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Discovery Problems

• Many large pattern discovery problems depend on representing each data sample
as a vector in high-dimensional euclidean space.

• Text documents (news, laws, WWW documents).

• Gene expression profiles
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• Attributes for individual people, transactions, locations, ecosystems, . . ..

• Images

• Gene-gene or protein-protein interaction networks

• WWW connectivity graph

• Computer inter-connect in Internet
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• People-people affinities in Social Media

• Many example datasets can easily have up to O(109+) data points.

• Many datasets have much noise or many attributes.

• Many example datasets are sampled, subject to sampling bias.
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Tools to Explore

• Dimensionality Reduction

• Represent each data sample with a reduced set of attribute values

• Minimize loss of information

• Implicit assumption: data is subject to some level of noise.

• Want to preserve some structure (e.g., certain entries known exactly).

• Clustering

• unsupervised: no labeled training set.

• group together items that “close” to each other in some sense

• separate items that are “far” from each other

• might have some known constraints.

• Build Classifier

• Use fully or partially labeled training set to build classifier

• a classifier is just a function mapping a vector of attributes to a class identifier.

• example: a nearest neighbor classifer takes an attribute vector input, finds the closest vector in the
training set, and assigns the latters label as a class ID.
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Tools for Other Kinds of Data.

• Graph Properties

• represent connectivity between entities with links.

• identify important nodes or links

• partitioning: cut graph into cohesive chunks.

• aggregrate properties: volume, distribution of properties across nodes.

• Sparse Representation

• Have derived a dictionary of data components.

• Seek to represent each data sample as a combination of only a few components.

• Hard to interpret individual components in traditional dimensionality reduction methods.

• Possibly also seek to represent each component as a combination of only a few original attributes.

• Maintain desire for small approximation error.
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Outline

• Sparse Representation – Examples

• almost shortest path routing.

• constrained clustering.

• image/vision,

• Graph Connection Discovery.

• Finding Sparse Representation

• Set up as an optimization problem

• Mathematical formulation: relax to convex problem.

• Solvers

• Alternating Direction Method of Multipliers

• Alternatives for L1 Regularized Least Squares

OptimHK.15.2.12.5 p5 of 50



Outline

• Sparse Representation – Examples

• almost shortest path routing.

• constrained clustering.

• image/vision,

• Graph Connection Discovery.

• Finding Sparse Representation

• Set up as an optimization problem

• Mathematical formulation: relax to convex problem.

• Solvers

• Alternating Direction Method of Multipliers

• Alternatives for L1 Regularized Least Squares

OptimHK.15.2.12.5 p6 of 50



SVM: Maximum Margin Separator

• xi = i-th training attribute vector, yi = ±1 = corresponding label.

• Support Vector Machines (Bennett & Campbell, 2000)

minimize ‖c− d‖22
subject to c =

∑
i:yi=1 αixi, d =

∑
i:yi=−1 αixi∑

i:yi=1 αi = 1,
∑

i:yi=−1 αi = 1, αi ≥ 0
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Sparse Representation

• Many machine learning algorithms can explore massive data:
K-nearest Neighbors, Kernal-SVM, Boosting, Metric Learning, . . .

• All can benefit from denoising by finding a sparse representation:

raw datum dictionary atoms sparse representation

• Must find best fit, subject to sparsity limit.

• Optionally must learn the dictionary.
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Almost Shortest Path Routing
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(Li et al., 2011)
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Constrained Clustering

• Graph Clustering with Must-link and Cannot-link constraints.

• Let x be the indicator vector for the clustering
(xi = +α | − β depending on membership in C+ | C−).

• Spectral Graph Cut: = xTLx [where L = Laplacian].

• Constraints represented by a subgraph with Incidence matrix Cc and Laplacian
Lc = CT

c Cc.

• Previous approach: minimize xTLx+ λxTLcx s.t. xTx = 1 (Shi et al., 2010).

• Our approach: minimize cut with L1 penalty on constraint violations:
xTLx+ λ‖Ccx‖1 s.t. xTx = 1 [Kawale et al].

=== Fused LASSO:

• Analogous: ‖Ax− b‖2 + Cx, where C is a 1st or 2nd difference operator.
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Image Descriptors
Image Descriptor

• Pixel Descriptors: for i-th pixel zi = φ(xi, yi) is a vector of descriptors for the
pixel at point (xi, yi) in the image.

• Example, could use zi = (Ix, Iy, |gradI|,∠gradI, Ixx, Ixy, Iyy) where I is the intensity
value. Could also incorporate color information.

Covariance Descriptor (Tuzel et al., 2006)

• Within each small patch around each pixel compute the covariance Ci of the pixel
descriptors.

• Covariance descriptors eliminate differences due to scaling, brightness, large shadows,
but enhance local features.

• Use for object detection, tracking, recognition, and more . . .

• Each Ci is a small positive semi-definite matrix (7× 7 in this example).

• Regularize each Ci by adding a small multiple of the identity.
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Covariance Descriptor Example

Raw Image first
derivatives

second
derivatives

pixel by pixel
descriptor

Image

x-grad

y-grad

grad-mag

grad-dir

Dxx

Dxy

Dyy

Covariance
descriptor
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Covariance Descriptor Usage

• Object Detection and Tracking in Image.

Object Detection Object
face license plate human Tracking

(Opelt
et al., 2004;
Sivalingam
et al., 2011)

(Porikli &
Kocak, 2006)

(Tuzel et al.,
2007)

(Palaio et al.,
2009)

Object Recognition
face action palmprint

(Pang et al.,
2008)

KTH dataset (Han et al., 2009)
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Optimization Setup for Covariances
Notation: (Sivalingam et al., 2010; Sivalingam et al., 2011)

• S = a raw covariance matrix,
x = vector of unknown coefficients.
A = (A1, A2, . . . , Ak) = collection of dictionary atoms.
x = (x1, x2, . . . , xk) = vector of unknown coefficients.

• Goal: Approximate S ≈ A1x1 + · · ·+Akxk = A · x.

• Use “logdet” divergence as measure of discrepancy:
Dld(A · x, S) = tr((A · x)S−1)− log det((A · x)S−1)− n.

• Logdet divergence measures relative entropy between two different zero-mean
multivariate Gaussians.
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Optimization Problem for Covariances
(Sivalingam et al., 2010; Sivalingam et al., 2011)

• Leads to optimization problem

minx
∑

i

xitr(Ai)− log det

[∑

i

xiAi

]

︸ ︷︷ ︸
Dist(A·x,S)

+λ
∑

i

xi

︸ ︷︷ ︸
sparsity

s.t. x ≥ 0∑
i xiAi � 0 (positive semi-definite)∑
i xiAi � S (residual positive semi-def.)

• This is in a standard form for a MaxDet problem.

• The sparsity term is a relaxation of true desired penalty: # nonzeros in x.

• Convex problem solvable by many solvers.
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Graph Connections Discovery

• Signal at node i is gaussian & correlated to neighbors,
but conditionally independent of unconnected node j.

• Statistical Theory =⇒ (Covariance)−1ij = 0.

(Covariance)−1 is called the Precision Matrix.

• If graph is sparse, expect (Covariance)−1 to be sparse.

• Problem: Graph connections are unknown.

• Task: Given signals at each node, recover graph edges.

• Applications: biology, climate modelling, social networks.
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• Method:

• Compute sample precision matrix from signals.

• Find best sparse approximation to sample precision matrix.

• Use previous log-det divergence to measure discrepancy between covariance matrices.
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Sparse Inverse of Positive Definite Matrix

• Seek sparse approximation X to inverse of positive definite S.

• Use measure φ(X) = Tr(SX−I)− log det(SX) = Tr(SX)− log detX− constants.

• φ(X) = 0 when X = S−1.

=== Properties: First Variation:

• φ(X +∆) = φ(X)+ Tr((S −X−1)∆)− Tr(X−1∆X−1∆) +O((∆3).

• Linear term is 〈(S −X−1)T ,∆〉, zero when S = X−1.

• If X pos. def., Quadratic term is Tr
(
X−

1/2∆X−1∆X−
1/2
)
> 0.

• For sparse inverse, minimize φ(X) + λ|X|1 (where |X|1 =
∑ |xij |).

• Newton’s method: around iterate X, minimize wrt ∆.

• Each inner iteration is an ℓ1 regularized quadratic =⇒ LASSO.
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Matrix Completion

• Application: Recommend movies for users by filling in matrix of movie ratings
(Netflix problem), Missing answers in a questionnaire.

• Application: Low dimensional embedding: have partial table of distances between
wireless sensors, want to fill in missing distances.

• Model: Assume true matrix is low rank: all user behavior can be grouped into a
combination of a small number of distinct primitive behaviors.

• Problem: Find low rank matrix X whose entries matches the known entries in the
data matrix M .

• Leads to: minimize rank(X) subject to Xij = Mij , for (i, j) ∈ Ω = set of known
entries.

• Relax to: minimize ‖X‖∗ subject to Xij = Mij , for (i, j) ∈ Ω, where ‖ · ‖∗ is the
nuclear norm (sum of singular values). (Candés & Recht, 2008)
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Constructing Sparse Basis
raw datum dictionary atoms
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• Matching Pursuit: (Mallat & Zhang, 1993)

• Greedy algorithm: try every column not already in your basis;

• evaluate quality of new column if it were added to your basis;

• add “best” column to your basis, and repeat until satisfied.

• Basis Pursuit (Chen et al., 2001)

• Minimize ‖b −Ax‖22 + λ‖x‖0.
• Difficulty: this is a NP-hard combinatorial problem.

• Relax to ‖b− Ax‖22 + λ‖x‖1.
• Relaxed problem is convex, so solvable more efficiently.

• LASSO: Solve for all λ fast (Tibshirani, 1996).

• Non-linear Problem

• Use Newton’s method: inner loop ≡ LASSO Problem.
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Convex Relaxation =⇒ LASSO

• Known as Basis Pursuit, Compressed Sensing, ”small error + sparse”.

• Add penalty for number of nonzeros with weight λ:

min
x
‖Ax− b‖22 + λ‖x‖0.

• Convert hard combinatorial problem into easier convex optimization problem.

• Relax previous ||x||0 to convex problem:

min
x
‖Ax− b‖22 + λ‖x‖1,

• or convert to constrained problem:

min
x
‖Ax− b‖22 subject to ‖x‖1 ≤ tol.

• Vary parameter λ or tol, to explore the trade-off between “small error” and
“sparse”.
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Motivation: find closest sparse point
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closest point to #(3.5 1.5) with 1-norm constraint

◦←−target point

• Find closest point to target . . . subject to ℓ1 norm constraint.

• As soon as one coordinate reaches zero, it is removed, and the remaining coordinates
are driven to zero.

OptimHK.15.2.12.5 p22 of 50



Motivation: find closest sparse point

-4

-3

-2

-1

 0

 1

 2

 3

 4

-6 -4 -2  0  2  4  6

closest point to #(3.5 1.5) with 1-norm constraint

◦←−
unconstrained
closest point

◦
◦
◦←−closest point s.t. ‖x‖1≤ 2

←−{x : ‖x‖1 = 2}

←−{x : ‖x‖1 = 3}

←−{x : ‖x‖1 = 4}

• As limit on ‖x‖1 is tightened, the coordinates are driven toward zero.

• As soon as one coordinate reaches zero, it is removed, and the remaining coordinates
are driven to zero.

OptimHK.15.2.12.5 p23 of 50



Example: 17 signals with 10 time points
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||x||
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NNZ (scaled)

• As λ grows, the error grows, fill (#non-zeros) shrinks.
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Methods

• All problems are convex.

• Must work exists on software for convex programming problems

• YALMIP is a front end with links to many solver packages (Löfberg, 2004).

• CVX is a free package of convex solvers with easy matlab interface (Grant & Boyd,

2010).

• ADMM is a paradigm for a simple iterative solver especially adapted for very large
but separable problems (Boyd et al., 2011).
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Local Linear Convergence of ADMM

Model QP/LP: min 1/2x
TQx+ cTx s.t. Ax = b, x ≥ 0, (1)

Lagrangian: L(x,y) = 1/2x
TQx+ cTx− yTx− vT (Ax− b), (2)

where y ≥ 0 is the vector of Lagrange multipliers for the inequality constraints
x ≥ 0.

Previous Convergence Theory
• Very abstract theory based on monotone linear operators.

• Recent results are of the form O(k) or O(k2), where k = iteration number.

• Bounds are far from actual behavior.
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Dual Ascent Method

Model QP/LP: min 1/2x
TQx+ cTx s.t. Ax = b, x ≥ 0, (1)

Lagrangian: L(x,y) = 1/2x
TQx+ cTx− yTx− vT (Ax− b), (2)

where y ≥ 0 = Lagrange multipliers for the constraints x ≥ 0.

Primal Problem: minxmaxy L(x,y) : · · · = ∞ when constraints violated.

Dual Problem: maxyminx L(x,y) : boxed expr is relatively easy to solve.

Dual Ascent Method: solve minx L(x,y) in dual problem exactly, take small
gradient ascent steps on dual variable y.
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Split Primal variables into x, z:

min 1/2x
TQx+ cTx+ g(z) s.t. Ax = b, x = z, (3)

where g(z) is the indicator function for the non-negative orthant:

g(z) =

{
0 if z ≥ 0
∞ if any component of z is negative.

.

g(z) is a non-smooth convex function encoding the inequality constraints.

Partially augmented Lagrangian

Lρ(x, z,y) = 1/2x
TQx+ cTx+ g(z) + yT (x− z) + 1/2ρ‖x− z‖22, s.t. Ax = b,

(4)
where y is now the vector of Lagrange multipliers for the additional equality
constraint x− z = 0, ρ is a proximity penalty parameter chosen by the user.
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Splitting

Using the common splitting (Boyd et al., 2011), the ADMM method consists of
three steps: first minimize Lagrangian with respect to x, then with respect to z,
and then perform one ascent step on the Lagrange multipliers u:

1. Set x[k+1] = argminx
1/2x

TQx+ cTx+ 1/2ρx
Tx+ ρxT (u[k] − z[k])

subject to Ax = b

2. Set z[k+1] = argminzg(z) +
1/2ρz

T z− ρzT (x[k+1] + u[k])

3. Set u[k+1] = u[k] +∇uLρ(x
[k+1], z[k+1],u).

(5)
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Closed Form

Each step of Alg I can be solved in closed form, leading to the ADMM iteration
(with no acceleration) consisting of the following steps repeated until convergence,
where z[k],u[k] denote the vectors from the previous pass, and ρ is a given fixed
proximity penalty:

Algorithm 1: One Pass of ADMM

Start with z[k],u[k].

1. Solve

(
Q+ ρI AT

A 0

)(
x[k+1]

ν

)
=

(
ρ(z[k] − u[k])− c

b

)
for x[k+1],ν.

2. Set z[k+1] = max{0,x[k+1] + u[k]} (where “max” is taken elementwise).

3. Set u[k+1] = u[k] + x[k+1] − z[k+1].

Result is z[k+1],u[k+1] for next pass.
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Sample ADMM Convergence Trace on an LP
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Complementarity Property

Lemma 1. After every pass, the vectors z[k+1],u[k+1] satisfy

a. z[k+1] ≥ 0,

b. u[k+1] ≤ 0,

c. z
[k+1]
i · u[k+1]

i = 0, ∀i (a complementarity condition).

d. x[k+1] satisfies the equality constraints Ax[k+1] = b.

• Combine into a single vector w = z− u.

• Use auxiliary flag vector d to indicate whether wi = zi or wu = −ui.

• Previous iteration is linear in w as long as d is fixed.
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ADMM as a Matrix Recurrence

Combine formulas

x[k+1] = Nw[k] +

h︷ ︸︸ ︷
RATSb−Nc/ρ

wtmp = x[k+1] − 1/2(I−D[k])w[k]

D[k+1] = Diag(sign(wtmp))

w[k+1] = |wtmp| = D[k+1]wtmp

with R = (Q/ρ+ I)−1 is the resolvent of Q, S = (ARAT )−1 is the inverse of the
Schur complement, and N = R−RATSAR.
to get the following iteration
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ADMM as a Linear Recurrence
Algorithm 3: One Pass of Reduced ADMM

Start with w[k], D[k].
0. wtmp = (N − 1/2(I−D[k]))w[k] + h

1. D[k+1] = Diag(sign(wtmp))

2. w[k+1] = D[k+1]wtmp

Result is w[k+1], D[k+1] for next pass.
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Spectral Properties
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Matrix Recurrence.

Step 2 of Algorithm 3 is written as follows:

(
w[k+1]

1

)
= M

[k]
aug

(
w[k]

1

)
=

(
M [k] D[k+1]h
0 1

)(
w[k]

1

)

=

(
D[k+1](N − 1/2(I−D[k])) D[k+1]h

0 1

)(
w[k]

1

)
,

(6)

where h = RATSb−Nc/ρ

Converges to eigenvector: if eigenvector is all non-negative, get solution to original
QP/LP. Otherwise, the flag matrix (D) will change to yield a new operator.

OptimHK.15.2.12.5 p37 of 50



Regimes based on spectral properties.
If D[k+1] = D[k]:

[a] The spectral radius of M [k] is strictly less than 1. If close enough to the optimal
solution (if it exists), the result is linear convergence to that solution.

[b] M [k] has an eigenvalue equal to 1 which results in a 2 × 2 Jordan block for

M
[k]
aug. The process tends to a constant step, either diverging, or driving some

component negative, resulting in a change in the operator M [k].

[c] M [k] has an eigenvalue equal to 1, but M
[k]
aug still has no non-diagonal Jordan

block for eigenvalue 1; If close enough to the optimal solution (if it exists), the
result is linear convergence to that solution.

If D[k+1] 6= D[k], then we transition to a new operator:

[d] M [k] has have an eigenvalue of absolute value 1, but not equal to 1. This can
occur when the iteration transitions to a new set of active constraints.
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Example: A Simple Basis Pursuit Problem

min
x
‖x‖1 subject to Ax = b, (7)

or a soft variation allowing for noise (similar to LASSO)

min
x
‖Ax− b‖22 subject to ‖x‖1 ≤ tol, (8)

where the elements of A,b are generated independently by a uniform distribution
over [−1,+1]. A is 20× 40.

Problem (8) is a model to find a sparse best fit, with a trade-off between goodness
of fit and sparsity.
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ADMM applied to the Basis Pursuit LP
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ADMM applied to the LASSO QP
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ADMM Iteration Operator: Spectrum – LASSO
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◦ = eigenvalues for LP in final regime.
∗ = eigenvalues for QP.
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Toy Example

Simple resource allocation model:
• x1 = rate of cheap process (e.g. fermentation),
• x2 = rate of costly process (e.g. respiration).

maximizex +2x1+30x2 (desired end product production)
subject to x1 +x2 ≤ x0,max (limit on raw material)

2x1 +50x2 ≤ 200 (internal capacity limit)
x1 ≥ 0 x2 ≥ 0 (irreversibility of reactions)

Put into standard form:

minimizex −2x1− 30x2 (desired end product production)
subject to x1 +x2 + x3 = x0,max (limit on raw material)

2x1 +50x2 + x4 = 200 (internal capacity limit)
x1 ≥ 0 x2 ≥ 0 (irreversibility of reactions)
x3 ≥ 0 x4 ≥ 0 (slack variables)

(9)
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Typical Convergence Behavior v0,max = 99.9
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ADMM on Example 1: typical behavior. Curves: A: error ‖(z[k]−u[k])−(z∗−u∗)‖2.
B: ‖(z[k] − u[k]) − (z[k−1] − u[k−1])‖2. C: ‖(x[k] − z[k])‖2. D: ‖(z[k] − z[k−1])‖2/10
(D is scaled by 1/10 just to separate it from the rest).
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Second Toy Example v0,max = 3.99
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ADMM on Example 2: slow linear convergence.

Second largest eigenvalue = σ(M) = 0.999896. convergence is very slow:
−1/ log10(σ(M)) = 22135 iterations needed per decimal digit of accuracy.
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Convergence Of Second Toy Example
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Convergence behavior of first two components of w[k] for Example 2, showing the
initial straight line behavior (initial regime [b]) leading to the spiral (final regime
[a]).
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Alternative Iterations for LASSO
• Model Problem minx f(x) + λ‖x‖1.
• ISTA: xISTA

k+1 = Shrλ/c
(
xk − 1/c∇f(x)

)
, where c satisfies cI − f ′′(x) is pos.def.

• FISTA: xFISTA
k+1 = xISTA

k + tk−1
tk+1

(xISTA
k − xk−1), where tk+1 = (1+

√
1 + 4t2k)/2.

• Here Shrσ(x) = x− σsign(x) if |x| > σ, else 0.

• Coordinate descent: like Gauss-Seidel on min f(x)+λeTx, where e = {0,±1}n1 .
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Conclusions

• Many different types of data, many highly unstructured.

• Extracting patterns or connections in data involves somehow reducing the volume
of data one must look at.

• Data Reduction is an old paradigm that has been updated for the modern digital
age.

• Methods discussed here started with classical PCA - SVD based approaches (e.g.,
assuming independent gaussian noise).

• Connections and pair-wise correlations modeled by graphs.

• Graphs modeled by random walks, counting subgraphs, min-cut/max-flow, models,
. . ..

• Sparse representations: wide variety of sparse approximations: low fill, short basis,
non-negative basis, non-squared loss function, count violations of some constraints,
low rank (nuclear norm = L1-norm on the singular values), . . ..

• Leads to need for scalable solvers for very large convex programs.
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FUTURE WORK

ADMM ⇐⇒ power method with different operators, changing with regime. Replace
power method with faster eigensolver.

Conduct similar analysis on other patterns (e.g. LASSO).

Discover relation between eigenvalues controlling convergence rate and original QP/LP.
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THANK YOU!
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