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Discovery Problems

e Many traditional pattern discovery problems: extract hidden patterns in data, by
finding an approximate “low-complexity” representation.

e Text documents (news, laws, WWW documents).

e Gene expression profiles

tabular

e Attributes for individual people, transactions, locations, ecosystems, .. ..

H

e Images

e Gene-gene or protein-protein interaction networks
e WWW connectivity graph
e Computer inter-connect in Internet

e People-people affinities in Social Media

e Datasets are large, subject to noise and sampling bias.

e Goals include seeking underlying signal through the noise. |
e Many bigger examples to be seen later in this symposium. A h
[ ‘%
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Data with Special Structure

e Extract properties of Networks - Graph Properties

e represent connectivity between entities with links.
e partitioning: optimize a “cut” objective function.

e graphical models: Signal at each node depends only on neighbors:
want to recover [unknown] connections from observations.

e methods used: spectral methods, random walk models, optimization.
Many of these methods are approximate relaxations of a hard combinatorial problem to a tractible
optimization problem.

e Extract Low Complexity Patterns via Sparse Representation

e seek to represent each data sample as a combination of a few components out of a given dictionary.
e discover low complexity representation of data.
e the components found can be a reduced set of features, or identify the general class of a data sample.

e alternative: seek to eliminate noise by projecting observed data onto a smaller space represented by a
sparse model.

e traditional dimensionality reduction can yield hard-to-interpret components.

e sparse model can often yield a classifier.

e Most (but not all) of this talk is on the latter.

e Show [Convex| Optimization plays central supporting role in Big Data.
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Early ideas: Basis Pursuit, Compressive Sensing

e sparse solutions: finding which components to select: expensive combinatorial problem.
e Observation: Can often recover sparse solutions using a convex relaxation.

e Empirical Observations in Geophysics

e Claerbout & Muir 1973.: informal observation that /1 regularization works.

e Taylor, Banks, McCoy 1979. Specific experiments and explicit LP algorithm. (using
(1 error + /1 penalty).

e Formal analysis
e Chen, Donoho, Saunders 1998. Comparison with alternative greedy methods.

e Tropp 2006. Theoretical recovery guarantees.

e Eixploded into large literature. Here we will see only highlights.
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Example: recover spike train

[Taylor, Banks, and McCoy, 1979]
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F1G. 2. Synthetic spike train extraction. This example shows the assumed spike train s and wavelet w convolved
and sufficient random noise n added so that the trace t = s # w + n has a signal-to-noise ratio of 4. The extracted
spike train § is for the case | = 25.
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Example: vary regularization
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(Generalize: Variations on Total Variation

Min /1 norm (segment)

(a)

(b)

Min /1 norm of 1st diff’s
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[Claerbout and Muir,

A%

min /1 of 2nd diff’s (min variation)

{c}

A®

(d)

min ¢oo norm (threshold)

p8 of 39



Constructing Sparse Basis

dictionary atoms
EE  EEEEEEEE- N CEEE
T = m N

raw datum

® MatChlng PU.I'SU_It [Mallat and Zhang, 1993]

Greedy algorithm: try every column not already in your basis;

e evaluate quality of new column if it were added to your basis;

add “best” column to your basis, and repeat until satisfied.

{ BaSIS PU.I‘Slllt [Chen, Donoho, and Saunders, 2001]

Minimize A||x||o s.t. Ax = b, or softened to: ||b — Ax||5 + \||x]|o-
Difficulty: this is a NP-hard combinatorial problem.

Relax to A||x||1 s.t. Ax = b, or softened to ||b — Ax||3 + \||x]|1.
Relaxed problem is convex, so solvable more efficiently.

LASSO, LARS: Solve soft problem for all A\ fast [Tibshirani, 1996].

e Non-linear Problem

Use Newton’s method: inner loop = LASSO Problem.
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Convex Relaxation =—> LASSO

e Variations: Basis Pursuit, Compressed Sensing, ”small error + sparse”.

e Add penalty for number of nonzeros with weight A:
min || Ax — b3 + Al|x[o-
e Relax hard combinatorial problem into easier convex optimization problem.

min || Ax — blJ3 + A[1x] .
e or convert to constrained problem:

min [[Ax — b||3 subject to ||x||; < tol.
X

e Vary parameter A\ or tol, to explore the trade-off between “small error” and “sparse”.
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Example: 17 signals with 10 time points
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Approximate b by a few columns of A
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e As A grows, the error grows, fill (#non-zeros) shrinks.
e Can follow purple line for all A fast.
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Motivation: find closest sparse point

e Find closest point to target ... subject to £1 norm constraint.
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Motivation:

-4

find closest sparse point

closest point to #(3.5 1.5) with 1-norm constraint

uncons{rained
#<—closest point
st point sit. [|x][; < 2
=2} -
Hxlh =3}
{x:xlli =4} -
2 s 6

e Tighten limit on ||x|; = drive the coordinates toward zero.

e As soon as one coordinate reaches zero, it is removed, and the remaining coordinates

are driven to zero.

e Shrinkage operator.
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Group Lasso

e Use a group norm penalty to fit many samples at once.

e Example: miny [|[AX — B||% + M| X |1 2,
where || X|[1,2 =), | X; .||z (1-norm of row 2-norms).

e (Goal, fit several columns of B using as few columns of A as possible for the entire fit.

e Contrast with ordinary LASSO, where we minimize the number of columns of A
Separately fOI’ eaCh COlumIl Of B [Yuan and Lin, 2007; Friedman, Hastie, and Tibshirani, 2010]

e

|
= | .= II. |

e Example: want to predict multiple climate variables based on
climate variables at small number of locations.
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Fused Lasso

e Like LASSO, but impose also penalty on differences with neighbors.
® Balance eI'I'OI', Sp&fSlty, VarlathIlS [Tibshirani, Saunders, Rosset, Zhu, and Knight, 2005]

original original original original
regression LASSO fusion: pure fused:
thresholded differences balanced

i
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I

'

o
I 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Predictor Predictor Predictor Predictor
(a) (b) () (d)
too noisy spikey overshoot good compromise

e Use neighbors in 2 dimensions to segment images.
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Sparse Inverse Covariance Recovery

e Gaussian Markov Random Field:

e an undirected graph with random variables on each vertex;

the probability distribution of a random variable depends only on the adjacent random variables;

2 non-adjacent random variables are independent conditioned on all other variables;

the overall probability distribution is Gaussian with a stationary mean & covariance matrix;

Zero entries in the precision matrix (inverse of covariance matrix) mark non-adjacent vertices.

e (Goal is to recover a sparse precision matrix closely matching a given sample covariance
matrix S.

e Max Likelihood Estimate of inverse covariance is [usieh, Sustik, Dhillon, and Ravikumar, 2012]

min —logdet X + tr (SX) + A||vec (X)||1

X
Vv Vv
KL divergence between regularization
two centered gaussians term

e E.G. reveal far-flung climate dependencies.
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Matrix Completion

e Arises in: recommender systems, Netflix prize, fill-in missing data.

e Given partially filled matrix M, with set €2 of indices of filled entries.
Find X = argminyrank X s.t. X;; = M;; for (i,j) € Q.

o COI].VGX I'elaxatlon [Candés and Recht, 2008].
miny || X || s.t. X;; = M;; for (i,7) € Q
where || X ||, = sum of singular values of X = ||(c1(X);02(x);...)|1-
e Alternative formulation (often more efficient, less memory intensive)
e miny |[UVT — M|2 s.t. U,V each has k columns.

e where || X || denotes the F-norm summed over only indices in €.

e Biconvex: convex in U,V individually: use alternating least squares.

[Jain, Netrapalli, and Sanghavi, 2013] [NSrebro, Rennie, and Jaakkola, 2005]
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Computer Vision

Covariance Descriptor: eliminate brightness variation.

second pixel by pixel
derivatives descriptor

il asils

Raw Image first derivatives

grad-mag
Covariance
descriptor
Dxy
Covariance of
pixel-wise features
on 7 X 7 patch
Image :
y-grad grad-dir Dyy

Want to reduce covariance descriptors to linear combination of “small” dictionary of
descriptors.
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Optimization Setup for Covariances

Want to use small dictionary of descriptors to represent all descriptors in an image

[Sivalingam, Boley, Morellas, and Papanikolopoulos, 2010, 2011].

e S = a raw covariance matrix,
x = vector of unknown coefficients.
A= (A1, Ay, ..., A;) = collection of dictionary atoms.
x = (r1,T2,...,x) = vector of unknown coefficients.

e Goal: Approximate S ~ Az +---+ Az = A - x.

e Use “logdet” divergence as measure of discrepancy:

Dig(A-x,8) =tr((A-x)S™1!) —logdet((A-x)S~1) —n.

e Logdet divergence measures relative entropy between two different zero-mean multivariate
Gaussians.
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Optimization Problem for Covariances

[Sivalingam, Boley, Morellas, and Papanikolopoulos, 2010, 2011]

e Leads to optimization problem
miny Z x;tr(A;) — log det [Z xiAi] + A Z T

Dist(A-x,S) sparsity

s.t. x>0
> xiA; = 0 (positive semi-definite)
> xiA; =5 (residual positive semi-def.)

e This is in a standard form for a MaxDet problem.
e The sparsity term is a relaxation of true desired penalty: # nonzeros in x.

e Convex problem solvable by many solvers.
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Semidefinite Programming

e Like an LP, but with semidefinite constraints:

mxin cl'x st. Ay + Z x;A; = 0,
7

for A; given symmetric matrices.

e Convex, hence amenable to “efficient” convex methods.

e Many problems can be expressed in this form:
LPs, QCQPs, Minimize max eigenvalue/singular value.

I Ax+b

o cg. (Ax+b)T(Ax+b) —cTx —d <0 <= [(Ax+b)T ch—l—d] > 0.

[LVandenberghe and Boyd, 1996]
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Additional Formulations

e Dantzig Selector miny [|x|1 s.t. [[V@(x)||oo = [|AT (Ax —Db)||sc < tol [candes and Tao, 2005)
e Ky-Fan k-norm: sum of top k singular values.

e Schatten p norm: ordinary p norm of vector of singular values.

e Atomic norm: if A is a bounded [possibly finite or countable] set of vectors s.t.
ac A= —ac A, then ||v||=inft: v/t € conv_hull A is a norm.

e Many choices for A: columns of I, all unit-norm rank-one matrices or tensors, ...

e general theory of recovery guarantees from sample data based on gaussian width of unit ball for given
norm. [Chandrasekaran, Recht, Parrilo, and Willsky, 2012]

e Clustering with Soft Must-link & Cannot-link Constraints
/1-norm penalty on contraint violations. [kawale and Boley, 2013].

e Sparse Inverse Covariance Recovery (msich, sustik, Dhillon, and Ravikumar, 2012] (Non-linear:
Newton method w/ Armijo line search. CD on inner LASSO problem).
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First Order Methods

e First order method: often only tractible methods on large problems.

e ADMM: Alternating Direction Method of Multipliers

e miny , f(x) +1(2z) s.t. x =z
e minimize wrt x, then wrt z, then gradient ascept in dual.
e simplest first order method applicable also to constrained problems.

F/ISTA (Fast Shrinkage/Threshold Alg.: special case of proximal methods)

e miny f(x) 4+ r(x): f = objective, r = regularizer.
e If r = 0, reduces to steepest descent.

e CD: Coordinate Descent.

e Applicable to problems like F/ISTA problem.
e If r = 0, reduces to Gauss-Seidel

e (Hard Thresholding)
e (Alternating Relaxation)

e (Frank-Wolfe, using the dual norm)

Delft16.16.4.8.110
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Three Convergence Regimes

Analyse on model problem(s).

When the zero—non-zero structure of the iterate remains the same from one iteration
to the next, the mapping from one iterate to the next is a stationary linear operator,

k
denoted Mgu]g.
Largest eigenvalue of operator is 1. Convergence behavior depends on the remaining
eigenvalues. The possibilities are (Boley, 2013; Tao, Boley, and Zhang, 2015]:

The eigenvalue A =1 of Mgﬂg is simple. We get [local] linear convergence.

The eigenvalue A = 1 of Mg]ﬂg is double, but only with one eigenvector. We get

“constant-step” convergence.
The eigenvalue A = 1 of Maﬂg is double with a complete set of eigenvectors. We get
linear convergence to a solution, possibly non-unique.

Locally near optimum: smooth problems like model problems.
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Toy Example - ADMM on an Linear Program

ADMM is also applicable in presence of constraints, like an LP .
LP not strictly convex, so good example to exhibit the regimes.

Simple resource allocation model:
e v; = rate of cheap process (e.g. fermentation),

e vy = rate of costly process (e.g. respiration).
[Schuster, Boley, Moller, Stark, and Kaleta, 2015] Warburg effect

maximize, —+2vi + 30vs (desired end product production)
subject to vy  + s < V0.maz (limit on raw material)

201 4 50wy < 200 (internal capacity limit)

vy >0 vy >0 (irreversibility of reactions)

Put into standard form:

minimize, —2v; — 30vq (desired end product production)
subject to v1  4+wv2 4+ V3 = Vomar (limit on raw material)
2v1 +50vy + vg = 200 (internal capacity limit) (1)
vy >0 vy > 0 (irreversibility of reactions)
vz >0 vg >0 (slack variables)
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Typical Convergence Behavior vg 4, = 99.9

max 2x+30y s.t. x+y<99.9, 2x+50y<200. ADMM trace
T T T T T

10 T F c A=|lerror|?

i B=||diffs||?
10 2
C=r:norm

D=s:norm%/10

1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160
iteration number

ADMM on Example 1: typical behavior. Curves: A: error ||(zl¥ — ulFl) — (z* — u*)||2.
B: || (2" — ul*) — (2" — a2 e || (M — 22 D: (2 — 2 Y)|2/10 (D s
scaled by 1/10 just to separate it from the rest).
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Toy Example with vy 4, = 3.9

. max 2x+30y s.t. x+y<3.9, 2x+50y<200. ADMM trace
10 T T T T T T T T T

102 %

10° .

107 E14444444444‘44‘4ﬁ444‘44‘44\44‘44*44‘44‘444\44;4*;44ﬁ44‘44‘44\444;4*44‘444‘44\44¥44*44‘44:

-F AR

10 " —
10° | .
10—10_ |
-12 D
10 " f 2
~A=||error||
_ e 112
-14 B=|[diffs]|
10 " | 2
—C=r:norm
-D=s:norm%/10
10‘15 | | | | | | | T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iteration number

ADMM on Example 2: slow linear convergence.

Second largest eigenvalue = o(M) = 0.999896. convergence is very slow:
—1/log,o(c(M)) = 22135 iterations needed per decimal digit of accuracy.
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Convergence Of Modified Toy Example

max 2x+30y s.t. x+y<3.9, 2x+50y<200. 1st components

4.1 T T T T T T
iterates
X true answer
405 -
4 Q\ .
St
J
N
=z 3951 S n
650
O~
3.9 /F _
true
soln
3.85| _
38 | | | | | |
0 5 10 15 20 25 30 35

Wy

Convergence behavior of first two components of wl¥! for Example 2, showing the initial
straight line behavior (initial regime [b]) leading to the spiral (final regime [a]).
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Model Problem

Return to Model LASSO problem: /¢;-regularized least squares:

min Y[l Ax = b5 + Alfxlx

e A c R"™ ™ is a short-flat matrix (i.e. n > m) with full row rank, b is a given vector,
and A is a positive scalar.

e General interior point methods do not scale to the large-scale data problems encountered
in practice.

e Most popular algorithms proposed include Alternating Direction Method of Multipliers
(ADMM), Iterative Shrinkage Thresholding Algorithm (ISTA) and its accelerated
version Fast ISTA (FISTA), and the cyclic Coordinate Descent method (CD). All of
them has been shown to enjoy the sublinear convergence.
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Compare Convergence Behavior

A:128x 1024, 0=1e-3,A=1,5=10
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Eigenvalues

Eigenvalues of ADMM, ISTA, FISTA, CD(with unit circle)

© ADMM
x ISTA
0.8 + FISTA
* CD
0.6
0.4r
- 0.2
8 *
e S
9 *
£
- 0.2
-04r
-0.6
-0.8

-1 | | 1 1 L
-1 -0.5 0 0.5 1
real part

Spectrum of M, R, N.
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Heuristic Algorithms

comparison

CD

heuristic
Restart—gradient
Restart—objective

0
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Conclusions

e Convex Optimization: recently discovered tool for many machine learning problems.

e Effective first order methods exist to solve them.
e Convergence Guarantees: still active research area.

ADMM, (F)ISTA, CD converge linearly when close enough to optimal solution.
FISTA can be slow down compared to ISTA towrds the end.

ISTA stagnates during the initial iterations, and FISTA during later iterations.
CD < Gauss-Seidel iteration, a preconditioned Richardson iteration < ISTA.

e Take-Away: Optimization has an essential supporting role in Big Data.
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THANK  YOU!
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