

• L1 relaxation: allow x to take any real values.

• Resulting minimization problem to be solve:

min
x

1/2x
TLx s.t. 1Tx = 0 , xTx = 1.

• Usually solved as an eigenproblem Lx = λx:
Seek Fiedler vector: eigenvector for smallest nonzero eigenvalue.
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Must-link & Cannot-link Constraints

• Old methods added new quadratic penalty term for constraint violations.

• Like modifying the graph or quadratic graph cost.

• With large weight, penalty term might hide effect of original cost fcn.

Our Approach

• Mimic counting the number of violations.

• Encode constraints in a matrix C, so that ‖Cx‖0 is the count of
constraint violations.

• C resembles an incidence matrix, with rows like:

(0, . . . , 0,−1, 0, . . . , 0,+1, 0, . . . , 0) (must-link)
(0, . . . , 0,+1, 0, . . . , 0,+1, 0, . . . , 0) (cannot-link).
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Optimization Problem with Constraints

• Incorporate must-link & cannot-link constraints into optimization
problem:

minx
1
2
xTLx

s.t. dTx = 0
Cx = 0 (enforce all constraints)
xT Ix = 1.

• This could be solved as a generalized eigenvalue problem (Bie et al.,

2004), but could be at high expense.

• Hard constraint may be too strict if underlying clustering does not
match the labels well, or there is noise in the constraints.

• Wish to have trade-off between clustering and constraints.
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Optimization Problem with Constraints

• Incorporate must-link & cannot-link constraints into optimization
problem:

minx
1
2
xTLx+ λ ‖z‖1

s.t. dTx = 0
Cx = z (enforce some constraints)
xT Ix = 1.

• Use ‖z‖1 as a convex relaxation for the count ‖z‖0.

• Soft constraint admits trade-off for clustering distortion or noise in
the constraints.

• Even if λ is large, the original L term is never completely lost.
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Convex Subproblem

• Previous problem is not convex.

• Solve by repeated solution of a convex subproblem with proximity
penalty:

minx̂,ẑ
1
2
x̂TLx̂+ µ‖x̂− x‖2I + λ‖ẑ‖1

s.t. dT x̂ = 0
Cx̂− ẑ = 0

x T Ix̂ = 1,

• x is used as the starting point for subproblem.

• Proximity term keeps new iterate x̂ close to starting x , with wgt µ.

• Quadratic Constraint replaced with linear approximation .
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1
2
x̂TLx̂+ µ‖x̂− x‖2I + λ‖ẑ‖1

s.t. dT x̂ = 0
Cx̂− ẑ = 0
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s.t. dT x̂ = 0
Cx̂− ẑ = 0
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Overall Algorithm

Start with Laplacian L, constraints C, scalars λ, µ, initial x[0].

1. For k = 0, 1, 2, . . . until convergence

2. Solve convex subproblem for x̂min, ẑmin , starting with x = x[k]

3. Set γ = ‖x̂T
min‖I

4. Set x[k+1] = x̂min/γ





(project back onto sphere xT Ix = 1)

5. Set z[k+1] = ẑmin/γ

Return: x[final]: cluster indicator vector.

• Theorem: each pass through subproblem
is a descent step for original problem.

-
=
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Experimental Setup

• Use some simple datasets with samples in Rn and known labels.

• Construct pair-wise affinity matrix using Aij = exp
(
− 1

2σ
‖xi − xj‖22

)
.

• Measure performance with cluster Purity and Normalized Mutual Information.

◦ Purity(x̂,y) =
∑

k maxj

{
|ck∩lj |
|ck|

}

(fraction of most common label within each cluster (Zhao & Karypis, 2004)).

◦ NMI(x̂,y) = 2·I(x̂,y)
H(x̂)+H(y)

(Normalized Mutual Information (Zhong & Ghosh, 2005)).

◦ Ranges: Purity ∈ [1/2, 1], NMI ∈ [0, 1], with 1 = perfect match.

• Compare with Baseline method admitting both Must-link & Cannot-link

constraints.
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Baseline Method

• Found only one baseline method capable of handling Cannot-link
constraints (Wang & Davidson, 2010).

• Use Q = {−1, 0, 1}n×n (constraints),

• Form modified generalized eigenvalue problem using L and Q.

• Solution of eigenvalue problem is expensive.

◦ L̃ = D−1/2LD−1/2 , Q̃ = D−1/2QD−1/2 .

◦ Leads to: minv vT L̃v s.t. vT Q̃v = α, vTv = vol,v 6=
√
d

◦ Solve by selecting from eigenvectors of L̃v = λ(Q̃− β
vol

I)v for λ > 0.

◦ β is user-supplied. Need to compute all eigenvectors (expensive).
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Small Experimental Datasets
Data No of instances No of attributes
Wine 119 13
Glass 146 9

Ionosphere 351 32
Hepatitis 155 19
WDBC 569 30
Diabetes 768 8

• Graph constructed using RBF kernel on pair-wise distances.
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Ionosphere
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Our Approach

Baseline

• Typical behavior on easy (well separated) datasets.

• Sometimes our method slightly better, sometimes baseline slightly
better.

• Any method does well.
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Glass
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Our Approach

Baseline

• When the natural clustering fails to capture the labels, our method is
better able to follow the constraints when there are enough of them.
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Performance – Fixed NMI
• α value needed by baseline method to achieve given NMI

• α may go almost off-scale, burying the original Laplacian.

• In all cases λ ∈ [.1, 10] for our method.

Dataset
NMI

∈ [.6, .7]
NMI
∈ [.7, .8]

NMI
∈ [.8, .9]

NMI
∈ [.9, 1]

Wine – 56.56 88447 2.1624e+05
Glass – – – –

Ionosphere 0.62 0.82 0.9294 1.0325
Hepatitis 6.19e+07 5.36e+09 6.42e+09 6.424e+09
WDBC – 1.99e+03 6.77e+14 6.16e+23
Diabetes 217 485.50 2.12e+03 2.28e+03
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Performance – Satisfy Fixed % Labels
• α value needed by baseline to match a pre-set % of given labels.

• α may go almost off-scale, burying the original Laplacian.

• In all cases λ ∈ [.1, 10] for our method.

Dataset
%known

20
%known

40
%known

60
%known

80
Wine 1.85e+02 1.33e+03 8.85e+04 3.03e+05
Glass 3.27e+06 3.27e+06 3.29e+06 4.34e+34

Ionosphere 0.20 0.41 0.61 0.82
Hepatitis 6.19e+07 1.20e+05 6.36e+09 6.424e+09
WDBC 6.77e+14 1.53e+14 6.16e+23 6.16e+23
Diabetes 279 346 2.12e+03 2.28e+03
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Co-Clustering Dataset

Data No. of No. of
Docs edges

Medline 200 10510
Cranfield 200 10210

Total 400 20720

No. of
nodes

No. of
edges

combined
bipartite
graph 3514 20720

• Co-clustering can often do better
than ordinary clustering when
both attributes (words) and
samples (docs) separate.

• Use bipartite graph connecting
words to documents.

• We combined two separate
datasets into a single bipartite
graph.
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Co-Clustering Results
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Our Approach

Baseline

• Our method follows constraints; baseline method does not.
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Noisy Labels (10%)

• 10% of the constraints were
randomly flipped.

• Goal: simulate noise in the data.

• Our method better able to
use imperfect prior knowledge
compared to baseline method.
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Our Approach

Baseline

• Noise-free performance shows this data is well separated:
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Slightly Larger Example

• Selected 0’s & 1’s (1389 samples) from USPS digit dataset.
◦ Each sample is a 16 by 16 image converted to a 256-vector.

◦ Form unweighted graph by connecting each sample to samples within
20% of maximum distance.

◦ Added at least two edges to a sample far away.

◦ Total number of edges 431516 with degrees ranging from 5 to 1079.

◦ 4316 Constraints: 1% of all possible pair-wise agreements/disagreements.

• Natural spectral clustering: 118 disagreements with ground-truth labels

• After 11 iterations of convex subproblem (total time: 373 sec) disagreements
reduced to 30.
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Conclusions

• We have presented a way to incorporate Must-link & Cannot-link
constraints into spectral [co-]clustering.

• We use an L1 penalty term on the constraints to avoid overwhelming
the underlying affinity graph.

• We showed how the non-convex problem can be solved by a sequence
of convex subproblems which includes a proximity penalty.

• We illustrated that this method can be robust in the presence of noise
in the constraints.
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Future Directions – Wishlist

• A more efficient solver for the convex subproblem, or the original
non-convex problem.

• Extension to more than two clusters (perhaps by recursive binary
splitting).

• Exploration of the choice of parameters, including fast tracking as λ
varies.
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Thank you!
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Algorithm Convergence
Theorem Each pass through steps 2–5 of Algorithm is a descent step
for original non-convex optimization problem.

Proof (sketch)

1. Convex subproblem reduces original objective function.

2. Length γ = ‖x̂T
min‖D > 1.

3. Scaling by 1/γ further reduces original objective
function, while landing on original feasible region.

-
=
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Choice of Parameters

• Choice of constraint weight: λ = [0.1, 10] worked well for all cases
tried.

• proximity penalty µ = 1 was a good balance between quadratic cost
function and the quadratic proximity penalty.

• Subproblem converged in 6-8 iterations in most cases.
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Measuring cluster quality

• Cluster quality measured by comparing with labels (ground truth).

• In general, it is hard to measure how well the natural affinities in the
graph are aligned with a given set of labels.

• Purity(x̂,y) =
∑

k maxj

{
|ck∩lj |
|ck|

}
= fraction of most common label

within each cluster (Zhao & Karypis, 2004).

• NMI(x̂,y) = 2·I(x̂,y)
H(x̂)+H(y)

= Normalized Mutual Information (Zhong &

Ghosh, 2005).

• Purity ∈ [1/2, 1], NMI ∈ [0, 1], with 1 = perfect match.
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