LOCAL LINEAR CONVERGENCE OF THE ALTERNATING
DIRECTION METHOD OF MULTIPLIERS ON QUADRATIC OR
LINEAR PROGRAMS*
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Abstract. We introduce a novel matrix recurrence yielding a new spectral analysis of the local
transient convergence behavior of the Alternating Direction Method of Multipliers (ADMM), for the
particular case of a quadratic program or a linear program. We identify a particular combination
of vector iterates whose convergence can be analyzed via a spectral analysis. The theory predicts
that ADMM should go through up to four convergence regimes, such as constant step convergence or
linear convergence, ending with the latter when close enough to the optimal solution if the optimal
solution is unique and satisfies strict complementarity.
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1. Introduction. Very large-scale convex optimization problems arise in many
applications from economics to signal processing to machine learning and data mining,
and the solution of such problems requires methods that can scale to large sizes. In
[4], there is an excellent survey of applications for which the Alternating Direction
Method of Multipliers (ADMM) has been found to be very effective and scalable. In
this paper we introduce a novel spectral analysis of the local transient convergence
behavior of the ADMM method on a model quadratic or linear program (QP or LP):

(1.1) min YoxTQx + cx s.t. Ax =b, x >0,

where @) is symmetric positive semi-definite, and @) = 0 for a linear program.

The ADMM method is a specific example out of a class of proximal Douglas-
Rachford splitting methods [6, 11, 13, 19, 22, 23, 36]. This class of methods has seen
a recent explosion of interest because of the wide applicability to problems in machine
learning, signal processing, compression, and many other areas [1, 4, 5, 7, 9, 15, 16, 31,
32, 46, 50, 51, 53, 56, 57]. The ADMM method and variations have been found to be
particularly suitable for very large sparse or separable problems [2, 3, 17, 40, 41, 55].

Existing convergence results for ADMM include bounds on the sum of the norms
of differences between consecutive iterates during the entire course of the algorithm,
yielding a guarantee of convergence for any initial vector (so-called global conver-
gence), but without specific bounds on the rate of convergence [4, 13, 21, 23, 38]. A
later paper [12] gave linear convergence bounds for linear programs, depending on a
variety of quantities including a bound on the largest iterate encountered during the
iteration. Recently, a global linear convergence result in a semi-norm for a strictly
convex objective function (e.g. (1.1) with @ strictly positive definite) was given in [10].
A linear convergence bound for sufficiently small step size was shown in [33]. These
bounds were global bounds applying from beginning to end, while ignoring the de-
tailed transient behavior encountered during the iteration process. There have been a
variety of results showing global sublinear convergence rates (O(1/k) or O(1/k?) where
k is the iteration number) under certain assumptions, following the seminal work of
Nesterov [42, 43]. Since our approach and ultimate goals are completely different,

*Copyright 2013, SIAM - all rights reserved
T University of Minnesota, Minneapolis, MN 55455 USA

1



2 DANIEL BOLEY

here we limit ourselves to referring the reader to [1, 24, 25, 26, 29, 30, 39, 44, 45, 54],
or to recent results for splitting into more than two parts [14, 49].

In contrast to these results, we do not establish a global convergence rate, but
rather establish bounds on the local behavior of a specific variation of the alternating
direction method during the course of the iteration, showing that linear convergence
is reached eventually, but not necessarily from the beginning. We show by example
that linear convergence can still be very slow in practice. Like [1] we analyze the
operator that maps the iterate at one pass to the iterate at the next pass, but unlike
[1] we limit ourselves to problems in which we can write this operator explicitly as a
matrix amenable to a detailed spectral analysis, i.e. problems that can be expressed as
a QP or LP. In [30], the authors explicitly handle general linear equality constraints,
and examine the linear mapping from the iterate at one pass to the iterate in the
next pass as a matrix operator, but keep the primal and dual variables separate. In
our analysis, we carry the ADMM iteration using a novel vector recombination of the
original primal and dual iterates and examine the linear mapping on this particular
combination.

In this paper we restrict our attention to linear and quadratic programs, as op-
posed to general convex problems, and examine a particular splitting in which the
inequality and equality constraints are separated. We focus on the less ambitious
problem of local convergence, as opposed to global convergence. The general model
(1.1) subsumes many special cases of specific interest such a simple sparse basis pur-
suit problem [5, 8] min ||x||; s.t. Ax = b, though the splitting one would use for these
special problems would be different from the splitting used on the general model (1.1).
The details of our analysis is very much tied to the specific splitting, hence we focus
on the generic LP/QP using a standard splitting.

We analyze the local behavior of ADMM as it passes through several phases or
“regimes,” treating each regime separately. We represent the ADMM iteration in a
novel way as a matrix recurrence and apply a spectral analysis on this recurrence to
characterize the possible convergence regimes one can encounter during the course of
the iteration. Under normal circumstances, the theory predicts that ADMM should
pass through several stages or “regimes” of four different types, some of which consist
of taking constant steps, but finally reaching a regime of linear convergence when
close enough to the optimal solution. Our theory is a local convergence result, not
a global convergence theory. It says little about how long it might take to reach the
final “linear convergence” regime, and examples suggest this could be made arbitrarily
long. The theory does suggest that any acceleration scheme would be more effective if
it were adjusted on the fly to take account of the particular regime currently in effect.

Unless otherwise specified, all vectors and matrices are real, and all vector and
matrix norms are the ¢5 norms (e.g., the largest singular value for a matrix). For real
symmetric matrices, the matrix 2-norm is the same as the spectral radius (largest
absolute value of any eigenvalue), hence we use those interchangeably for symmetric
matrices. In section 6 we use some other norms, described therein. In all cases
the matrix p-norm is the norm induced by the corresponding vector norm: |A|l, =
max|y|,—1 |[AV]|, (called matriz operator norms). We use the notation o to denote

the spectral radius because the usual notation “p” is used here for the proximity
parameter.

The rest of this paper is organized as follows. We develop the ADMM iteration
for (1.1) in section 2, give our recombination of the vector iterates in section 3, and
show how this leads to a matrix recurrence in section 4. We show how the spectral
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properties of the matrix recurrence is reflected the local behavior of ADMM in general
terms in section 5 and then more specifically for the case of a unique solution in section
6. The spectral properties are used to analyze over-relaxed ADMM in section 7 and
to analyze a few illustrative examples in section 8, leading to some conclusions in
section 9.

2. ADMM Iteration. The Alternating Direction Method of Multipliers is con-
structed by splitting the primal x variables into two separate variables such that the
minimum with respect to each individual variable can be easily computed, and then
imposing an equality constraint between the two variables. A common splitting for
(1.1) is to use variables x satisfying the equality constraints and z satisfying the in-
equality constraints, together with the constraint x = z (see all the details in, e.g.,
[4]). The augmented Lagrangian for the resulting optimization problem is then

(2.1) Ly(x,2,y) = Yox"Qx+c"x+g(z) +y" (x —2z) + Yop|x — 2|3, st.Ax=b,

where y is the vector of Lagrange multipliers for the additional constraint x—z = 0, p
is a proximity penalty parameter chosen by the user, and g(z) is the indicator function
for the non-negative orthant:

(2) = 0 ifz>0
9\%) = oo if any component of z is negative.

The ADMM method is based on finding the critical points for £,(x,z,y), though it
is common to rewrite this Lagrangian in terms of scaled dual variables u=1y/p [4]:

(2.2) £,(x,2,1) = Yox" Qx+"x + g(2) + Yopllx — 2+ ul3 — Yopllul3, st. Ax = b,

Using the common splitting [4], the ADMM method for (1.1) consists of three steps:
first minimize (2.2) with respect to x, then with respect to z, and then perform one
ascent step on the Lagrange multipliers u:

L. Set xFU = argmin YoxTQx + cTx + YppxTx + pxT (ulF — zM)
subject to Ax =b
(2.3) 2. Set zI"U = argmin,g(z) + Yopz'z — pz (xlF+1 4 ulk)
3. Set ulttll = ulfl 4+ v, L, (xFH gl ).

We will use the notation ul¥l, ul**+1! to denote the iterates at the beginning and end
of the k-th pass, respectively, when necessary.

Each step of (2.3) can be solved in closed form, leading to the ADMM iteration
(with no acceleration) consisting of the following steps repeated until convergence,
where z!*], ul*l denote the vectors from the previous pass, and p is a given fixed
proximity penalty:

Algorithm 1: One Pass of ADMM
Start with z[¥, ul*].

T [k+1] K] _ [k
1. Solve (Q—;p[ % ) (XV ) = (p(z ]:' ) c) for xF+11 .

2. Set zF+1 = max{0, x/*+1 4 ulfl} (where “max” is taken elementwise).
3. Set ulFtl = ulkl £ x[k+1] _ Zlk+1],

Result is z* T ulF+1] for next pass.
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LEMMA 2.1. After every pass, the vectors z*+1 ulF+1 satisfy
a. zFH1 >0,
b. ult+ll <o,

c. [kH] £k+1] 0, Vi (a complementarity condztzon)

d. xlh+1] satisfies the equality constraints AxF+1 =b.

Proof. In Algorithm 1 step 2: if x; + u; > 0 then z[kH] = x; +u; > 0 and
uyﬁ'” =wu;+x;— (x;+u;) = 0. If z;+u; <0 then z[kH] =0and u[kH] =u;+x; <0.
Point d follows directly from step 1. 0

So we can assume z¥1, ul*! satisfy these conditions at the beginning of each pass,
including the very beginning if we start with z =u = 0.

LEMMA 2.2. If in Algorithm 1 step 1 x*t1 = zlFl and zl¥ ul*! satisfy the
complementam’ty condition Lemma 2.1(c), then 2Pt = glHl gpg xFH1 )y ikl =
pul*l satisfy the first order KKT conditions for (1.1), where v, y¥l are the Lagrange
multipliers for the equality and inequality constraints, respectively.

Proof. We temporarily omit the pass number ¥, Let z; = 2, Vi. By the
complementarity condition, either z; = x; = 0 or u; = 0. In the latter case, x; +u; =
z; > 0 so z[kH] = x;. In the former case, x; +u; = u; < 0 so zl[kH] =0=uxz;. In
either case u[ 1 u;. From step 1: Qx + px + ATv = pz — pu — ¢, which simplifies
to Qx + ATI/ =y — c¢. This, combined with the previous lemma, form the first order
KKT conditions. a

3. Auxiliary Variables with Locally Monotonic Behavior. Instead of car-
rying the iteration using variables z!*!, ul*/| we use two auxiliary variables to carry
the iteration. One variable exhibits smooth (almost monotonic) behavior, with linear
convergence locally around a fixed point, and the other variable is simply a binary
vector of flags marking which inequality constraints are active.

Let w =z — u, and let d be a vector of flags such that

d; =+1 iff u; =0

Because of the complementarity condition, z; = 5 (1 +d;)w; and u; = —Y5(1 —d;)w
If D = D1ac(d) (the diagonal matrix with elements of vector d on the diagonal), then
Yo(I-=D)w = —u and Y, (I+D)w = z. The flags indicate which inequality constraints
are actively enforced on z at each pass. Then we can write ADMM steps 2 and 3
elementwise as follows:

SR 0 if x[kH] +u [k] <0
o) i x[k+1] Tu [k] i x[k+1] tu [k] >0
. e u[k] +x[k+1] " x[k+1] +u[ I <0
' 0 i ol gl > g
and so (using ugk] —Yp(1— d[k])w[ ])
gk -1 if xEkH Yo (1— d[k) k] <o
(3.2) ' +1 1f x£k+1 1, (1 dMyw! b2 g
where dgkﬂ] = +1 to match the effect of the absolute value sign. In matrix form, the

modified ADMM iteration using the new variables can be written as:



LOCAL CONVERGENCE OF ADMM 5

Algorithm 2: One Pass of Modified ADMM
Start with wl¥!, DI
1. Solve Qlp+1 AT/p\ (xI"* = witl —c/p for x(F+1 .
A 0 v b ’

2. Set W[k""l] — |X[k+1] — 1/2(I_D[k])w[k]| — D[k+1]<x[k+1] — 1/2(1_
DFYwlF) where D = Diag(d), and the new DF+1
DiaG(£1,...,£1) to match the effect of taking absolute values.

Result is wl¥T1 DI for next pass.

Next, we focus on step 1 and find an explicit formula for x in terms of w. (We
omit the [* temporarily.) The ultimate goal is to eliminate x, v entirely from the
formulas. We do this by explicitly inverting the matrix in Algorithm 2 step 1.

(x) = (Wnrt Alo)” (wseh)
v a A 0 b
(3.3) .
- N RA'S\ [(w-—c/p
~ \pSAR —pS b ’
where R = (Q/p + I)~! is the resolvent of Q, S = (ARAT)~! is the inverse of the

Schur complement, and N = R — RATSAR. The operator N satisfies the following
spectral properties.

LEMMA 3.1. The operator N = R — RATSAR is positive semi-definite and
IN||2 < ||R|l2 < 1. If Q is strictly positive definite, then also ||R|j2 < 1.
Proof.
a. For symmetric matrices, the 2-norm is the same as the spectral radius o, so we
can use them interchangeably [34]. If the eigenvalues of Q are0| <A, < <

A1, then the eigenvalues of Rare 0 < (A /p+1)"t < ... < n/p+1 . 1.

Hence ||R||2 1. The inequalities in the boxes are strict iff () is strictly
positive definite.

b. Let LLT = R be its Cholesky factorization, and let A = AL. Then we can
write N = R — RATSAR = L[I — AT(AAT) YAILT = L[---]L" where the
part within the square brackets is an orthogonal projector with eigenvalues
0 or 1. The matrix N is positive semi-definite because x' L[--]LTx > 0
for any vector x. The eigenvalues of N are the same as the eigenvalues of

LTL[---] (where [---] stands for the orthogonal projector), and so we have
INll2 = o(LTL[-]) < [LTL[ - Jll2 < LT L2 = [LLT |2 = || B|2-
a

So we can use (3.3) to write the first ADMM step as
(3.4) xFH = Nwl* — Nc/p + RATSb = Nwl*l 4 n,

for a constant vector h = RATSb — N¢/p, dropping the vector v.

REMARK 3.2. We remark that in the case of a linear program, QQ = 0, we have
R=1,5 = (AAT)™!, so the recurrence matrizr N = I— A% A reduces to the orthogonal
projector onto the nullspace of A (as noted in [12]), and the constant vector h can be
written h = A™b — Nc/p, where AT is the Moore-Penrose pseudo-inverse of A. In
this case, N is guaranteed to have only eigenvalues 0 and 1 with various multiplicities.
We also remark that in this case, the matriz N is completely independent of p.
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4. ADMM as a Matrix Recurrence. Next we focus on the entire ADMM
iteration. The input at each pass consists of the vector w!¥! and the diagonal matrix
of flags DI, Substituting (3.4) into step 1 of Algorithm 2, we can reduce the entire
ADMM pass to the following simple procedure.

Algorithm 3: One Pass of Reduced ADMM
Start with wl¥!, DI
1. DI+ = Diac(sieN(N — Yy (I—DW))wlkl + h)
2. wltll = pH(N — 1, (71— DKY)wlk 4 pl-+ilp
Result is wlb 1, DIEF for next pass.

This procedure is mathematically equivalent to Alg. 1 and is designed solely for the
purpose of analysis, but is not so suitable for computation. It is seen that MF =
DWHI(N — 1, (1 — D)) plays a critical role in the convergence of this procedure.
Hence we now establish some spectral properties of M*]. First we recall some theory
relating the spectral radius to the matrix norm from [27, 35, 47].

THEOREM 4.1. Let o(M) denote the spectral radius of an arbitrary square real
matriz M, and let | M|l = maxx|,—1 [|[Mx||2 denote the matriz 2-norm (mazimum
singular value). Then

a. For any matriz operator norm, o(M) < ||M]||,.

b. If ||M|2 = o(M) then for any eigenvalue X such that |\| = o(M), the alge-
braic and geometric multiplicities of \ are the same (all Jordan blocks for A
are 1 x 1). Such a matriz is said to be a member of Class M [35].

c. For any normal matriz M (i.e., satisfying MMT = MTM ), o(M) = | M||2.
This includes all real symmetric matrices.

d. If a X such that |\| = o(M) has a Jordan block of dimension larger than
1 (the geometric multiplicity is strictly less than the algebraic multiplicity),
then for any € > 0 there exists a matriz norm || -||p (based on a non-singular
matriz P) such that o(M) < |M||p < o(M) + €.

Proof. Part (a): Mx = Ax = |\|||x| = [|[Mx]| < ||M]|||x]. Part (b) holds
for any induced matrix operator norm. The proof in general is based on the Jordan
Canonical Form, or the Schur form for normal matrices. For details see [47, sec. 1.3] or
[35, sec. 2.3]. We need the result just for the matrix 2-norm, for which the following
is a sketch of the proof. Assume without loss of generality that M is scaled so
that ||M|]2 = 1. Form the Schur decomposition M = PRP where P is unitary
(possibly complex), R is upper triangular (possibly complex) with the eigenvalues on
the diagonal, and P denotes the complex conjugate transpose of P [27, 47]. We
can assume repeated eigenvalues appear consecutively. From part (a), 1 = ||M|z =
[|R|l2 > ||rs||2, where r; is any individual row or column or R. If r; is a row or column
containing one of the eigenvalues A with |A| = 1, then the only way it can have norm
at most 1 is for that row or column be all zero except for that diagonal entry. Hence
M — A must have n()\) all zero columns where n(\) is the algebraic multiplicity of
A. That is: the geometric multiplicity must match n(A). Part (c¢): If M is normal,
then the R in the Schur decomposition is diagonal. Part (d): Use a diagonal scaling
transformation to shrink the strict upper triangle of R. The detailed construction is
given in proof of Lemma 6.2 below. ]

LEMMA 4.2. |[M|, = |DFHU(N — 11— D)), < 1. Any eigenvalues of
M = DN~V (I-D¥1)) on the unit circle must have a complete set of eigenvectors
(no Jordan blocks larger than 1 x 1).

Proof. Proved as part of the proof of the next lemma. a
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A special case occurs when DIFH = DIFl e the set of active inequality con-
straints enforced on the vector iterate z does not change from one pass to the next. It
is often observed in practice that the set of active constraints do not change over many
consecutive passes through the iteration, whether the iteration appears to be either
stagnating or converging, especially if p is large. Hence we use a spectral analysis of
this special case to provide insight into the behavior during these consecutive passes.

LEMMA 4.3. Using the same notation as Lemma 4.2, if D = DF+1 = DIA] (the
flags remain unchanged), then all eigenvalues of D(N —Y,(I=D)) must lie in the closed
disk in the complex plane with center Y5 and radius Yo, denoted D(Ya,Ys). The only
possible eigenvalue on the unit circle is +1, and if present must have a complete set
of eigenvectors. In the case of a linear program, QQ =0, N s an orthogonal projector,
and all the eigenvalues of M = D(N — Y, (I—D)) lie on the boundary of D(Ya, ).

Proof. Returning to Lemma 4.2, we have MKl = DE+U(N — 1/, (1 — DIF)) =
DWHIDH DN — 1, (1— D)) = DIHUDF(DI(N — 1/2) + 1/2). Here we have
used the fact D? = I. From Lemma 3.1, N is symmetric positive semidefinite with
norm at most 1. Hence the eigenvalues of N are in the interval [0, 1], where the right
end will be open if @ is strictly positive definite. (If @ is strictly positive definite,
then || N]|2 < 1, but N is still singular with nullspace equal to the row space of A, so
|N — Yy (I—D¥)|| could still have norm equal to 1 (say with D = —I) and hence so
could the resulting M. Such a flag matrix D might never occur, but could be made
to occur in certain cases by careful choice of starting iterates z[% = 0, ul” < 0, with
ul? € nullspace(N), if this exists.)

Hence we have the following (using D = D*! to reduce clutter)

The eigenvalues of N are in the interval [0, 1].

The eigenvalues of N — /2 are in [—Y5, +Y%].

[N —1/2|2 <Y, since N is symmetric.

ID(N = 1/2)]|2 < Yo, and [|D(N — 1/2) + 12|}z = [ DN = Y(I-D))]|2 < 1.

The eigenvalues of D(N — I/2) lie in the closed circular disk on the complex

plane with center 0 and radius %, denoted D(0, Y5).

The eigenvalues of D(N —1/2)+1/2 lie in the disk D(Ys, ¥2), which is entirely

in the open right half plane plus the origin.

g. In particular, if D(N — %,(I — D)) has any eigenvalue with absolute value
1 = ||D(N — Y% (I—=D))l2, then that eigenvalue must be exactly 1 and must
have a complete set of eigenvectors (no non-trivial Jordan blocks).

h. The above proves Lemma 4.3 for the case Dt = DIF In the general case
of Lemma 4.2, [ MU, = [ DFUDID(N — Yy(I = D))l < [ DFID] -
|D(N — Y (I-D))|2 < 1, since D*UD is a unitary matrix.

o0 TP

=

In the case of a linear program, we have the following for DIF+1 = DI,

i. Q@ =0in (1.1), N is an orthogonal projector (see Remark 3.2), so that N? =
N = NT. Hence 2(N—1/2) is an orthogonal matrix: 2(N—1I/2)T2(N—1/2) =
4(N2—N+1/4)=1.

j. 2D(N —1/2) is also an orthogonal matrix since it is the product of orthogonal
matrices.

k. All the eigenvalues of 2D(N — I/2) lie on the unit circle. Hence all the
eigenvalues of M = D(N — I/2) + I/2 lie on the boundary of D(Ys, %z).
a

We conclude this section by noting that we can write the heart of Algorithm 3 as a
homogeneous matrix recurrence. We will use this form to characterize its convergence
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properties. Step 2 of Algorithm 3 is written as follows:

Wi (WY (MBI DB w
1 - Mae{ 1 )7 o 1 1

(D[kﬂ} (N — 1/2([_D[k})) D[k+1]h> (W[k] >
0 1 1)’

(4.1)

where h = RATSb — Nc¢/p as in (3.4).

5. Convergence Properties. We show how the spectral properties of (4.1) are
reflected in the possible convergence “regimes” that ADMM can encounter.

5.1. Spectral Properties. The eigenvalues of the augmented matrix My, in
(4.1) consist of those of M plus an extra eigenvalue equal to 1. If M already has
an eigenvalue equal to 1, then the extra eigenvalue 1 might or might not add a
corresponding eigenvector.

We state two lemmas regarding the spectral properties of My,. The first lemma
gives limits on the properties of the eigenvalue 1 for any matrix of the general form of
M., while the second relates the corresponding eigenvector(s) to the original QP /LP.
M p
0 1
a 1 x 1 lower right block. The matriz Mayg has an eigenvalue A\ = 1; suppose a
corresponding eigenvector has a mon-zero last element. We scale that eigenvector to

w\ _ w
take the form 1 = My 1

Suppose the upper left block M either has no eigenvalue equal to 1 or the eigenvalue
1 of M has a complete set of eigenvectors. Then Ay = 1 has no non-trivial Jordan

LEMMA 5.1. Let Myg = be any block upper triangular matriz with

block. Furthermore, if the given eigenvector v1v> s unique, then M has no eigenvalue
equal to 1.

Proof. We can block diagonalize the upper left block M = P <]V([)11 ?) p-t

with a suitable transformation matrix P, where Mn has no eigenvalue equal to 1.
Then

o

W1 1 W1

P 0 P 0 -
wo) = (0 )5 9)
1 1

My 0 Py w1 MWy + Py

= 0 I po wy | = w2 + P2
0 0 1 1 1
This implies that po = 0, i.e., the eigenvalue 1 of the entire matrix Mg, has a

complete set of eigenvectors. Regarding uniqueness: any value for wo would yield an
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eigenvector for A\; = 1, so such an eigenvector is unique iff the w9 block is empty (i.e.,
absent). O
LEMMA 5.2. Let My be the matriz in (4.1) and assume D = DIF+1 = DIkl

is a flag matriz of the form DIAG(£1,...,+1). Suppose vlv is an eigenvector

corresponding to eigenvalue 1 of the matriz Ma, and furthermore suppose w > 0.
Then the primal variables defined by x = z = Yo(I+D)w and dual variables y =
pu = —F(I—D)w satisfy the first order KKT conditions for (1.1). Conversely, if

x = z,u satisfy the KKT conditions, then (vlv) is an eigenvector of May corre-

sponding to eigenvalue 1, where w = z — u, and Mayg is defined as in (4.1) with
DI+l = DKl = D = Diac(d) with entries d; = +1 if z; > 0, d; = —1 if u; < 0, else
d; = %1 (either sign).
Proof.
a. Let z = Ypy(I+D)w, u = —Y% (I —D)w. By construction, z > 0, u < 0,
Ty —
z'u=0.
b. By assumption we have

w = D[Nw — Y,(I-D)]w + DRA"Sb — DN¢/p.
This equation can be rewritten
0= DN(w —c/p) — Yo(I+D)w + DRAT Sb,
or
z =1Y,(I+D)w = DN(w — ¢/p) + DRA” Sb.

Noting that Dz =z, D?> = I, and w = z — u, we see that z satisfies

PRERCOIGRD

c. Inverting the matrix above, as in (3.3), the above means that z satisfies the

equation
(3 ) ()-0)

d. We have thus satisfied all the KKT conditions:
(1) the gradients satisfy Qz + ATv +y = 0;
(2) the equality constraints are satisfied: Az = b;
(3) the inequality constraints are satisfied: z > 0;
(4) the multipliers have the right sign: y < 0;
(5) the complementarity conditions are satisfied: y’z = 0;
where y = pu are the multipliers for the inequality constraints and v are the
multipliers for the equality constraints.
e. The converse follows from Lemma 2.2.
d
Since the ADMM iteration has been converted into a variation of an eigenproblem,
we can study the convergence in terms of the spectral properties of the operator My
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defined by (4.1). The spectral properties of ML{% are summarized in terms of its
possible Jordan canonical form as given in the following Lemma.
LEMMA 5.3. The matriz ML’% defined by (4.1) for any flag matrices DY and

D™ has a spectral decomposition M;fg =PJP!, where J is a block diagonal matriz:

J 0 0 0 <(1) }) 0 0 0
(5.1) S e 0 I 0 0|,
0 0 J3 0
0 o0 o 3 0 0 J3 0
4 0 0 0 J4

where Jy is a single 2 x 2 Jordan block for eigenvalue 1 (possibly absent), I is an
identity matriz (possibly empty), J3 is a diagonal matriz with diagonal entries all
having absolute value 1, but not equal to 1, and J4 is a matriz with spectral radius
strictly less than 1 (possibly empty). If DFY = D in (4.1), then the J3 block is
absent.

Proof. The upper left block of (4.1) satisfies Lemma 4.2 and hence contributes
blocks of the form I, J3, J4. No eigenvalue with absolute value 1 can have a non-
diagonal Jordan block, so the blocks corresponding to those eigenvalues must be
diagonal. Embedding that upper left block M into the entire matrix yields a matrix
Mg with the exact same set of eigenvalues with the same algebraic and geometric
multiplicities, except for the eigenvalue 1.

If the upper left block of Mg (4.1) has no eigenvalue equal to 1, then My, has
a simple eigenvalue 1. In general for eigenvalue 1, the algebraic multiplicity goes up
by one and the geometric multiplicity can either stay the same or increase by 1. In
other words, My, either satisfies the conditions of Lemma 5.1, or the algebraic and
geometric multiplicities of eigenvalue 1 for My, differ by 1, meaning we have a single
2 x 2 Jordan block.

If DI*+1 = DI¥ then the upper left block of (4.1) satisfies Lemma 4.3, hence the
Js3 block must be absent (the only eigenvalue with absolute value 1 is 1 itself). O

5.2. Regimes. Lemma 5.3 immediately yields the possible local behaviors or
“regimes” that can arise from the ADMM iteration, in terms of the recurrence (4.1).
There are four possible regimes that can arise, depending on the flag matrix and the
eigenvalues of the augmented matrix Mz[fé When the flag matrix remains the same
over several passes of the iteration process, the operator remains invariant over those
passes, so that the structure of the spectrum for that specific operator controls the
convergence behavior of the process during these passes. When the flag matrix does
change, it means the set of active constraints at the current pass in the process has
changed, and the current pass is a transition to a different operator with a different
eigenstructure. This is where the algorithm takes on a combinatorial aspect while
it is searching for the correct set of active constraints. Hence we treat separately
the case where the flag matrix remains the same, and treat all the transitional cases

together in their own regime [d]. The specific possible regimes are distinguished by

the eigenstructure of the operator Mgﬁ]; summarized as follows.

[a] The spectral radius of M* is strictly less than 1. If close enough to the
optimal solution (if it exists), the result is linear convergence to that solution.

[b] M has an eigenvalue equal to 1 which results in a 2 x 2 Jordan block for
Mgﬁé The process tends to a constant step, either diverging, or driving some
component negative, eventually resulting in a change in the operator M*!.



LOCAL CONVERGENCE OF ADMM 11

[c] M (] has an eigenvalue equal to 1, but M[a]fé still has no non-diagonal Jordan

block for eigenvalue 1; If close enough to the optimal solution (if it exists),
the result is linear convergence to that solution.

One of the above regimes must occur when DF+1 = DI If DIE+1 £ DIFl | then also
the following eigenstructure is possible.

[d] M has have an eigenvalue of absolute value 1, but not equal to 1. This can
occur when the iteration transitions to a new set of active constraints.

If D¥H1] o4 DI then regardless of the eigenstructure, the next pass [k + 1] will be
using a different operator with different flags, so this pass represents a transition to
a different operator. Hence we treat this as part of regime [d], and limit regimes [a],
[b], [c] to the cases when DIF+1] = DIk,

The four possible eigenstructures correspond to four possible configurations in the
diagonalization (5.1). The resulting behavior depends on the corresponding spectral
properties. The first three regimes correspond to the non-transitional passes when
the flag matrix remains unchanged: D¥*! = DI and hence can be thought of as
the eigenvalue power method [27, 35, 47] applied to May. In detail the four possible
eigenstructures are as follows.

[a] The spectral radius of M is strictly less than 1, so the blocks J;,J3 are
absent from (5.1), and the block Jo = I is 1 x 1. As long as the flags do
not change, the recurrence (4.1) hence will converge linearly to a unique fixed
point which is an eigenvector of My, corresponding to eigenvalue 1 with a
non-zero last element, according to the theory for the power method. If that
eigenvector is non-negative, then the eigenvector satisfies the KKT conditions
for (1.1).

[b] The matrix M*] has an eigenvalue equal to 1, and the augmented matrix My
has a non-trivial Jordan block (J;). There is no other eigenvalue on the unit
circle, so the block J3 is absent, and the theory of the power method implies
the vector iterate will converge to the invariant subspace corresponding to the
largest eigenvalue 1 [35]. The presence of J; means there is a Jordan chain
[20]: two non-zero vectors q, r such that (Mae—I)q =r, (Mag—1)r = 0. Any
vector which includes a component of the form aq+ Sr will be transformed by
M, into Mag (aq+8r) = aq+(a+fF)r, i.e., each pass would add a constant
vector ar, plus fading lower order terms from the other lesser eigenvalues
[35, sec. 7.3]. As long as the flags do not change, this will result in constant

1 1
converge to a constant vector, asymptotically as the effects of the smaller
eigenvalues fade. That constant vector is an eigenvector for eigenvalue 1.
The ADMM iteration will not converge unless and until a sign change in
wl*l forces a change in the flags D*l. If we satisfy the conditions for global
convergence of ADMM, then such a sign change is guaranteed to occur.

[c] The matrix M* has an eigenvalue equal to 1 but the block J; is absent. There
are no other eigenvalues on the unit circle (J5 is absent). In this case, the
power method theory implies the recurrence (4.1) will still linearly converge
to a fixed point (an eigenvector for eigenvalue 1) at a rate determined by the
next largest eigenvalue in absolute value (largest eigenvalue of the block Jy),
as long as the flags do not change.

The matrix Mg, has more than one independent eigenvector corresponding
to eigenvalue A = 1, including at least one with a non-zero last element.

[k+1] [k]
steps: the difference between consecutive iterates, w ) - (W , would
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A non-negative eigenvector with a non-zero last element satisfies the KKT
conditions. If there is such an eigenvector with all positive entries, then
adding a small multiple of one of the other eigenvectors for A = 1 would
yield another all-positive eigenvector with a non-zero last element, that is, an
alternative solution to (1.1).
The above three eigenstructures yield the corresponding regimes when the operator
remains invariant over more than one pass, i.e., when D1 = DIl If the flag matrix
changes (D[kH] # DI representing a change in the set of active constraints), then
the eigenstructure of M*] could match one of the conditions in [a], [b], or [c], but
could also have the following eigenstructure.
[d] The matrix M = DIF+U(N — 1, (T— D)) has an eigenvalue with absolute
value 1, but not equal to 1, so J3 is present. The effect of this eigenvalue
will be limited by the fact that the next pass in the iteration will involve a
different flag matrix yielding different eigenvalues.
We consider any pass in which the flag matrix changes as part of regime [d] regardless
of the eigenstructure.

6. Unique Solution: Linear Convergence. In the case that (1.1) has a
unique solution with strict complementarity, we can give a guarantee that eventu-
ally the flag matrix will not change. By strict complementarity, we mean that for
every index i, either zf > 0 =y} or yf <0 = z/, i.e. wf =z —y/p > 0. Once the
iteration matrix M™*! stays fixed, the ADMM iteration behaves just like the power
method for the matrix eigenvalue problem. In this case, the spectral theory developed
here gives a guarantee of linear convergence.

In this section we will use the £, norm of a vector: ||v|s = max; |v;|, and the
associated induced matrix norm [|Alloc = max; >, |a;;|. We will also use the P-norm
where P is a non-singular matrix, defined to be ||x||p = || Px||s for any vector x, and
|Allp = [|[PAP ||« for any matrix A. We need one technical lemma relating the
vector oo-norm to the vector 2-norm.

LEMMA 6.1. For any n-vectors a, b, ([|aljes + ||blsc)? < 2 (Ilall3 + [Ib]13).
Proof. Using ||v]|so < |[V]|2 for any n-vector v [27], we have (||allo + ||bllo)’

2 2
(lall2 + [bll2)” = llal3 + [Ib]l3 + 2||allz|[b]2. We also have 0 < ([lall2 — [[bll2)
[al[3 + [Ibl3 — 2llall2|[bll> implying 2[al|2[[bll2 < [|a]|3 + [[b]|3. The result follows.
O

A

Under the assumption of strict complementarity, we can prove the specific result
that the ADMM iteration must eventually reach and remain in “linear convergence”

regime [a]. First we note that by Lemmas 5.1 & 5.2, this solution must correspond to
*
a unique strictly positive eigenvector <“{ > for eigenvalue A\; = 1 for the matrix Mgy

(4.1) where the flag matrix D*+11 = DI*l does not change. Hence by Lemma 5.1, the
matrix M has no eigenvalue equal to 1, and by Lemma 4.3 all the eigenvalues of M
must be strictly less than 1 in absolute value. Hence the following lemma applies to
this situation.

LEMMA 6.2. Consider the matriz and eigenvector

where M is any n X n matriz such that the spectral radius o of M satisfies o(M) < 1.
The vector wi .. is the unique eigenvector corresponding to eigenvalue 1, scaled so that

ag
its last element is wy, | = 1. Then the following holds.
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(a) For any € > 0 there is a matriz norm || - ||p such that o(M) < ||M|p <
o(M) + e. In particular, one can choose € small enough so that ||M|p < 1.
Also, there is a positive constant Cy (depending on M) such that for any
vector or matriz X, || X||p < C1|| X |loo and || X||oo < C1|| X p-

(b) The iterates of the power iteration whg = Maugwgg satisfy ||W£1ké—w;k1g“}9 <
|\M||¥.€]||wz[3.(l)]]g — Whellp and hence converge linearly to w,, at a rate bounded
by o (M) + € where € is the same arbitrary constant used in (a). This a special
case of the theory behind the power method for computing matriz eigenvalues
[27, 35, 47].

(¢) Given any positive constant Cy, if w;[fé is any vector such that ||w£?é -
Wiglloo < C2/CF then HME@;W& — Whglleo < O for all k. In particular, if
Whe > 0 and Cy = (min; w})—e > 0, then Mé@wlﬂg >0 forallk=0,1,2,....

Proof.

(a) This is a special case of Theorem 4.1, but we include here a short proof
for completeness. We must construct the (possibly complex) matrix P. Let
M =P, LRy P, be the Schur decomposition or the Jordan canonical form for
M, where P is nonsingular and R; is upper triangular with the eigenvalues of
M on the diagonal (either decomposition will do). Here P;, Ry are possibly
complex matrices, as is Ry below. Let P, = D1AG(1,571,672,...,6' ") with
0 small enough so that the upper triangle of Ry = PR Py ! is small enough
so that || Ra||ec < 0(M)+e. Applying P; in this manner shrinks the entries in
the upper triangle by a factor of at least § while leaving the diagonal entries
unchanged. Set P = P,P; so that Ry = PMP~! is upper triangular with
M'’s eigenvalues on its diagonal and having very small elements above the
diagonal. From the definition of || - ||p, it follows that o(M) < |M|p =
|Ralloo < o(M) + €, and C; = max{]|Plloc, [P~ oo, [Plloe - [P~ loc} wil
all satisfy the properties asked for in part (a).

(b) Let the error vector at the k-th pass of the power method be

(K] (%] *
k k * t w w
ta‘g”_wa’g[]_wa‘g_<0)_( 1 >_(1)

Then the power iteration on WL,% yields

wgﬁg'l] = Mg (W + tgﬁé) =Woe + Maugtgﬁ]; =Wo, + tg“gl],
with tl+1 = A -t Hence [t » < O(| M%) < O((0(M) + €)F) = 0
as k — oo.

(c) Define Py = IS (1)) with the P from part (a), and define the corresponding

Pye-norm on the augmented quantities. Define the following balls around the

eigenvector wy,:
Bl = Wyt [[Waw — Wiglloo < Co,wp = 1)
(61)  Br = {Wag: |[Wag — Wigllra < Co/Criwnir = 1)
By = {Wag: [[Wag = Wigllo < Co/CFwpi1 = 1}

From part (a), B3 C By C By. From part (b), if any power method iterate
satisfies wl% € By, then all subsequent iterates stay in By. Hence if the power
method starts in B3, all subsequent iterates will lie in 5.
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0

We now invoke the global convergence property of ADMM.

THEOREM 6.3. [4, 18, 18] Problem (1.1) has a solution iff there is a saddle point
(x*,2*,y") (with y = pu) of the Lagrangian L, (2.2), i.e. a point such that

L,(x*,z",u) < L,(x",2",u") < L,(x,z,u”) Vx,z,u
If Problem (1.1) has a solution, then there is a solution (x*,z*,u*) such that

20— 273 + Y — a3

< 12 — 273 + [l — ][5 — [JxFF = g S gt - 3
and F(x¥) 1 g(z¥) — f(x*) + g(z"), where f(x) = YpxTQx +Tx, g(2) =0 iff 2 >
0, g(z) =0 otherwise.

Proof. Omitted. This is a restatement of the convergence theorem in [4, 13, 18].
|

As noted in [4], this implies that the iterates converge to a solution to (1.1), but
possibly irregularly. This theorem says little on the local behavior of the algorithm,
but does guarantee that eventually the iterates are close enough to the solution to
enable the following result.

THEOREM 6.4. Suppose the LP/QP (1.1) has a unique solution x* = z* and
corresponding unique optimal Lagrange multipliers y* for the inequality constraints,
and this solution has strict complementarity: that is either z; > 0 =y; ory; <0 =z}
(i.e. wi = zf —yX/p > 0) for every index i. Then eventually the ADMM iteration
reaches a stage where it converges linearly to that unique solution.

Proof. The dual vector u* = y/p < 0 is a non-positive vector, and the combined
vector w* = z*—u* > 0 is strictly positive. Let Cy = (min; w}) — e > 0 for a positive
constant e sufficiently small to make Cy > 0. This means all vectors in By defined in
(6.1) have all positive entries.

By Theorem 6.3, there exists a pass k such that [|z* — z*[]3 + |[ul*l — u*||2 <

Yy (02/012)2. By Lemma 6.1, ||zFl — 2*||oc + [[ulf] — u*|| < C2/C?. This, con[ﬂ])ined
k
>0

with the strict complemenarity, means that for every index 4, z; > 0 implies z;
& ul*! = 0, and likewise u? < 0 implies u*) < 0 & 2/ = 0.

Hence wl¥l = zlFl —ul*l > 0 lies in Bz, and DI¥! = Diac(sian(z!* +ul¥l)) is the
associated flag matrix. By Lemma 6.2(c) wl/l > 0 lies in By forall j = k+1,k+2,....
Since the elements remain positive, the flag matrices DUl = DI*] remain unchanged for
all j > k. Thus starting at the k-th pass, the ADMM iteration reduces to the power
method on the matrix Mgfg = M., converging linearly to the unique eigenvector at

a rate given by Lemma 6.2(b). O

7. Acceleration via Over-Relaxation. A proposed way to accelerate ADMM
(Algorithm 1) is the following [4, 13]

Algorithm 4: One Pass of ADMM with Over-Relaxation
Start with z[¥, ul*].

1. Solve Q+pl AT o = p(z — ult) —c for xkF+1 .
A 0 v b ’
2. Set xFH1] = ax(F+1 4 (1—q)zl*. +— (relaxation step)

3. Set zF*+1 = max{0, %I+ 4+ ulk1}.
4. Set ulk+1] = ylkl 4 x[k+1] _ glk+1],

Result is z* T ulF+1] for next pass.
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An analysis similar to section 3 yields the same complementarity conditions for
zlFH1 ulF+1 | and the following expressions for X*+1, based on (3.4):

(7.1) g = oxlb 1 1 (1-0)zl¥, = aNwlF 1 ah + (1—a)z*).

Using z; = Y5 (1+d;)w;, we can follow the analysis similar to (3.1) to obtain (where

we omit the ¥ from the d,w,y, 2’s and the ¥+ from the 2’s):
d[k+1] . —1 if ./fz — 1/2(1—di)wi <0
i o +1 if z; — 1/2(1—d¢)wi >0
(7.2) W =3 = (1—d)wy| = dF T [E = Y (1—di)wy) |

= "Nz, + Yo(1—a) +d)w; — Yo(1—d;)w;]
= dEkH] [a(x; — (1+d;)w;) + dyw;]

which yields the accelerated formula

wlkt1) — 2718 ()wlkl 1 o DIk,
(7:3) with M (a) = DI [a(N — Yo(1+ D)) + DI
This reduces to step 2 of Algorithm 3 when ov = 1. We have the following lemma

LEMMA 7.1. For any 0 < a < 2, the spectrum of M¥(a) lies in the unit disk on
the complex plane. When D+ = DI the spectrum of D[a(N — Yo(I+ D)) + D]
lies in the disk D(1—%s,%). For a linear program @ = 0 and D+ = DI the
eigenvalues lie on the boundary of D(1—%a,%s).

Proof. (Use shorthand D = D)

a. The eigenvalues of the symmetric matrix N are in the interval [0, 1].

b. M(a) = DW[a(N — Y(I+D)) + D) = DFUD[aD(N — Y1) + 1(1-).
Hence [M(a)]| < | D¥UD]-laD(N - Y1)+ I(1=%5) | = 1- |laD(N — Y1) +
I(1—%%)|| (since DF*+UD is unitary).

c. The eigenvalues of a(N — Y,I)) are in [~%, %]. So ||a(N — LI))| < %.

d. aD(N—YoI) + I(1=%) | < aD(N—YoI) | + (=) | < % +(1-%) = 1.
If D¥+1 £ D we are done.

e. We now let D+ = D, so then D¥+HUD = I, and M(a) = aD(N —'I) +
I(1—%%).

f. |aD(N —11))|| < %%. Hence the eigenvalues of aD(N —Y,I) are in D(0, “%s).

g. The eigenvalues of aD(N —YoI) + I(1—%) are in D(1—%,%).

h. For a linear program, N—Y,1 is half a unitary matrix, hence its eigenvalues lie
on the boundary of D(0, %), hence the eigenvalues of a D(N—Y51)+ I(1—%)
are on the boundary of the disk D(1—%5, %s).

o

This suggests that one should choose « to push the eigenvalues away from the
boundary of the unit disk, but this turns out to be difficult if the eigenvalues are
located on the boundary of the disk D(1—%, %), as we now elaborate for a linear
program.

Adjusting the relaxation parameter o # 1 will not accelerate the iteration during
regime [a] or [c] for an LP. In such a regime, D+ = DFl and M(a) = a[M—I]+1 =
a[M—~I] where v = 1Y, is a shift such that the eigenvalue 1 of M is mapped to the
eigenvalue 1 of M(«). We can examine the ratio r of the second largest eigenvalue
of M —~I to the largest eigenvalue (in absolute value). Let A = (1 + ¢ + is)/2 be
prospective eigenvalue of M on the boundary of D(Ys, %), with ¢ + s = 1. We
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can calculate the ratio r = |\ — 7|/|1 — 7| for some real shift v. A tedious algebraic
manipulation yields the result that r is minimized when v = 0, i.e., no shift. So during
the last stage of the ADMM process, in regime [a] or [c], a shift will not yield a useful
acceleration, and could actually slow down the convergence. We also remark that
during the last linear stage, the spectrum of the matrix operator is also independent
of p.

During regime [b] the process converges to a “constant step,” that is, the difference
between consecutive iterates wlF T — wlk] converges to a constant vector. In such
a regime, a shift may still yield a speedup depending on the term aD¥*Uh. The
effect of this scheme on regime [d] could vary, depending very much on the specific
eigenstructure found.

8. Examples. Example 1. We illustrate the eigen-analysis of the behavior
of ADMM on a simple linear program modelling a production process. We give
a motivation for this LP to point out that this could represent a real physical or
biological system, but the main purpose of this example is to show different interesting
convergence behaviors when solved using the ADMM process.

We consider a production process in which we would like to maximize the pro-
duction of a desired final product where for each unit of raw material we can produce
2 units of final product by means of a cheap method with flux rate x1, or 30 units
of final product by means of a more expensive process with flux rate zs. The cheap
method uses only 2 units of internal capacity while the more expensive process uses
50. The constraints on the system are (i) a limit on the availability of raw material
1 + 2 < Tomaw, (i) a limit on the internal capacity 2z1 + 50x2 < 200, and (iii)
irreversibility of the processes x1,x2 > 0. This is modelled by the following linear
program.

minimizey —2x1 — 3029 (desired end product production)
subject to 1 4+x2 4+ T3 = Tomas (limit on raw material)
(8.1) 2x1 +50x2 + x4 = 200  (internal capacity limit)
1 >0 To >0 (irreversibility of reactions)
x3 >0 x4 >0 (slack variables)

The slack variables x3, x4 have been added to put it into standard form (1.1) (with
Q = 0), converting the inequality constraints into equality constraints. This LP
could represent a industrial process in which the input is metal ore, the output is the
pure metal, and the internal capacity limit is a limit on the power available to run the
process. It could also represent a very simplified model of a biological process in which
the raw material is a sugar and/or oxygen, the desired output is energy represented
by ATP, and the two processes are fermentation (cheap) and respiration (expensive),
both limited by the biochemical capacity within the cell (see e.g. [58] and references
therein).

The ADMM process exhibits its most interesting behavior when the raw material
limit 2o mae is near a point of phase transition where the optimal solution changes
from “all cheap process” to “a mix of both processes” to “all expensive process.” For
20,maz > 100 the optimal solution is x; = 100, zo = 0; for 0 < g mas < 4 the
optimal solution is 1 = 0, T2 = %0, mae; for the intermediate phase 4 < g maz <
100 the optimal solution has 1,22 both non-zero. We illustrate ADMM'’s typical
behavior with zg mqes = 99.9 (see Fig. 8.1). Using the notation from theorems 6.3 &
6.4, the figures show the error |[wl*] — w*||3 (A: top curve), the difference between
two consecutive iterates ||wl* — wl*=11||2 (B: second from top), the primal residual
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. max 2x+30y s.t. x+y<99.9, 2x+50y<200. ADMM trace

A=|lerror|[? Al

— RoIdi 2
ol B=||diffs||
I C:r:norm2

—s: 2
0L ‘ D=s:norm“/10 i

10’ I I I I I I I
0 20 40 60 80 100 120 140 160
iteration number

FIG. 8.1. ADMM on Ezample 1: typical behavior. Curves: A: error ||(zlF] —ulkl) — (z* —u*)||2.
B: ||(zl¥] — ulkl) — (zlk=1 —ulk=11))12. c: ||(x[K] — 2*)||12. D: ||(z*] — zlF=1)||2/10 (D is scaled by
1/10 just to separate it from the rest).

| x[¥l — z*¥]||2 (C), and the dual residual ||z*+' — z*]||2 (D), where curve D is scaled by
1/10 just to separate it from the other curves in the figure.
Since (8.1) is an LP, the operator N in (3.4) is simply the orthogonal projector

onto the nullspace of the constraint matrix A = (% 5(1] (1) (1)) The operator N

and vector h in (3.4) in this case are

0.5201 —0.0210 —0.4991  0.0096 48.3546
(82) N= —0.0210 0.0012 0.0197 —0.0204 h— 2.0968
—0.4991  0.0197  0.4793  0.0108 |’ 49.4487
0.0096 —0.0204  0.0108  0.9994 —1.5470
During the first 124 iterations of ADMM, the flag matrix D = DiaGc(+1,+1,+1,—1)
is invariant, and the iterates wi¥l = zl*l — ul*l obey the recurrence (4.1) for k =
1,...,124:

wlk] wlk]
) = ()

0.5201  —0.0210 —0.4991  0.0096 | 48.3546
~0.0210 00012 0.0197 —0.0204 | 2.0968 | ,
— | -0.4991  0.0197 04793  0.0108 | 49.4487 ( >
—0.0096  0.0204 —0.0108  0.0006 | 1.5470
0 0 0 0] 1.0000

The eigenvalues of the operator My, are given by its Jordan canonical form (5.1):

J =Diac(Jy, J4) = D1ac <<(1) %) , 6.2357e-4 + 2.4964e-21, 0>
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The 2x2 Jordan block corresponding to eigenvalue 1 indicates we are in the “constant-
step” regime [b]. The difference between two consecutive iterates quickly converges
to Mayg’s only eigenvector for eigenvalue 1:

0.4160
~0.0166
[k+1] [k]
<W )—(W ): ~0.3993 | ,
1 1
0
0

for k=1,...,124.

From iteration 125 to 132, the iteration passes through a few transitional phases
until in iteration 133 it reaches the final regime [a], converging in 21 steps. During
the final regime, the iterates obey the following recurrence (4.1) for k = 133,...,154:

wlk+1] wlt]
(")) = e ()

0.5201 —0.0210 —0.4991  0.0096 | 48.3546
(8.3) ~0.0210  0.0012  0.0197 —0.0204 |  2.0968
- 04991 —0.0197  0.5207 —0.0108 | —49.4487 (
~0.0096  0.0204 —0.0108  0.0006 |  1.5470
0 0 0 0| 1.0000

wlH]
1 9

with final iterate

* 155
(“{ ) = <W[l ]) = (99.8958, 0.0042, 0.8334, 0.5833, l)T.
The final flag matrix is D* = Diac(+1,+1,—1,—1), indicating that the first two
components of w* correspond to primal variables (z7,x3%) and the last two to dual
variables (u}, u}), all non-zero. Thus the true optimal solution to (8.1) is 7 = 99.8958,
3 = 0.0042. wj = —0.8334, uj = —0.5833. The vector [w*;1] is the eigenvector
corresponding to eigenvalue 1 for the operator in (8.3). Following Lemma 6.2(b),
convergence is rapid because the spectral radius of the 4 x 4 upper left part of the
operator in (8.3) is o(M) = 0.7217, well separated from May’s largest eigenvalue 1.

From Fig. 8.1, it is clear that while the primal and dual residuals (C,D) can behave
in oscillatory fashion, the combined iterate wl¥l behaves in much smoother fashion. It
is also clear that there is an imbalance between the primal and dual residuals during
the “constant-step” regime [b]. This could be alleviated by dynamically adjusting
p. Also, the “constant-step” regime could be shortened by adjusting a. But we
have chosen to show the iteration without these adjustments to better illustrate the
transitions between regimes. Allowing p to vary dynamically cuts the iteration count
to 77, and separately setting @ = 1.8 cuts the iteration count to 144. We show in Fig.
8.2 the behavior when o = 1.8. The early “constant-step” regime [b] is shortened to
73 steps, but after several transitions the trailing “linear convergence” regime [a] is
lengthened to 60 steps, as one would expect from the considerations of section 7.
Example 2. This example is the same as the previous example, but with the raw
material limit set to 2o maee = 3.9, near the lower phase transition boundary. We find
the ADMM process behaves very differently. The matrix NV is exactly the same as in
(8.2), but the “right hand side” vector h changes to

h = (0.4444, 3.9924, —0.5368, —0.5094)" .
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max 2x+30y s.t. x+y<99.9, 2x+50y<200.a=1.8
10 T T

A=|lerror||? | |
B=||diffs||? |9
C=r:norm? |
D=s:norm?/10|

0 50 100 150
iteration number

Fia. 8.2. Accelerated ADMM on Ezample 1: o = 1.8. Curves as in Fig. 8.1.

After 560 initial iterations (3 in regime [a] and 557 in regime [b]), it reaches the final
regime [a] at iteration 561 with flag matrix D = Diac(—1,+1,—1,+1). The method
continues in regime [a] with very slow convergence until it reaches the preset iteration
limit of 5000 steps. The iterates during the final regime obey (4.1) for k£ > 561:

Wikt wlH
(") = e ()

0.4799  0.0210 0.4991 —0.0096 | —0.4444
(8:4) ~0.0210  0.0012 0.0197 —0.0204 | 3.9924| , .
= | 04991 —0.0197 05207 —0.0108 | 0.5368 (W )

0.0096 —0.0204 0.0108  0.9994 | —0.5094

0 0 0 0 1.0000

converging towards the eigenvector

The true answer computed using CVX [28] is

0.0 ~28.0 28.0
W |39 [ oo _ [ 39
0.0 ~30.0 30.0
5.0 0.0 5.0

which matches exactly the eigenvector for the final operator in (8.4). The iterates are
close enough to the final optimum so that the entries never change sign (the essence
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max 2x+30y s.t. x+y<3.9, 2x+50y<200. ADMM trace

*A=||err0r||2
o112
i -B=|difs]
-C=r:norm?
-D=s:norm?/10
T T

107 I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iteration number

Fia. 8.3. ADMM on Example 2: slow linear convergence. Curves as in Fig. 8.1.

of the proof of Theorem 6.4). So this is indeed the final regime [a], consistent with

Theorem 6.4. We can see the convergence behavior of the first two components wgk],

wgﬂ, in Fig. 8.4 where the initial straight line corresponding to the initial regime [b]
leads to the spiral corresponding to the final regime [a] converging slowly to the point
at the center of the spiral. This spiraling behavior is consistent with that observed in
[12].

The spectral radius of the upper left part of the operator in (8.4) (computed using
Matlab’s eig function) is o(M) = 0.999895979593711. This is strictly less than 1 so
Lemma 6.2(b) applies, but it is very close to 1 so that (i) the rate of convergence is
very slow, requiring —1/log;,(c(M)) = 22135 iterations to gain each decimal digit
of accuracy, (ii) from Remark 3.2, adjusting p has no effect on the eigenvalues and
hence would not accelerate this iteration at all, (iii) from the observations of section
7, adjusting the relaxation parameter o will not accelerate this slow regime [a], and
could even slow it down. Hence here we have indeed linear convergence, albeit very
slow.

With 2 ez = 3.9, we found slow convergence of the entire ADMM process due
to the slow convergence during the “linear convergence” regime. We remark (without
going into all the details) that that setting xomaz = 3.99, we found the ADMM
method again exceeded the 5000 steps we allotted, but this time entirely due to slow
progress during an initial “constant step” regime.

Example 3. We construct a simple basis pursuit problem [5, §]

(8.5) min [|x[|; subject to Ax = b,

or a soft variation allowing for noise (similar to LASSO [52])
(8.6) min || Ax — b||2 subject to ||x||; < tol,

where the elements of A, b are generated independently by a uniform distribution over
[—1,+1], A being 20 x40. Normally one would construct an ADMM iteration specially
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max 2x+30y s.t. x+y<3.9, 2x+50y<200. 1st components
4.1 T T T T

iterates
X true answer

S[ep ;

3851 b

38 I I I I I I
0

Wy

Fic. 8.4. Convergence behavior of first two components of wlk] for Ezample 2, showing the
initial straight line behavior (initial regime [b]) leading to the spiral (final regime [a]).

designed for this problem using a shrinkage operator [4], but since the purpose of this
example is to show the behavior on problems of the form (1.1), we instead convert
these to the form (1.1) at a cost of doubling the number of variables. For the same
purpose, we put the ||x|[; term in (8.6) as a constraint rather than in the objective
function. The result is an LP with 80 variables from (8.5) and a QP with 81 variables
(including 1 slack) from (8.6).

We show in Fig. 8.5 the ADMM convergence behavior on (8.5), and in Fig. 8.6
the ADMM convergence behavior on (8.6). Fig. 8.7 shows the eigenvalues of the
operator M, during the final regime for each case. One notices that the eigenvalues
for the quadratic program from (8.6) lie strictly inside the circle D(Yz, Y5) (except for
0 and 1). In this particular example, both the LP (8.5) and the QP (8.6) start by
passing through 14 and 32 transitions (respectively) in the early part of the iteration,
then both settle on their final “linear convergence” regime [a] in steps 35 and 556,
respectively, consistent with Theorem 6.4. Most of the LP’s intermediate operators
have a non-trivial Jordan block, while none of the QP’s operators do. This means
that “constant-step” convergence did not occur during the QP solution. Here p =1,
and no acceleration is used. We re-iterate that this behavior might not match the
behavior of an ADMM iteration designed specifically for the basis pursuit problem,
but serves only as an illustration of ADMM'’s behavior on an LP or QP.

9. Conclusions. In this paper, we have introduced a novel spectral analysis
for the Alternating Direction Method of Multipliers (ADMM) applied to a quadratic
or linear program in standard form, by modelling it as a matrix recurrence. The
spectrum of the matrix recurrence has been used to analyze the convergence of the
method. It is shown that the method normally passes through several regimes of four
different types as it searches for the correct set of active constraints. We give a way
to analyze the individual regimes separately. When the method finally settles on the
correct set of active constraints, convergence can be linear at a rate depending on the
absolute value of the second largest eigenvalue of the matrix recurrence.
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20 x 40 basis pursuit: min ||><||1 s.t. Ax=b.p= o=
10 T T

*A=||err0r||2
o -B=||diffs||®
-C=r:norm?
-D=s:norm?/10

-12

I
0 500 1000 1500
iteration number

Fic. 8.5. ADMM applied to the LP of Example 3 (8.5) using o = p = 1. Curves as in Fig. 8.1.

20 x 40 basis pursuit: min ||Ax—b||2 st ||x||1<2; p=a=
10 T T T T

T
*A=||error|\2
-B=||diffs||?
-C=r:norm?
D=s:norm?/10

-10]

10

10721

14 L L

I I I I
0 20 40 60 80 100 120 140
iteration number

10

F1G. 8.6. Unaccelerated ADMM applied to the QP of Example 8 (8.6) using a = p = 1. Curve
A,B,C,D are as in Fig. 8.5.

The analysis in terms of regimes allows one to more effectively adjust acceleration
methods to match the current regime. For example, we have shown for LPs during
the “linear convergence” regime, relaxation can be detrimental to the performance of
the algorithm, while during “constant-step” regime it can be beneficial. Likewise with
respect to the proximity parameter p, while adjusting p can have a dramatic effect on
the rate of convergence in general, in LPs it has almost no effect on the asymptotic
rate of convergence during the regime of linear convergence.

This paper is limited to LPs and QPs in standard form. In principle other prob-
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min ||Axfb||§ s.t. [Ix||,<2: eigenvalues of Maug (with unit circle)
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FiG. 8.7. Spectrum (“*”) of the ADMM iteration operator M}, on the complex plane during
the last regime of the ADMM process on (8.6). The o’s show the eigenvalues for the linear program
(8.5). The unit circle and D(Ya, %) are shown for reference.

lems such as basis pursuit or a soft margin support vector machine can be converted in
standard form LP or QP, but this would result in splittings differing from a “natural”
splitting, so that ADMM will behave differently compared to a splitting designed for
the original formulation. For example, a constraint of the form x < C' is a box con-
straint that could easily be incorporated into the indicator function g(z) resulting in
a modification to step 2 of Alg. 1. We would lose the strict complementarity between
the primal and dual variables. To convert this to a QP in standard form (1.1), we
must replace the inequality constraint with an equality constraint, x + Xgacx = C,
with a slack variable. This results in a modification to step 1 of Alg. 1 instead. For
these reasons, the behavior of the method on the converted formulation might differ
from that applied to the original formulation. The spectral analysis for the unmodified
formulation is beyond the scope of this paper.

In this paper we have used a spectral analysis of a sequence of matrix operators
to explain the observed behavior of ADMM. We have not addressed the relationship
between the eigenvalues of the derived matrix operators and intrinsic properties of
the original model problem. We have also not addressed the issue of carrying out the
spectral analysis on problems too large to form the matrix operators explicitly, or the
issue of using spectral analysis to accelerate convergence of the method. The former
issue would require the use of iterative eigensolvers such as those given in [27, 37, 48],
while the latter issue would require eigensolvers that are robust in the presence of
very close leading eigenvalues or missing eigenvectors, exactly the situations which
often cause difficulties for off-the-shelf eigensolvers.
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