Constrained Spectral Clustering with L1 Regularization

Jaya Kawale and Daniel Boley University of Minnesota

Supported by NSF grants IIS-0916750, IIS-1029711 and UofM Fellowship.

Constrained Spectral Clustering

- Partitioning of undirected graphs finds many applications in social networks, machine learning, ...
- Wish to find partition in which $\frac{\text{size of cut}}{\text{sizes of halves}}$ is small.
- Spectral Clustering is commonly used as a fast approximation, based on a quadratic cost fcn ((Shi & Malik, 2000) & others).
- A little prior knowledge can yield marked improvements in clusters (e.g. (Wagstaff et al., 2001; Yu & Shi, 2001; Ji & Xu, 2006)).
- Prior knowledge in spectral clustering have been mostly limited to *must-link* constraints (Kamvar et al., 2003; Xu et al., 2005; Ji & Xu, 2006; Shi et al., 2010)
- Previous method admitting cannot-link constraints used quadratic but indefinite cost function, and needed many eigenvectors (Wang & Davidson, 2010).

Goals

- Find an approximate minimal normalized cut while limiting the *number* of violations of known constraints.
- Handle both *must-link* and *cannot-link* constraints.
- Avoid forcing all constraints to be exactly satisfied, allowing some noise in the constraints.
- Design method that is also applicable to co-clustering.
- Design penalty term for constraint violations that cannot dominate original quadratic cost fcn from graph.
- Get inspiration from sparse least squares and convex relaxations of combinatoria problems.

Method

- Minimize a quadratic function (spectral cut) subject to a constraint-violatic penalty (count of violations).
- Relax the sparsity count to an L_1 penalty.
 - Quadratic function is the real relaxation of the normalized cut.
 - $\circ~$ Sparsity penalty is applied to violations of must-link and cannot-link constraints.
 - Inspired by previous work in sparse least squares, like LASSO (Tibshirani, 1996), basis pursuit, compressed sensing, etc.

Issues

- Without constraints, get a [generalized] eigenvalue problem.
- With L_1 constraint penalty, get a non-convex optimization problem.
- Our simple solution: solve by a series of convex subproblems.

Spectral Clustering – Preliminaries

- Graph $G = \{V, E, W\} = \{$ vertices, edges, edge affinities $\}$.
- Affinity between two clusters S_1, S_2 is

$$|edges in cut| = W(S_1, S_2) = \sum_{u \in S_1, v \in S_2} w_{uv}$$

• For binary cuts, normalized cut is size of cut relative to size of partitions:

$$NC_{node} = |V| \frac{W(S_1, S_2)}{|S_1| \cdot |S_2|} = |\text{vertices}| \frac{|\text{edges in cut}|}{|\text{vertices}_1| \cdot |\text{vertices}_2|}$$
$$NC_{edge} = \text{sum}(W) \frac{W(S_1, S_2)}{W(S_1, V)W(S_2, V)} = |\text{edges}| \frac{|\text{edges in cut}|}{|\text{edges}_1| \cdot |\text{edges}_2|}$$

- Both are measures of the form $\frac{\text{size of cut}}{\text{sizes of halves}}$.
- Differ in the measure of "sizes of halves": count of vertices or edges.
- For simplicity, this talk will focus on NC_{node} .

Matrix Equivalent

- Define A =[weighted] adjacency matrix $\mathbf{d} = A \cdot \mathbf{1} =$ vector of degrees D =Diag(\mathbf{d})
 - L = D A = unnormalized Laplacian
- Then problem is:

minimize
$$NC_{node} = \frac{\mathbf{x}^T L \mathbf{x}}{\mathbf{x}^T \mathbf{x}}, \quad \text{s.t. } \mathbf{x} \perp \mathbf{1}$$

subject to $\mathbf{x} \in \{\alpha, -\beta\}^n$ taking only 2 discrete values, with $\alpha, \beta > 0$.

- L_1 relaxation: allow **x** to take any real values.
- Resulting minimization problem to be solve:

$$\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^T L \mathbf{x} \quad \text{s.t.} \quad \mathbf{1}^T \mathbf{x} = 0 \quad , \quad \mathbf{x}^T \mathbf{x} = 1.$$

• Usually solved as an eigenproblem $L\mathbf{x} = \lambda \mathbf{x}$: Seek Fiedler vector: eigenvector for smallest nonzero eigenvalue.

Must-link & Cannot-link Constraints

- Old methods added new quadratic penalty term for constraint violations.
- Like modifying the graph or quadratic graph cost.
- With large weight, penalty term might hide effect of original cost fcn.

Our Approach

- Mimic counting the number of violations.
- Encode constraints in a matrix C, so that $||C\mathbf{x}||_0$ is the count of constraint violations.
- C resembles an incidence matrix, with rows like:

$$(0, \dots, 0, -1, 0, \dots, 0, +1, 0, \dots, 0) \quad (must-link) \\ (0, \dots, 0, +1, 0, \dots, 0, +1, 0, \dots, 0) \quad (cannot-link).$$

Optimization Problem with Constraints

• Incorporate *must-link* & *cannot-link* constraints into optimization problem:

$$\begin{array}{ll} \min_{\mathbf{x}} & \frac{1}{2} \mathbf{x}^T L \mathbf{x} \\ \text{s.t.} & \mathbf{d}^T \mathbf{x} = 0 \\ & C \mathbf{x} = 0 \\ & \mathbf{x}^T I \mathbf{x} = 1. \end{array}$$
 (enforce all constraints)

- This could be solved as a generalized eigenvalue problem (Bie et al., 2004), but could be at high expense.
- Hard constraint may be too strict if underlying clustering does not match the labels well, or there is noise in the constraints.
- Wish to have trade-off between clustering and constraints.

Optimization Problem with Constraints

• Incorporate *must-link* & *cannot-link* constraints into optimization problem:

$$\min_{\mathbf{x}} \quad \frac{1}{2} \mathbf{x}^T L \mathbf{x} + \lambda ||\mathbf{z}||_1 \\ \text{s.t.} \quad \mathbf{d}^T \mathbf{x} = 0 \\ C \mathbf{x} = \mathbf{z} \quad (\text{enforce some constraints}) \\ \mathbf{x}^T I \mathbf{x} = 1.$$

- Use $\|\mathbf{z}\|_1$ as a convex relaxation for the count $\|\mathbf{z}\|_0$.
- Soft constraint admits trade-off for clustering distortion or noise in the constraints.
- Even if λ is large, the original L term is never completely lost.

Convex Subproblem

- Previous problem is not convex.
- Solve by repeated solution of a convex subproblem with proximity penalty:

$$\min_{\widehat{\mathbf{x}},\widehat{\mathbf{z}}} \quad \frac{1}{2} \widehat{\mathbf{x}}^T L \widehat{\mathbf{x}} + \mu \| \widehat{\mathbf{x}} - \mathbf{x} \|_I^2 + \lambda \| \widehat{\mathbf{z}} \|_1$$

s.t.
$$\mathbf{d}^T \widehat{\mathbf{x}} = 0$$
$$C \widehat{\mathbf{x}} - \widehat{\mathbf{z}} = 0$$
$$\mathbf{x}^T I \widehat{\mathbf{x}} = 1,$$

- **x** is used as the starting point for subproblem.
- Proximity term keeps new iterate $\hat{\mathbf{x}}$ close to starting \mathbf{x} , with wgt μ .
- Quadratic Constraint replaced with linear approximation.

Convex Subproblem

- Previous problem is not convex.
- Solve by repeated solution of a convex subproblem with proximity penalty:

$$\min_{\widehat{\mathbf{x}},\widehat{\mathbf{z}}} \quad \frac{1}{2} \widehat{\mathbf{x}}^T L \widehat{\mathbf{x}} + \mu \| \widehat{\mathbf{x}} - \| \mathbf{x} \|_I^2 + \lambda \| \widehat{\mathbf{z}} \|_1$$

s.t.
$$\mathbf{d}^T \widehat{\mathbf{x}} = 0$$
$$C \widehat{\mathbf{x}} - \widehat{\mathbf{z}} = 0$$
$$\mathbf{x}^T I \widehat{\mathbf{x}} = 1,$$

- **x** is used as the starting point for subproblem.
- Proximity term keeps new iterate $\hat{\mathbf{x}}$ close to starting \mathbf{x} , with wgt μ .
- Quadratic Constraint replaced with linear approximation.

Convex Subproblem

- Previous problem is not convex.
- Solve by repeated solution of a convex subproblem with proximity penalty:

$$\min_{\widehat{\mathbf{x}},\widehat{\mathbf{z}}} \quad \frac{1}{2} \widehat{\mathbf{x}}^T L \widehat{\mathbf{x}} + \mu \| \widehat{\mathbf{x}} - \mathbf{x} \|_I^2 + \lambda \| \widehat{\mathbf{z}} \|_1$$

s.t.
$$\mathbf{d}^T \widehat{\mathbf{x}} = 0$$
$$C \widehat{\mathbf{x}} - \widehat{\mathbf{z}} = 0$$
$$\mathbf{x}^T I \widehat{\mathbf{x}} = 1,$$

- **x** is used as the starting point for subproblem.
- Proximity term keeps new iterate $\hat{\mathbf{x}}$ close to starting \mathbf{x} , with wgt μ .
- Quadratic Constraint replaced with linear approximation.

Overall Algorithm

Start with Laplacian L, constraints C, scalars λ , μ , initial $\mathbf{x}^{[0]}$.

- 1. For $k = 0, 1, 2, \ldots$ until convergence
- 2. Solve convex subproblem for $\widehat{\mathbf{x}}_{\min}, \widehat{\mathbf{z}}_{\min}$, starting with $\mathbf{x} = \mathbf{x}^{[k]}$
- 3. Set $\gamma = \|\widehat{\mathbf{x}}_{\min}^T\|_I$

4. Set
$$\mathbf{x}^{[k+1]} = \widehat{\mathbf{x}}_{\min} / \gamma$$
 $\left. \right. \left. \left. \right. \right\}$ (project back onto sphere $\mathbf{x}^T I \mathbf{x} = 1$)

5. Set $\mathbf{z}^{[k+1]} = \widehat{\mathbf{z}}_{\min} / \gamma$

Return: $\mathbf{x}^{[\text{final}]}$: cluster indicator vector.

• Theorem: each pass through subproblem is a descent step for original problem.

Experimental Setup

- Use some simple datasets with samples in \mathbb{R}^n and known labels.
- Construct pair-wise affinity matrix using $A_{ij} = \exp\left(-\frac{1}{2\sigma}||x_i x_j||_2^2\right)$.
- Measure performance with cluster Purity and Normalized Mutual Information

•
$$Purity(\widehat{\mathbf{x}}, \mathbf{y}) = \sum_{k} max_{j} \left\{ \frac{|c_{k} \cap l_{j}|}{|c_{k}|} \right\}$$

(fraction of most common label within each cluster (Zhao & Karypis, 2004)).

•
$$NMI(\widehat{\mathbf{x}}, \mathbf{y}) = \frac{2 \cdot I(\widehat{\mathbf{x}}, \mathbf{y})}{H(\widehat{\mathbf{x}}) + H(\mathbf{y})}$$

(Normalized Mutual Information (Zhong & Ghosh, 2005)).

- Ranges: $Purity \in [1/2, 1], NMI \in [0, 1], with 1 = perfect match.$
- Compare with Baseline method admitting both *Must-link & Cannot-link* constraints.

Baseline Method

- Found only one baseline method capable of handling *Cannot-link* constraints (Wang & Davidson, 2010).
- Use $Q = \{-1, 0, 1\}^{n \times n}$ (constraints),
- Form modified generalized eigenvalue problem using L and Q.
- Solution of eigenvalue problem is expensive.

•
$$\tilde{L} = D^{-\frac{1}{2}} L D^{-\frac{1}{2}}, \ \tilde{Q} = D^{-\frac{1}{2}} Q D^{-\frac{1}{2}}.$$

- Leads to: $\min_{\mathbf{v}} \mathbf{v}^T \widetilde{L} \mathbf{v}$ s.t. $\mathbf{v}^T \widetilde{Q} \mathbf{v} = \alpha$, $\mathbf{v}^T \mathbf{v} = vol$, $\mathbf{v} \neq \sqrt{\mathbf{d}}$
- Solve by selecting from eigenvectors of $\widetilde{L}\mathbf{v} = \lambda(\widetilde{Q} \frac{\beta}{vol}I)\mathbf{v}$ for $\lambda > 0$.
- β is user-supplied. Need to compute all eigenvectors (expensive).

Small Experimental Datasets

Data	No of instances	No of attributes
Wine	119	13
Glass	146	9
Ionosphere	351	32
Hepatitis	155	19
WDBC	569	30
Diabetes	768	8

• Graph constructed using RBF kernel on pair-wise distances.

Ionosphere

- Typical behavior on easy (well separated) datasets.
- Sometimes our method slightly better, sometimes baseline slightly better.
- Any method does well.

Glass

• When the natural clustering fails to capture the labels, our method is better able to follow the constraints when there are enough of them.

Th

Performance – Fixed NMI

- α value needed by baseline method to achieve given NMI
- α may go almost off-scale, burying the original Laplacian.
- In all cases $\lambda \in [.1, 10]$ for our method.

Dataset	$NMI \in [.6, .7]$	$NMI \in [.7, .8]$	$NMI \in [.8, .9]$	$ \begin{array}{c} NMI \\ \in [.9,1] \end{array} $
Wine	_	56.56	88447	2.1624e + 05
Glass	_	_	_	_
Ionosphere	0.62	0.82	0.9294	1.0325
Hepatitis	6.19e + 07	5.36e + 09	6.42e + 09	6.424e + 09
WDBC	_	1.99e + 03	6.77e + 14	6.16e + 23
Diabetes	217	485.50	2.12e + 03	2.28e + 03

Performance – Satisfy Fixed % Labels

- α value needed by baseline to match a pre-set % of given labels.
- α may go almost off-scale, burying the original Laplacian.
- In all cases $\lambda \in [.1, 10]$ for our method.

Dataset	%known 20	%known 40	%known 60	$rac{\% known}{80}$
Wine	1.85e + 02	1.33e+03	8.85e + 04	3.03e + 05
Glass	3.27e + 06	3.27e + 06	3.29e + 06	4.34e + 34
Ionosphere	0.20	0.41	0.61	0.82
Hepatitis	6.19e + 07	1.20e + 05	6.36e + 09	6.424e + 09
WDBC	6.77e + 14	$1.53e{+}14$	6.16e + 23	6.16e + 23
Diabetes	279	346	2.12e+03	2.28e + 03

Co-Clustering Dataset

Data	No. of	No. of
	Docs	eages
Medline	200	10510
Cranfield	200	10210
Total	400	20720
combined	No. of	No. of
bipartite	nodes	edges
graph	3514	20720

- Co-clustering can often do better than ordinary clustering when both attributes (words) and samples (docs) separate.
- Use bipartite graph connecting words to documents.
- We combined two separate datasets into a single bipartite graph.

Co-Clustering Results

• Our method follows constraints; baseline method does not.

Noisy Labels (10%)

- Goal: simulate noise in the data.
- Our method better able to use imperfect prior knowledge compared to baseline method.

• Noise-free performance shows this data is well separated:

Slightly Larger Example

- Selected 0's & 1's (1389 samples) from USPS digit dataset.
 - $\circ~$ Each sample is a 16 by 16 image converted to a 256-vector.
 - $\circ\,$ Form unweighted graph by connecting each sample to samples within 20% of maximum distance.
 - Added at least two edges to a sample far away.
 - $\circ~$ Total number of edges 431516 with degrees ranging from 5 to 1079.
 - $\circ~4316$ Constraints: 1% of all possible pair-wise agreements/disagreements.
- Natural spectral clustering: 118 disagreements with ground-truth labels
- After 11 iterations of convex subproblem (total time: 373 sec) disagreements reduced to 30.

Conclusions

- We have presented a way to incorporate *Must-link & Cannot-link* constraints into spectral [co-]clustering.
- We use an L1 penalty term on the constraints to avoid overwhelming the underlying affinity graph.
- We showed how the non-convex problem can be solved by a sequence of convex subproblems which includes a proximity penalty.
- We illustrated that this method can be robust in the presence of noise in the constraints.

Future Directions – Wishlist

- A more efficient solver for the convex subproblem, or the original non-convex problem.
- Extension to more than two clusters (perhaps by recursive binary splitting).
- Exploration of the choice of parameters, including fast tracking as λ varies.

Thank you!

Algorithm Convergence

Theorem Each pass through steps 2–5 of Algorithm is a descent step for original non-convex optimization problem.

Proof (sketch)

- 1. Convex subproblem reduces original objective function.
- 2. Length $\gamma = \|\widehat{\mathbf{x}}_{\min}^T\|_D > 1.$
- 3. Scaling by $1/\gamma$ further reduces original objective function, while landing on original feasible region.

Choice of Parameters

- Choice of constraint weight: $\lambda = [0.1, 10]$ worked well for all cases tried.
- proximity penalty $\mu = 1$ was a good balance between quadratic cost function and the quadratic proximity penalty.
- Subproblem converged in 6-8 iterations in most cases.

Measuring cluster quality

- Cluster quality measured by comparing with labels (ground truth).
- In general, it is hard to measure how well the natural affinities in the graph are aligned with a given set of labels.
- $Purity(\widehat{\mathbf{x}}, \mathbf{y}) = \sum_{k} max_{j} \left\{ \frac{|c_{k} \cap l_{j}|}{|c_{k}|} \right\} = \text{fraction of most common label}$ within each cluster (Zhao & Karypis, 2004).
- $NMI(\hat{\mathbf{x}}, \mathbf{y}) = \frac{2 \cdot I(\hat{\mathbf{x}}, \mathbf{y})}{H(\hat{\mathbf{x}}) + H(\mathbf{y})} = Normalized Mutual Information (Zhong & Ghosh, 2005).$
- $Purity \in [1/2, 1], NMI \in [0, 1], with 1 = perfect match.$

Wine

- Typical behavior on easy (well separated) datasets.
- Any method does well.

References

Bie, T. D., Suykens, J. A. K., & Moor, B. D. (2004). Learning from general label constraints. SSPR/SPR (pp. 671–679).

Ji, X., & Xu, W. (2006). Document clustering with prior knowledge. SIGIR (pp. 405–412).

Kamvar, S. D., Klein, D., & Manning, C. D. (2003). Spectral learning. IJCAI (pp. 561–566).

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. PAMI, 22, 888–905.

Shi, X., Fan, W., & Yu, P. S. (2010). Efficient semi-supervised spectral co-clustering with constraints. *ICDM* (pp. 1043–1048).

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.

Wagstaff, K., Cardie, C., Rogers, S., & Schrödl, S. (2001). Constrained k-means clustering with background knowledge. *ICML* (pp. 577–584).

Wang, X., & Davidson, I. (2010). Flexible constrained spectral clustering. KDD (pp. 563–572).

Xu, Q., desJardins, M., & Wagstaff, K. (2005). Active constrained clustering by examining spectral eigenvectors. *Discovery Science* (pp. 294–307).

Yu, S. X., & Shi, J. (2001). Grouping with bias. *NIPS* (pp. 1327–1334). runslides.13.5.1.208 Zhao, Y., & Karypis, G. (2004). Empirical and theoretical comparisons of selected criterion functions for document clustering. *Machine Learning*, 55, 311–331.

Zhong, S., & Ghosh, J. (2005). Generative model-based document clustering: a comparative study. *Knowledge and Information Systems*, 8, 374–384.