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Constrained Spectral Clustering

e Partitioning of undirected graphs finds many applications in social
networks, machine learning, ...

e Wish to find partition in which —S12€ of cut o gmall.
sizes of halves

e Spectral Clustering is commonly used as a fast approximation, based
on a quadratic cost fcn (Shi & Malik, 2000) & others).

e A little prior knowledge can yield marked improvements in clusters
(€.g. (Wagstaff et al., 2001; Yu & Shi, 2001; Ji & Xu, 2006)).

o Prior knowledge in spectral clustering have been mostly limited to must-link
constraints (Kamvar et al., 2003; Xu et al., 2005; Ji & Xu, 2006; Shi et al., 2010)

o Previous method admitting cannot-link constraints used quadratic but
indefinite cost function, and needed many eigenvectors (Wang & Davidson,
2010).
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Goals

e F'ind an approximate minimal normalized cut while limiting the number
of violations of known constraints.

e Handle both must-link and cannot-link constraints.

e Avoid forcing all constraints to be exactly satisfied, allowing some
noise in the constraints.

e Design method that is also applicable to co-clustering.

o Design penalty term for constraint violations that cannot dominate original
quadratic cost fcn from graph.

o (et inspiration from sparse least squares and convex relaxations of combinatoria
problems.
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Method

e Minimize a quadratic function (spectral cut) subject to a constraint-violatic
penalty (count of violations).

e Relax the sparsity count to an L; penalty.

o Quadratic function is the real relaxation of the normalized cut.
o Sparsity penalty is applied to violations of must-link and cannot-link constraints.

o Inspired by previous work in sparse least squares, like LASSO (Tibshirani, 1996), basis pursuit,
compressed sensing, etc.

Issues
e Without constraints, get a [generalized| eigenvalue problem.
e With L, constraint penalty, get a non-convex optimization problem.

e Our simple solution: solve by a series of convex subproblems.
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Spectral Clustering — Preliminaries

e Graph G ={V, E, W} = {vertices, edges, edge affinities}.
o Affinity between two clusters Si, S5 is

ledges in cut| = W(S51,52) = Z W

e For binary cuts, normalized cut is size of cut relative to size of partitions:

- W (S1,52) . - ledges in cut]
NCnode — |V| S]] S2] o |V€rth€S| |verticesy |-|verticesa|

L W (51,52) o ledges in cut]
NCedge = sum(W) g s, vy = 10d808| oges; Todgess

size of cut
sizes of halves-

e Both are measures of the form
e Differ in the measure of “sizes of halves”: count of vertices or edges.

e For simplicity, this talk will focus on NC,, 4e.
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Matrix Equivalent

e Define A (weighted| adjacency matrix
d A -1 = vector of degrees
D = Diag(d)

L D — A = unnormalized Laplacian

e Then problem is:
x! Lx

xI'x

minimize NC,,oqe = ., st.x L1

subject to x € {a, —F}" taking only 2 discrete values, with «, 8 > 0.
e [, relaxation: allow x to take any real values.

e Resulting minimization problem to be solve:

T

min hx'Lx st. 1'x=0 , x'x=1.

e Usually solved as an eigenproblem Lx = Ax:
Seek Fiedler vector: eigenvector for smallest nonzero eigenvalue.
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Must-link & Cannot-link Constraints

e Old methods added new quadratic penalty term for constraint violations.
e Like modifying the graph or quadratic graph cost.

e With large weight, penalty term might hide effect of original cost fcn.
Our Approach

e Mimic counting the number of violations.

e Encode constraints in a matrix C', so that ||[Cx||o is the count of
constraint violations.

e (' resembles an incidence matrix, with rows like:

(0,...,0,—-1,0,...,0,+1,0,...,0) (must-link)
(0,...,0,41,0,...,0,41,0,...,0) (cannot-link).
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Optimization Problem with Constraints

e Incorporate must-link & cannot-link constraints into optimization
problem:

miny %XTLX
s.t. dix=0
Cx =0 (enforce all constraints)

xT'Ix =1,

e This could be solved as a generalized eigenvalue problem (Bie et al,
2004), but could be at high expense.

e Hard constraint may be too strict if underlying clustering does not
match the labels well, or there is noise in the constraints.

e Wish to have trade-off between clustering and constraints.
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Optimization Problem with Constraints

e Incorporate must-link & cannot-link constraints into optimization
problem:

min, sx’ Lx + Nz
s.t.  dix=0
Cx =1z (enforce some constraints)
x'Ix = 1.

e Use |||z]|1| as a convex relaxation for the count ||z||,.

e Soft constraint admits trade-off for clustering distortion or noise in
the constraints.

e Even if ) is large, the original L term is never completely lost.
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Convex Subproblem

e Previous problem is not convex.

e Solve by repeated solution of a convex subproblem with proximity
penalty:
mingz 53X’ LX + pllX — X7 + Az
s.t. dix =0
Cx—-—z=0
xI'Ix =1,

e [X| is used as the starting point for subproblem.
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Convex Subproblem

Previous problem is not convex.

Solve by repeated solution of a convex subproblem with proximity

penalty:

ming; X7 LX + |p|x — X|7]+ Allz]]:
s.t. d'x =0

Cx—z=0
x'Ix =1,

is used as the starting point for subproblem.

Proximity term
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Convex Subproblem

e Previous problem is not convex.

e Solve by repeated solution of a convex subproblem with proximity

penalty:

ming; X7 LX + |p|x — X|7]+ Allz]]:

S.t. d'x =0
CX—Z2=0

x'Ix =1,

e [X| is used as the starting point for subproblem.

e (Proximity term| keeps new iterate X close to starting [X], with wgt .

e Quadratic Constraint replaced with [linear approximation)|.

s
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Overall Algorithm

Start with Laplacian L, constraints C, scalars \, x, initial x°.

1. For £=0,1,2,... until convergence
2. Solve convex subproblem for Xuin, Zmi , starting with x = x!*!
3. Set v = |Xplls ’
4, Set xkTU =x . /v 3 (project back onto sphere x'Ix = 1)
5. Set zF U =7 . /v

final].

Return: x| . cluster indicator vector.

e Theorem: each pass through subproblem / \<
is a descent step for original problem.
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Experimental Setup

e Use some simple datasets with samples in R” and known labels.
e Construct pair-wise affinity matrix using A;; = exp (—4 ||z — 253).

e Measure performance with cluster Purity and Normalized Mutual Informatio:

o Purity(X,y) = >, max; {lcrc:llﬂ}

(fraction of most common label within each cluster (Zhao & Karypis, 2004)).

o NMI(X,y) = H?ﬁl)(j—(g()w

(Normalized Mutual Information (Zhong & Ghosh, 2005)).

o Ranges: Purity € [Y2,1], NMI € [0,1], with 1 = perfect match.

e Compare with Baseline method admitting both Must-link & Cannot-link
constraints.
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Baseline Method

e Found only one baseline method capable of handling Cannot-link
constraints (Wang & Davidson, 2010).

e Use @ ={—1,0,1}"*" (constraints),
e Form modified generalized eigenvalue problem using L and ().
e Solution of eigenvalue problem is expensive.

o L=D"RLD ", Q=D""QD .

o Leads to: miny vI Lv s.t. VTQV =a, viv =vol,v # vd

Solve by selecting from eigenvectors of Lv = )\(@ — iI)v for A > 0.

vol

o

o [ is user-supplied. Need to compute all eigenvectors (expensive).
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Small Experimental Datasets

Data No of instances | No of attributes
Wine 119 13
Glass 146 9
Ionosphere 301 32
Hepatitis 155 19
WDBC 569 30
Diabetes 768 8

e Graph constructed using RBF kernel on pair-wise distances.

runslides.13.5.1.208 pl6 of 27



Ionosphere

Purity NMI

lonosphere lonosphere

0.1r —— Qur Approach 0.1F —— OQur Approach
- - - Baseline - - - Baseline
0 1 1 T I O 1 1 T I
20 40 60 80 100 20 40 60 80 100
Percentage of known labels Percentage of known labels

e Typical behavior on easy (well separated) datasets.

e Sometimes our method slightly better, sometimes baseline slightly

better.

e Any method does well.
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Purity NMI

Glass
1-

—— Our Approach
- - - Baseline

0.2
0.1 —— Our Approach
- - - Baseline
%O 40 60 80 100 020 40 80 100

60
Percentage of known labels Percentage of known labels

e When the natural clustering fails to capture the labels, our method is
better able to follow the constraints when there are enough of them.
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Performance — Fixed NMI

e « value needed by baseline method to achieve given NMI

e o may go almost off-scale, burying the original Laplacian.

e In all cases A € [.1, 10] for our method.

Dataset NMI NMI NMI NMI
€1.6,.7 | €[.7,.8] | €[8,.9 € .9,1]
Wine — 56.56 88447 2.1624e+05
Glass — — — —
Ionosphere 0.62 0.82 0.9294 1.0325
Hepatitis | 6.19e+07 | 5.36e409 | 6.42e+09 | 6.424e+09
WDBC — 1.99e+03 | 6.77e+14 | 6.16e+23
Diabetes 217 485.50 2.12e+03 | 2.28e+03
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Performance — Satisfy Fixed % Labels

e « value needed by baseline to match a pre-set % of given labels.

e o may go almost off-scale, burying the original Laplacian.

e In all cases A € [.1, 10] for our method.

Y%known | %known | %known | Y%known

Dataset 20 40 60 30

Wine 1.85e+02 | 1.33e+03 | 8.85e+04 | 3.03e+05

Glass 3.27e+06 | 3.27e+06 | 3.29e+06 | 4.34e+34

Ionosphere 0.20 0.41 0.61 0.82
Hepatitis | 6.19e+07 | 1.20e405 | 6.36e+09 | 6.424e+09
WDBC 6.77e+14 | 1.53e+14 | 6.16e+23 | 6.16e+23

Diabetes 279 346 2.12e+03 | 2.28e+03
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Co-Clustering Dataset

e Co-clustering can often do better

Data No. of | No. of than ordinary clustering when
Docs | edges both attributes (words) and
Medline 200 | 10510 samples (docs) separate.
Cranfield | 200 | 10210

e Use bipartite graph connecting

Total 400 | 20720 words to documents.
combined | No. of | No. of o We
bipartite | nodes | edges

graph | 3514 | 20720

combined two separate
datasets into a single bipartite
graph.
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Co-Clustering Results

Purity

Co-cluster

-
_____
————————
——————
N

0.1r —— Our Approach
- - - Baseline

20 40 60 80 100
Percentage of known labels

e Our method follows constraints; baseline method does not.
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Noisy Labels (10%)

NMI

e 10% of the constraints were - e
randomly flipped.

e (Goal: simulate noise in the data.

e Our method better able to o

. . 0.3r
use imperfect prior knowledge 0al
compared to baseline method. 01 —Ou hpprch
020 4‘0 éO 8‘0 160

Percentage of known labels

e Noise-free performance shows this data is well separated:

W
10

0.9r

0.8

0.7

Purity z- NMI sz

031 0.3f
0.2f 0.2t
o1t

%0 40 60 8 60
Percentage of known labels Percentage of known labels
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Slightly Larger Example

e Selected 0’s & 1’s (1389 samples) from USPS digit dataset.

o Each sample is a 16 by 16 image converted to a 256-vector.

o Form unweighted graph by connecting each sample to samples within
20% of maximum distance.

o Added at least two edges to a sample far away.
o Total number of edges 431516 with degrees ranging from 5 to 1079.

o 4316 Constraints: 1% of all possible pair-wise agreements/disagreements.

e Natural spectral clustering: 118 disagreements with ground-truth labels

e After 11 iterations of convex subproblem (total time: 373 sec) disagreement:
reduced to 30.
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Conclusions

e We have presented a way to incorporate Must-link & Cannot-link
constraints into spectral [co-]clustering.

e We use an L1 penalty term on the constraints to avoid overwhelming
the underlying affinity graph.

e We showed how the non-convex problem can be solved by a sequence
of convex subproblems which includes a proximity penalty.

e We illustrated that this method can be robust in the presence of noise
in the constraints.
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Future Directions — Wishlist

e A more efficient solver for the convex subproblem, or the original
non-convex problem.

e Extension to more than two clusters (perhaps by recursive binary
splitting).

e Exploration of the choice of parameters, including fast tracking as A
varies.
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Thank you!

runslides.13.5.1.208 p27 of 27



Algorithm Convergence

Theorem Each pass through steps 2-5 of Algorithm is a descent step
for original non-convex optimization problem.

Proof (sketch)

1. Convex subproblem reduces original objective function.

2. Length v = ||xL. |Ip > 1. /Y

3. Scaling by 1/+ further reduces original objective
function, while landing on original feasible region.
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Choice of Parameters

e Choice of constraint weight: A = |0.1, 10] worked well for all cases
tried.

e proximity penalty u© = 1 was a good balance between quadratic cost
function and the quadratic proximity penalty:.

e Subproblem converged in 6-8 iterations in most cases.
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Measuring cluster quality

e Cluster quality measured by comparing with labels (ground truth).

e In general, it is hard to measure how well the natural affinities in the
graph are aligned with a given set of labels.

o Purity(X,y) = ), max; {%} = fraction of most common label

within each cluster (Zhao & Karypis, 2004).

e NMI(X,y) = H?§€fggy) = Normalized Mutual Information (zhong &
Ghosh, 2005).

o Purity € [, 1], NMI € [0,1], with 1 = perfect match.
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Purity

Wine

0.9
0.8t
0.7

0.6

0.4F
0.3r
0.2f

0.1F

—— Our Approach
- - - Baseline

%0 40

60
Percentage of known labels

80 100

—— Our Approach
- - - Baseline

60
Percentage of known labels

80 100

e Typical behavior on easy (well separated) datasets.

e Any method does well.
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