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Abstract

In this paper, we present a novel way of model
reduction based on matrix pencil theory. Using only orthogonal
transformations on state space models, we construct an
approximation to the smallest perturbation to the coefficients that
yields a lower order system. We derive some bounds on the
stability of the resulting lower order system. We illustrate our
method with an example arising from large flexible space
structures.

1. Introduction

Model reduction refers to the approximation of a linear
system model by a lower order model such that certain criteria
are met. The motivations for model reduction are mainly
economical since low order models can be analyzed, simulated
or built at a much lower cost than high order models. Numerous
papers have been written on model reduction. Reduction by

modal expansion appears to be one of the oldest approaches.

However, reduction by balanced realization [7] and by optimal
Hankel norm approximation [9] as well as their weighted
versions [8,10] have now found widespread acceptance among
control engineers. In [15] we presented a novel constructive way
of implementing model reduction based on some recent results
in matrix pencil theory [1]. In this paper, we present the
procedure for effecting model order reduction by truncating
multiple states.

We now state some definitions and characterizations of
matrix pencils [1,3,4,5]. LeA andB be twon x p matrices. The
set of all matrices of the formA(— AB), whereA is any complex
number is said to be a matrix pencil of dimensiox p. Two
matrix pencils A, — AB,) and @, — AB,) of dimensionn x p are
said to be strictly equivalent when there exist constant invertible
matricesP andQ of dimensionn x n andp x p respectively such
that P(A, — AB)Q = (A, — AB,). If (A — AB) is always full rank
for any value ofA, then it is said to be non-deficient.

We shall consider the standard finite dimensional linear
time invariant (FDLTI) continuous time system described by

X = Fx + Gu; y = Hx, 1)

whereF O R*?, G OR*™ andH O R *P as the full order
model. We have omitted the feedthrough matrix in the state
space model description because it remains invariant in the
model reduction scheme proposed in this paper. If the full order
model is not strictly proper, the method and analysis outlined in
this paper can still be applied to the strictly proper part of the
model. We shall assume that the system described by (1) is
stable, i.e., the real part of all the eigenvalue§ @ strictly less
than zero. We want to remark that this is a very mild assumption
because the transfer function matXs) of any FDLTI system
can be decomposed &%s) = G4(s) + Gy(s), whereGg(s) is the
transfer function matrix of the stable part am@,(s) is the
transfer function matrix of the unstable part. One can then
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proceed with the model order reduction of the stable part. We
shall also assume that the state space realization described by (1)
is minimal. According to the PBH rank test (see e.g., [4]), the
dynamical system described by (1) is controllable if and only if
the matrix pencil F-AlI|G] = [F|G] = A[1]|0], has full rank

for any complex valua.

In [1], the sensitivity of an algebraic (Kronecker)
structure of rectangular matrix pencils to perturbations in the
coefficients was examined and eigenvalue perturbation bounds
in the spirit of Bauer-Fike was used to develop computational
upper and lower bounds on the distance from a given pencil to
one with a qualitatively different Kronecker structure. In this
paper, we exploit the bounds derived in [1] for estimating the
upper bound on the distance to a deficient pencil [1], to
implement a model reduction scheme.

The rest of the paper is organized as follows. In
Section 2, we review the background material on the
computation of the nearest distance to a deficient pencil as
espoused in [1]. In Section 3, we discuss how the ideas in
Section 2 can be employed in a model reduction. In Section 4
we present an algorithm for model reduction and make some
remarks on how it can be modified to suit the particular needs
of the designer. We also make some remarks on the stability of
the reduced order model. In Section 5 we derive an expression
for the model reduction error in terms of the full order model
and the perturbation of the matrix pencil that leads to a deficient
pencil. For a special case of our method, the reduced order
model is stable so long as the full order model is stable. For this
special case, we derive an upper bound onHheorm of the
model reduction error. In Section 6, we present a worked
example. Finally, in Section 7, we make some concluding
remarks.

2. Computation of Deficient Pencil

In this section we discuss two issues of importance to
the reduction scheme as they were espoused in [1]. The first one
concerns the problem of determining whether a given rectangular
pencil is deficient or not. Specifically, given anx p pencil A
- AB), with n > p, determine whether or noA(— AB) loses
rank for anyA, including possiblyA infinite. By augmentingA
andB matrices with arbitrary x (n — p) matricesC, D. We can
examine the squane x n generalized eigenvalue problem

[AC]v = A[B,D]v . @)

In [1] two choices were proposed for the selectionCoéndD.
One of these choices is to sel€ttand D as orthonormal basis
of the space orthogonal to the columnsfoéndB. This choice
has the effect of limiting the increase to the condition numbers
of [A,C] and [B,D] with respect to inversion. Thus in the caBe
=[1,,0I", D is chosen a® = [0,l, ] to turn the problem into an
ordinary eigenvalue problem.

The second issue concerns the problem of computing
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the upper bound on the distance to a deficient pencil.
Specifically, consider a non-deficientx p pencil (A — AB). In

this case, we know thaB has full rank. We would like to
estimate the size of the perturbati@to the matrixA that is
needed to obtain a deficient pencA{E-AB). In [2], it was
shown that the smallest perturbatidh can be obtained by
solving the minimization problem

(AiSB) ’ (3)

ming,_ ;.
whereo,,;,(M) denotes the smallest singular value of the matrix
M, ands varies over the entire complex plane. If we denote by
¢ and s the minimum in (3) and value of achieving that
minimum, respectively, thedE| = ¢”. In [1], it was shown
that a simpler scheme which provides both a good estimate for
|[El and for that value ofs that yields the minimum in (3)
involves solving the eigenvalue problem (2). Suppose we
partition the vectov asv' = [x",y'], wherex is a p-vector, and
y is a (—p)-vector. LetA, v, := [x"y'", i = 1~ be the
generalized eigenvalues and eigenvectors for (2). For each
have the eigenvalue equatioi,]v; = A,[B,D]v;, substituting for
V,, the eigenvalue equation can be rewrittenaB ¢ A)x, = (C
- AD)y.. For eachi define the residuat; asr, := (A — AB)X;
and the perturbatiok; as

T T T

- X X X X
" =(\B-A___ -(C-AD RANN (4)
1112 I 11

E := .
I 112

The norm on E, can be simply computed adE| =
[r.l./I%[,. Note thatEx = -r; and thus the expression for
the residual become#\¢E—AB)x = 0. Now, A+E,—AB) is a
deficient pencil, losing rank exactly at= A, for eachi. Let o;,

u, w, be, respectively, the smallest singular value and the
corresponding left and right singular vectors &f £ A,B) for
eachi. Then E' := —ouw is another smaller perturbation
yielding a deficient pencil. By taking norms of (4), the following
bounds are obtained for the perturbation&'| < [|E| <
[(C-AD)yil/llxl. We also have the following error bound
from [1]. If E denotes that perturbation with the smallest norm
yielding a deficient pencil, thetE| := ¢" satisfies

o'<min|E |=ming,, (A-X, B)sminllEillzminW(S)
The importance of (5) was noted and stated as follows.
Proposition 1 [1]: Let (A — AB) be ann x p pencil, withn > p.
Let C, D be two arbitrary full-rankn x (n — p) matrices. Then
the smallest perturbatioi such thatA+E-AB is a deficient
pencil satisfies the bound (5), whekg v, i = 1,-n are the
eigenpairs of the generalized eigenproblem (2) wrid defined
by v := [xTyT"

3. Application to Model Reduction
Our goal is to use the results stated in the previous section to
implement a model reduction scheme. This is done by
constructing a matrix pencil based on the PBH test for
controllability or observability. The matrix pencil so constructed
is augmented withC" and 'D" matrices as described in Section
2. One then proceeds to solve the eigenvalue problem which is
(2). Next, the norm of the perturbationgg|, i,-,n, are
computed, and sorted in increasing order. In [14,15] we showed
how to effect model order reduction whé&his formed from a
real eigenpair and only one state is truncated at a time. In
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general, solving the eigenvalue equation (2) may yield real
eigenvalues and complex eigenvalues which occur as complex
conjugates. When the perturbation matEx corresponds to a
complex eigenvalue then the reduction scheme in [15] needs be
modified so that the two states corresponding to a pair of
complex eigenvalues are simultaneously truncated. Also, for a
large order system, it will be more economical to reduce the
order of the system by multiple states instead of a single state
each time the matrix pencil is perturbed. In this section, we show
how to extend the method outlined in [15] to handle both
situations. Specifically, suppose we want to trunddtenodes
from the full order model. Then, using the eigenpaks ¥), i
= 1,~ N corresponding to the firsN smallest values ofEl,
one constructs a new perturbation matEy such that A + Ej
- AB) is a deficient pencil, losing rank exactly at= A, for
eachi = 1,~ N. The resulting uncontrollable or unobservable
states are then truncated to yield a reduced order model.
31 Model Order Reduction

Here, we shall assume that theand B matrices of the
matrix pencil @ — AB) are defined byA = [F,G]", B = [I,,0]",
where the underlying matricésandG are given by (1), i.e., we
form the pencil using controllability criteria. We shall assume
that we want to truncat® modes which correspond to th¢
smallest|E | values. From the eigenvaluds = a; + jf3;, with
the corresponding eigenvectors= [x™,y"", i = 1, N, we form
the matricesT, V := [W',U"]" as follows:

=3

T := diag{T,, T,,~, T}, with T := ;

i I3i
B o
W := [Rex,), Im(x,), REX,), IM(x,) -, Rex,), Im(x)] ;

uU:= [Rdyl)r Im(yl), quz)r Im(yz) "y RdyN): Im(yN)] .

That is the columns oW form a real basis for the invariant
subspace corresponding to the eigenvalu€k ifihe eigenspace
equation becomes:A[C]V = VT. We want to remark that
actually any basis for the invariant subspace corresponding to the
N modes to truncate will do, whether or not they are complex.
In such a case,T may be full but will have the same
eigenvalues. The following development carries through almost
unchanged. The eigenspace equation simplifies AW -
[(WDT,0]" = [0,(WT)"]" - CU. Define the residuaR asR :
[0,(WT)T" - CU; and fromE\W + R = 0, defineE, asE, :=
-R(W'W)™W'. The expression for the residudlbecomes: A +
EJW = AW - [(WT)",0]". Suppose the perturbation matf is
partitioned asE,” = [E,E,], where E; and E, have the
dimensions ofF and G respectively. Substituting for th& and

E, matrices, we obtain
T+E TD

peerd, A @

6T-E"H 00 O
The top part of (7) yieldsK + E,)"W = WT. Now choose an
orthonormalQ such thaQW= [S',0]", whereSis a square upper
triangular matrix. Thus when the top part of (7) is premultiplied
by Q, we haveQ(F+E,)’Q"QW = QWT upon substituting for
QW the equation becomesQ(F+E,)Q'[S,0]" = [(ST)",0]".
Similarly, the bottom part of (7) yields@ + E,)'Q'QW = 0;
upon substituting foQW and transposing, we obtai§[0]Q(G
+ E,) = 0. The perturbed system can be written as:

[
I |
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z=Q(F+E)Q'z+Q(G+E)u; y=-HQz. ®

For notational simplicity denot®(F+E,)Q", Q(G+E,), HQ' by
F, G, andH respectively. The perturbed system described by (8)
can be written in partitioned form as

0 o 0
%u %11 D%l BJ {,q A } 5 ©)
&0 cispViRailis

%21 22[] il
wherez, represents the uncontrollable states (if bheigenpairs
used to construdg, are all complex, then clearly, represents

2N states). If the uncontrollable statgsare stable, they can be
directly truncated to yield a reduced order model:
z, = F,z, + Gu; y=Hyz .

One can also use observability criteria by doing exactly
the same reduction on the dual syster® F'x + H™u; y = G'x.
The trace of the controllability and observability grammians give
a measure of how "controllable” or how "observable" the model
is in its current state space realization. Denot&pyhe norm of
the perturbation to the input matri& that will render the
realization uncontrollable, ankl, the norm of the perturbation
to the output matrixH that will render the same realization
unobservable. We shall also denote the controllability and
observability grammians bW, and W, respectively. It is
desirable to effect the model reduction by applying the smallest
possible perturbation. If trac@(,,,) < tracefV,,) then we
normally expect to have. < K, in that case the controllability
method should be used. On the other hand if thEg() >
traceWV,,) then we normally expect to hawg > K, and in that
case the observability method should be used.

4. Matrix Pencil Algorithm for Model Reduction

Given a FDLTI system as described by (1), a reduced order
model can be computed using the following algorithm.
Step 1: Compute tracél/,,.,) and trace{\V,,). If tracef\,,,,) <
traceWV,,) then use the PBH controllability test to form the
matrix pencil & — AB) where A and B are defined byA =
[F.G]", B = [I,,0]". Otherwise use the PBH observability test to
form the matrix pencilA — AB). Augment the pencil witlC and
D matrices as described in Section 2.
Step 2: Solve the corresponding eigenvalue problem which is
(2). Next, computelE|, i = 1,~- n, and sort them in increasing

(10)

order. Make a decision on the number of states to be truncated.

Using the eigenpairs\(, v;), i = 1, N corresponding to the first

N smallest values of Ej|, construct a new perturbation matrix
E, as defined in Section 3.

Step 3: Extract the perturbed system from the matbix+ E,,

and then apply the appropriate orthonormal mat@xto the
perturbed system to reveal the uncontrollable or unobservable
states. Verify the stability of the perturbed system. A reduced
order model can be obtained by direct truncation if the resulting
uncontrollable or unobservable states are stable.

Remarks

1 The algorithm outlined above may be modified to suit
particular needs of the designer. For example, if thdtg() <
tracefV,,) but close in value, one may use the controllability
method to truncate a few states and then implement the
observability method to truncate other states.

2. The algorithm proposed above could be extended to
include frequency dependent weightings. The modes of the full
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order model can be weighted differently and a different criterion
can be used for truncation. For example, one could use a
weighted average of the existing measure and the maximum
singular values of the transfer function matrix. For simplicity, we
have not done that here.
3. The method presented in this paper involves using an
orthonormal matrixQ to effect a similarity transformation.
Model reduction by optimal Hankel norm reduction [9] and by
truncation by balanced realization [7] also involve using a matrix
T to effect a similarity transformation, however, tiieused in
[7,9] is not in general an orthonormal matrix. As is well known,
use of non-orthonormal (or non-unitary) transformation can lead
to worsening of the condition numbers and loss of accuracy of
the system matrices.
4, A guestion of great importance in any model reduction
scheme is whether the reduced order model obtained from a
stable full order model is stable or not. In our scheme, this
amounts to asking whether the real part of all the eigenvalues of
Q(F+E,)Q" are strictly less than zero. Sincé+E,) and
Q(F+E,)Q" are similar matrices, it will suffice to consider the
eigenvalues off+E,). We shall focus on a reduced order model
obtained by applying the controllability criteria, however the
discussions concerning the stability &THE,) are equally valid
for a reduced order model obtained from the observability
criteria. In order to form the perturbation matri, we first
solve the eigenvalue equatioA,Clv, = A[B,D]v,, whereA is
formed asA = [F,G]", B = [I,,0]" and D set toD =[0I, ]" to
turn the problem into an ordinary eigenvalue problem. We also
selectC as orthonormal basis of the space orthogonal to the
columns of A. Suppose, we partition the matrig as C" =
[C,",C,"], whereC, andC, are of dimensiong x (n — p) and (1
- p) x (n — p) respectively; and also introduce the parameter
by writing the matrixC as C" = [aC,",C,"], with a O [0,1].
Whena = 0, there is no perturbation of tHe matrix. In that
case the reduced order model remains stable so long as the
original model is stable. Ast increases, the perturbatidf to
F is no longer zero but varies continuously with Therefore
stability of (F + E,) is maintained for small values ofi.
Application of the Bauer-Fike theorem [6] gives us the following
result. Let K be the condition number of the matrix of
eigenvectors oF, andd the distance to the imaginary axis of the
eigenvalue ofF which is closest to the imaginary axis. Then
stability of (F + E,) is guaranteed as long &§E,| < d. The
reader is referred to [14] for details. In practice we found it just
sufficed to verify the stability of the perturbed system.
5. Another issue of concern is that of the- p spurious
eigenvalues introduced when the eigenvalue equation is solved.
These spurious eigenvalues arise because the underlying
dynamical system of the matrix pencil is of orgewhereas the
eigenvalue equation yieldseigenvalues. Note that when= 0,
the spurious eigenvalues pose no problem because the wector
= 0, thus|E| = « for the spurious eigenvalues and hence can
be ignored in the model reduction process. However, when
0, the value of |E| for the spurious roots is finite; but
generally,|E| for the spurious eigenvalues will be much larger
than for the non-spurious eigenvalues. Space does not permit an
extensive discussion here, but the reader is referred to [14] for
a detailed explanation.
5. Model Reduction Error
In this section we derive expressions for the model
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reduction error. We consider two cases which are ) 0, and
2) a # 0. Whena = 0, thenE, is a zero matrix, and it is only
the G matrix which is perturbed byE,. If we apply the
orthonormal matrixQ from Section 3 to the state space
representation of the full order modéi(s) (i.e., (1)), we have
the following: z = QFQ'z + QGUY y = HQ"z For notational
simplicity, denote QFQ", QG, and HQ" by F, ', and H
respectively; we shall also denoteQE,) by E.. Then it can be
shown that the model reduction erri(s) = G(s) — G,(9) is
given by:z=Fz+ Ecu; y = Hz. We now seek to compute an
upper bound on thél, norm of the model erroK(s) whena =
0. Using equation (5.35) from [11] to compute tRg norm of
G(s) and K(s) we have: |GI,> = trace("W,,I); IK|,?> =
traceE."W,,E.) where W, is the observability grammian of
both G(s) andK(s). Using cholesky factorization o, it can
be shown that tracB('W, . E.) < tracefW,,)|E.|~ Now
|Ecl: is small sinceE. = -QE,, andE, is just the perturbation
we are committing to arrive at the uncontrollable system.

Roughly, the term trac¥{,,) measures the energy that
can be retrieved at the output from the system states) @ngd
measures the energy that can be retrieved at the output from a
unit impulse input. We may define the ratiog,,, :=
\/(traceWobs))/”G”; poutput = \/(traceWcomr))/”GH‘ where pinput
roughly measures thaput transmission ratioof energy, and
Pourpue FOUgly measures theutput transmission ratiof energy.
These ratios are properties inherent to a given state-space
realization, regardless of whatever model reduction method is
used. Using the ratip,,,, we may bound the norm of the error
transfer functionK(s) as [K| < p;.IGllIEl: We could
also apply an observability perturbation to the outputs, obtaining
a reduced order modér(s) and error transfer functiol,{s) =
G(s) - G,(s). Working through the same development, we could
obtain the bound Kyl < Poupud GlIEols where E, =
-E,Q", andE, is the perturbation to the output matik

Whena # 0 then in general the eigenvalues of the full
order model are different from the eigenvalues of the reduced
order model and we do not have any simple way of expressing
the model error dynamics. However we can augment the states
x of the full order model with the states of the reduced order
model to form a composite system with statez,j. From (1)
and (10) we form the state space representation for the model
reduction erroiK(s) as

%D
~ 100

UE olyH O
g OOy =H -A
49 el s M

For botha = 0 anda # 0, the state space expression for the
model reduction error is in terms of the full order model, the
perturbationE, and an orthonormal matriQ. The sup-norm of
the model reduction error can be computed using an iteration
method such as in [12].
6. Numerical Results

We applied the matrix pencil reduction algorithm
outlined in Section 4 with the parameter= 1. The example is
a MIMO model of the "CSI evolutionary" structure [13]; the
model which was used in this paper was furnished by Prof. Gary
Balas. The full order model consists of 26 states, 8 inputs and 10
outputs.

(11)

Table 1 shows the norm of the perturbations and the
corresponding eigenvalues &,C]. Note the gap in the norm of
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the perturbations corresponding to thé"2td 27" eigenvalues

in the table. We thus identify all the eigenvalues whogg is
greater than or equal to 1.4207 as spurious eigenvalues. The
eigenpair X,,v;) was used to generatg, for reduced order
model of 24 states, and the pairs\{{/,),(A;,v;)} were used for

i IEN AAC]
1,2 0.0103 | -0.0215 #j21.4750
3,4 0.0759 | -0.0159 +j15.8949
5,6 0.1200 | -0.0142 £j14.1052
25,26 | 0.4860 | -0.1369 %j1.0555
27 1.4207 | 0.9980
34 4.1977 | 1.0000

Table 1. ||E] and eigenvalues of [A,C] sorted H¥|.

Max & Min SV"s of Frequency Response

Singular Values

10340‘1 100 10t 102
Freq. rad/s
Figurel Max & Min SV’s: Matrix Pencil Approach
(dashed); Full order model (solid).

Max & Min SV"s of Frequency Response

Singular Values

wfm 100 10t 102

Freq. rad/s
Figure2 Max & Min SV's: Full order model (solid);
Balanced Realization (dashed); Hankel Norm (dashdot).

reduced order model of 22 states. For reduced order models of
order 24 and 22 there is no noticeable difference between
singular values plot of the original and the reduced order models.
The eigenpairs §;,vy), (A3,V3), (As,Vs)} were used to generatg,

for reduced order 20 model. Figure 1 is a plot of the maximum
and minimum singular values versus frequency of the reduced
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order 20 model obtained using the matrix pencil approach. As

can be seen from Figure 1, for the reduced order 20 model, the

singular values plots are almost identical with those of the full
order model of 26 states.

We next compared the performance of the matrix
pencil reduction scheme with 1) truncation by balanced
realization [7], and 2) optimal Hankel norm reduction [9]
methods. Figure 2 is a plot of the maximum and minimum

singular values versus frequency of the reduced order models of
20 states using the optimal Hankel norm and balanced realization

methods. The model from balanced realization gives a good fit
at intermediate and high frequencies but a very poor fit at low
frequencies. However, we see that the optimal Hankel norm
method gives the worst fit of the singular values.

As is well known, the SISO notion of phase is not
easily generalized for the MIMO system. However, in some
applications, phase information of the individual transfer
functions are important. We thus decided to verify how closely
the Bode plots of the individual transfer functions of the reduced
order models follow that of the full order model. We arbitrarily
picked the transfer function between the first output and the first
input, i.e., the (1,1) entry for this purpose. Figure 3 is the Bode
magnitude and phase plots of the (1,1) transfer function for

reduced order 20 model. From Figure 3 we see that the matrix
pencil approach approximates both the phase and magnitude of

the full order model much better than the balanced truncation
method.
7. Conclusion
In this paper we have presented a novel way of model

reduction based on matrix pencil theory. We have given some

initial results on the stability of the reduced order model in terms
of a perturbation applied to the system matfixHowever, for
the special case ai = 0, the reduced order model is always

stable so long as the full order model is. We have also derived

an upper bound on thel, norm of the model reduction error
whena = 0. The computational cost of the matrix pencil method
is comparable to other methods which require balanced

realization. Some of the advantages of the matrix pencil method
over the balanced realization and optimal Hankel norm methods

are: 1) there is no need to transform the full order model into

balanced realization, and 2) the matrix pencil method uses only

orthonormal transformations.
We have given an example to illustrate features of the
method. The result indicates that the matrix pencil may yield

models that are much better approximations than those from the

optimal Hankel norm method. The models from the matrix
pencil method tend to follow the phase of the full order model

better than models from the balanced realization method, and are

otherwise comparable.
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Figure 3 Bode Plots of (1,1) Transfer Function: Full order
model (solid); Matrix Pencil (dashed); Balanced Realization
(dash-dot).



