Chapter 1

ASCALABLEHIERARCHICALALGORITHM FOR
UNSUPERVISED CLUSTERING

Daniel Boley

Abstract

Top-down hierarchical clustering can be done in a scalahie \ere we describe
a scalable unsupervised clustering algorithm designethfge datasets from a
variety of applications. The method constructs a tree diaedusters top-down,
where each cluster in the tree is split according to the teppliincipal direction.
We use a fast principal direction solver to achieve a fastalvenethod. The
algorithm can be applied to any dataset whose entries cambedzled in a high
dimensional Euclidean space, and takes full advantageyofparsity present
in the data. We show the performance of the method on textrdentidata, in
terms of both scalability and quality of clusters. We dentiais the versatility of
the method in different domains by showing results from tduments, human
cancer gene expression data, and astrophysical data.gtagshdomain, we use
an out of core variant of the underlying method which is cépal efficiently
clustering large datasets using only a relatively small owrpartition.

Keywords:  Unsupervised Clustering, hierarchical clustering, tekting, genomics, sparse
matrices, principal directions
1. Introduction

Explosive growth in the volume of data available electratijchas created
a need to be able to automatically explore large data callext Unsuper-
vised clustering algorithms are classical tools which haeeeasingly been
reexamined for their applicability to data mining efforts.

Ideally, these algorithms would be fast and scalable, rediitle or no a-
priori understanding of the data contents or attributesres®dl no costly graph
building or association rule preprocessing. In many appbas it would be
useful if the algorithm could also impose a natural hiergroh the data set,
compute properties for the set as a whole, handle cases aftigbate informa-
tion is missing, and be independent of the order in which #ta & presented.
Principal Direction Divisive Partitioning (PDDP) is such algorithm [Bol98].
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Originally applied in the context of text documents reteégévrom the WWW
as part of the WebACE project [BG®9b], PDDP has proven to be computa-
tionally efficient while providing high quality clustersn addition to producing

a partitioning of the data, the PDDP method

= yields weights showing which attributes were most signifiga distin-
guishing the contents of one cluster from another,

= implements an automated stopping test based on the digtribof the
data,

m allows a straightforward way to process datasets with misaitribute
values,

= generates a hierarchical tree of clusters which can easilypdated lo-
cally, and

= isindependent of any particular ordering of the input daithout using
any randomized starting conditions.

The method has been successfully applied in a variety of@gtigh domains
in addition to text documents, such as vision-based textnatysis and movie
recommendation services.

2. The PDDP Algorithm

The PDDP algorithm employs the vector space model, whetedsta sam-
ple is represented by a vector of numerical attribute valié® data samples
are embedded in a very high dimension Euclidean space, amdgbrithm par-
titions this space with a collection of hyperplanes calmdao achieve good
separation among the data samples. The data space is edpayad hyper-
plane into two half-spaces. The process continues reelysby separating
each half-space with new hyperplanes computed indepdgddrite method
builds a binary tree of many polytope regions from the toplamtil a stopping
test is satisfied.

Since the PDDP algorithm operates directly with the caibecof numerical
attribute vectors, only a limited amount of preprocessiitgeicessary to generate
the input data necessary for PDDP. This method was origidelleloped as part
of the WebACE Project [BGG99Db] in the context of text documents where each
document is represented by a scaled vector of word counts pfidprocessing
consisted of removing the stop words and common word endamgiscounting
the number of occurrences of each word in each document.eBhé was am-
vectord of word counts associated with each document. All theseovgetere
combined into a single x m matrix M in which each column corresponded
to a document and each row corresponded to a particular viotdis domain,
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Algorithm PDDP.
0. Start with n x m matrix M of vectors, one for each
data sample, and a desired number of clustgrs.

1. Initialize Binary Tree with a single Root Node.
2. Fore=2,3,...,cmax do
3. Selectleaf nodeC with largestscat t er val ue (1.2),
andL & R := left & right children ofC [step (@) in the text].
4. Computeve = g¢(M¢) = ud (M¢ — weel)
5. For i € C, if v; <0, assign data samplido L,

else  assignitta [step (b) in the text].
6. Result: A binary tree withep,,, leaf nodes
forming a partitioning of the entire data set.

Figure 1.1. Summary of the method to do a full build of the PDDP tree fromatth. Here
M. is the matrix of data vectors for the data samples in clugtandwe, uc are the centroid
and principal direction vectors, respectively tor

the matrix was generally very sparse, often less than 1%eotiitries were
nonzero. This sparsity results in a very fast and memoryieffianethod for
carrying out the splitting process. However, this alganitis not restricted to
text domains and here we describe it in general terms.

2.1. Basic Algorithm Description

In the general situation, each data sample is represented fyector of
attribute values, and all these vectors (treated as colwtiors) are assembled
into ann x m data matrixM. The clustering via PDDP is a recursive process
that operates directly on the matdM. PDDP starts with a single “cluster”
encompassing the entire dataset, divides this clustesiftolusters recursively
using a two step process. At each stage, PDDP (a) selectstardio split, and
(b) splits that cluster into two subclusters which beconileldn of the original
cluster. The result is a binary tree hierarchy imposed oulthia collection. At
every stage, the leaf nodes in the tree form a partition adttitiee data collection.
In the process of going to the next stage, one of those leadsizdselected
and split in two. The behavior of the algorithm is controlleg the methods
used to accomplish steps (a) and (b), and these methodslapeimdent of one
another. For step (a), PDDP usually selects the clusterthéttiargesscatter
value (defined in the next subsection), which is the sum of all theased
distances from each data vector to the cluster censkgithough any suitable
criterion can be used.

Once selected in step (a), the node is splitin step (b), asdjlitting process
is the single most expensive step in the whole computatiome Key to the
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computational efficiency of the entire approach is the effitcomputation of
the vectors needed in this step. Suppose PDDP were to sjgiedt consisting

of k£ data samples of attribute values. It places each data saimipline left or
right child of clusterc according to the sign of the linear discriminant function

gc(d)—uC (d — wg) Z“Z P = w;), (1.2)

1eC

whereuc, w¢ are vectors associated witho be determined. lfc(d) < 0, the
data samplel is placed in the new left child, otherwigkis placed in the new
right child. Thus the behavior of the algorithm at each nadthe binary tree

is determined entirely by the two vectaug, w¢ associated with the cluster
def

The vectorwe = (1/k) 3 ¢ d; is themeanor centroidvector. The vector
uc is the direction of maximal variance, also known as the legttft singular
vector for the matrixM¢ — wcel. This direction corresponds to the largest
eigenvalue of the sample covariance matrix for the cluskéere M¢ is the
matrix of columns of data samples in clusterrhe computation ofic is the
most costly part of this step. It can be performed quicklpgsi Lanczos-based
solver for the singular values of the data matrix. This atpar is very efficient,
especially since low accuracy is all that is required, amdtake full advantage
of any sparsity present in the data.

The overall method can be summarized in Figure 1.1. As théodeis
“divisive” in nature, splitting each cluster into exactlyd pieces at each step,
the result is a binary tree whose leaf nodes are the souggntefisters.

We use the classical “iris” data collection (see [DH73, J24&l references
therein) to give a simple description of the structures poed by the PDDP
algorithm. This data collection consists of 150 flowers: bens 1-50 are of
type setosa numbers 51-10@ersicolor, and number 101-150irginica. To
illustrate the binary tree on a simple case, data from 6 flewethe set were
chosen: 1, 2,51, 52, 101, 102 with attributes shown in F@. 1.

Fig. 1.3 shows the binary tree that results when the PDDRitligois used
to to split this collection of six flowers into 3 clusters. Tiog box in Fig. 1.3
represents the root: it contains the indices of all six fl@evehe column
headedentroidis the centroid vector for all six flowers, and the column feshd
directionis the principal direction vector for all six flowers. The tdms two
children, one of which is a leaf node. In the leaf nodes, tlirecjpal direction
vectors are not computed because they are not needed. FantHeaf nodes,
shown are the centroid and principal direction vector fer fibur flowers 51,
52,101, 102. In this simple case, the PDDP algorithm paniid the flowers
consistently with their types. At each stage, the scattieievaas used to select
the next node to split, and an automatic stopping test eregdlaging this scatter
value (se&2.2 below). Though the scatter values are not shown in Figtie
interior non-leaf node had a higher scatter than its “s@ilieaf node.
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flower 1 2 51 52 101 102
type | setosa setosa versicolor versicolor virginica virginica
sepal length| 5.10  4.90 7.00 6.40 6.30 5.80
sepal width | 3.50  3.00 3.20 3.20 3.30 2.70
petal length| 1.40 1.40 4.70 4.50 6.00 5.10
petal width 0.20 0.20 1.40 1.50 2.50 1.90

Figure 1.2. Raw attributes for six flowers selected to illustrate the FPCAgorithm in Fig. 1.3.

flowers: 1, 2, 51, 52, 101, 102

centroid
5.92
3.15
3.85
1.28

direction
.295
-.026
.867
.399

< root node

/\

flowers: 1, 2|
centroid
5.00
3.25
1.40
0.20

/\

6.38
3.10
5.08
1.82

flowers: 51, 52, 101, 102
centroid

direction
-.313
-.005
.753
577

flowers: 51, 52

centroid
6.70
3.20
4.60
1.45

flowers: 101, 102

centroid
6.05
3.00
5.55
2.20

Figure 1.3. PDDP binary tree generated from the six irises shown in Fig. JEach box
represents a node, listing the indices of the flowers reptedeby that node together with the
average values of the attributes over all flowers in that nddentroid vectaf). In the two
non-leaf nodes, thegtincipal direction vectdt is shown, which is not computed at all for the

leaf nodes.

2.2.

Stopping Test

To make a working implementation, it is necessary to choase@ing test,
and in many domains, also a way to handle missing data.
Unless there is some other underlying reason to chooseiaytartnumber

of clusters, the following stopping test can be used. It leslvery successful
on text documents, giving a number of clusters approximatgual to that
computed by other methods tried. There are two componeritsetgeneral
stopping test, (a) a measure of the scatter for each indiViduster and (b)
a measure of the relative separation between the clustara.tdp-down al-
gorithm, the former should decrease while the latter shindtease. Hence
these values lead to a stopping test based on the ratio betivese two values.
Specifically, the method stops when the ratio of the indialdzluster scatter



6

(a) to the cluster separation measure (b) decreases belw@ratgreshold. It
only remains to determine how to compute these two quasititie

For cluster scatter (a), we use a quantity already compuotedédide which
cluster should be split at each stage (step 3 in Fig. 1.1)s 3tatter value is
defined by sum of squares of the distances from the individata sample
within a cluster to the cluster centroid:

ScatterVal ueg & Z(dj —we)? = [|[M¢ — wee |2, (1.2)
jec
which can be efficiently computed as the Frobenius norm ofliter matrix.
For the cluster separation measure (b), we use an apprasimahich can
be computed efficiently, even if it is less effective thanestmeasures. The
approximation is computed by collecting the centroid vecfor all the indi-
vidual clusters at each stage and computing their mutugtesaalue. That is,
letW & (w¢, --- wc, ) be then x ¢ matrix of all the collected centers of
thec individual clusters existing at stage Then their mutual scatter value is
c
Centroi dScatter & Z(wcj —w)? = |W —wel |7, (1.3)
7=1
wherew = 1We is the centroid of the collected centroids.
Then the stopping test adopted for the PDDP method is the rati

max?z] Scat ter Val uec; ]
: ~ < some fixed threshold value  (1.4)

Centroi dScatter

The threshold valueas usually set to 1, but it can be set to larger or smaller
values to obtain coarser or finer clusters, respectively.

2.3. Missing Values

Missing values often appear in datasets representing datastunknown
as opposed to “zero.” It is desireable to avoid having thedees affect the
placement of data samples into clusters. In the presencessing data, it is
a simple matter to compute the centroid vestqrby averaging each attribute
value only over the non-missing values. Once the centraitbvés computed,
we are able to replace each missing value with the correspgagerage value
for that attribute. With this replacement, the correspngdéntries inMq —
wce are zero and hence have no contribution to the principattiineuc or
the linear discriminant value (1.1). This replacementrisgerary, and once the
splitting process is completed each missing entry is resetoriginal ‘missing’
value before proceeding to the next split. In this fashiorginig values never
push samples into the left or right child of a cluster, but ¢heice of which
child cluster receives a given sample is based only on thewmiesing attribute
values.
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cluster: | 1 2 3
setosa 50 0 0
versicolor| 0 46 4
virginica 0 0 50

Figure 1.4. PDDP Clustering result (confusion matrix) on the entireadat of 150 irises,
using norm scaling on the input data and the scatter-bagethated stopping test (1.4) [with
a threshold value of 2]. Each entry in the confusion matria ount showing the number of
flowers of that type in the computed PDDP cluster. When thesthold value is set to 1, cluster
3 is split in two.

3. Performance

Performance testing has demonstrated PDDP provides highygclusters
at a relatively low computational cost. Most of the experimas been on
text documents, but the algorithm has also been successtlatasets of movie
ratings, texture images, toxicity databases, etc. In#usen we summarize the
main performance results from the experience on text dontsn&or example,
using the PDDP algorithm with the stopping test on the efiti® dataset, the
algorithm yielded the clusters shown in Fig. 1.4.

3.1. Speed

The cost of the PDDP method depends almost entirely on theotots
most expensive step, which is the computation of the praldiection vector.
The computation of this vector is carried out with a Lancbhased eigensolver
[GV96], whose cost is proportional to the number of nonzerimethe data
matrix. Thus the PDDP method scales linearly with the sizé®tata matrix.
This behavior is shown in Fig. 1.5, where it is seen that tist depends more
on the number of nonzeroes (the horizontal axis) than theahoumber of
documents or words. For example, Fig. 1.5 shows that thettiinebtain the
clusters shown in Fig. 1.6 was approximately 37 seconds @&rChallenge
workstation.

To compare the cost of PDDP with that of more classical methag ap-
plied PDDP, Hypergraph [HKKM98], K-means - LSI [BDO95], Alggneration
[DH73], and AutoClass [CS96] methods to a text documenectithn of 185
documents with 10538 word dictionary. The first three meshaltitook under
2 minutes a 185MHz Sun workstation, but Agglomeration antbélass each
took at least 30 minutes. Itis difficult to compare PDDP wiith inore classical
methods on large examples because, unlike PDDP, mostazghaséthods do
not scale linearly with the size of the problem. In our expemts on larger
datasets, unmodified Agglomeration and Autoclass becawt@hitively ex-
pensive. We remark that Agglomeration is a classical algariwhich gener-
ates a tree bottom-up that is very similar to that produceettmwvn by PDDP.
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Figure 1.5. Time to compute 16 clusters for various datasets usinggreezd MATLAB code
on an SGI challenge workstation (196 MHz), against the nurofx@onzeroes in the data matrix.

Agglomeration is well known to be very effective, but it degs on the choice
of “inter-cluster” separation, and it begins by computihg separation between
every pair of data samples (documents), treating themmagl&ticlusters.” This
is anO(m?) process, wheren is the number of data samples. By randomly
splitting the samples intg/m initial clusters, applying Agglomeration to each
cluster, and then agglomerating the resulting clusters,cam reduce the total
asymptotic running time t®(m) (see e.g. [CKPT92]), but the results depend
on the random initial splitting which leads to variability the final clustering.
Other algorithms also exist which can also lead to high gpedsults (e.g. k—
nearest neighbor or k-means) [GJJ96], but most suffer figmdost (e.g. near-
est neighbor) or depend critically on a good starting poimtiv is often chosen
randomly (e.g. k-meansBIrcH [ZRL96] incrementally builds a tree during a
single pass over the data, and sweeping over the data ireaettifforder could
change the result.



Scalable Hierarchical Algorithm 9

cluster: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
business % 0 o0 o 7 0 65 12 0 6 0 1 18 3 0 O
health 0150166172 3 0 1 1 O O O O O 2 0 O
politics 2 0 o0 0100 1 2 0 O 1 0 2 1 5 0 O
sports 0o 0 o0 o 162 35 0 0 1 0 O 0 42 0 O
technology g8 0 0 O O 1 14 24 0 8 0 1 4 0 O O
entertain. 24 0 0 4 11 4 22 61 135 131 148 159 143 137 204 206

Figure 1.6. Confusion Matrix showing how documents were distributet@different clusters
by topic labels. This data set has 2340 documents, and wed bas dictionary of 21839 words.
Further subdivisions are necessary to classify the lareation of entertainment documents
in this set.

method entropy
Agglomeration - norm scaling [DH73] 0.684
PDDP - norm scaling 0.689 mmmm
Hypergraph [HKKM98] 0.787 mmmm
K-means - LS| [BDO95] 0.837 mmm—m
PDDP -trinF scaling [SB88] 1.057 m—
AutoClass [CS96] 2.049 m——
Agglomeration -TrIDF scaling 2.339 I

Figure 1.7. Entropies by various methods on a set of 185 documents witB588Lword
dictionary.

3.2. Quiality of Clusters

There is no absolute scale to measure the quality of cluster®ne can see
the so-calledconfusion matrixor a dataset consisting of 2,340 text documents
using a dictionary of 21839 words in Fig. 1.6. The confusioatn® shows
how the different types of documents in six broad categatiee distributed
among 16 clusters.

To be able to compare the quality of the clusters produceddyfPwith that
arising from other methods, it is necessary to quantify tleasare of quality
using, for example, an entropy measure as in [Bol98, BG@&]. This entropy
measure requires that the documents be given categons labatlvance by
hand, and hence it is difficult to apply this measure to vergdadatasets.
However, for the dataset of 185 documents used to compammste of PDDP
with other methods mentioned above, it was relatively easgssign topic
labels to the documents. These labels were not used by ang olssification
methods discussed in this paper or for any of the perfornstests. The labels
were used only to measure the entropy of the resulting chiakea measure of
quality. The entropy of a given clustérs defined by

i
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wherec(i,C) is the number of times labél occurs in clustelC. A cluster
has zero entropy if the all the documents in the cluster hagesame label,
otherwise it has a positive entropy. The total entropy isvilegghted average
of the individual cluster entropies:

1 .
Crotal = — > ec - [number of documents in clustey.
S C

As a consequence, the lower the entropy the better the gualit

Various clustering methods were applied to this dataset tlam results are
shown in Fig. 1.7. Each method was forced to produce the sammber of
clusters in order to make the results consistent.

4. Scientific Data Set Examples

We illustrate how this clustering method performs on sdiendata sets by
using two examples, one drawn from gene expression datarendrawn from
an astronomical sky survey. The aim is to show the kinds afli®shat can
be obtained in an automated way from the PDDP clusteringrigdhge. The
goal is to allow easier exploration of large datasets, itatiihg the extraction
of new patterns and novel discoveries from the data. Theigésa of novel
discoveries themselves is beyond the scope of this paper.

4.1. Gene Expression Data

Recent years has seen the explosion of genetic data aeadkgaitronically.
Much genetic data is structural, such as the genetic segqsearfcbase pairs
making up the DNA in living cells. Recently, however, themsibeen much
interest in functional genetic data, such as showing whieheg are active
(i.e.expressedunder a variety of external conditions. Such informatian be
used to discover the purpose of many genes as well as tofidertitich genes
are prone to “misbehavior,” thereby causing disease. Famele, it is well
known that cancer is often caused by genes behaving impyagieing rise to
uncontrolled growth in cells. It has been found recently e cancers have
a distinctive gene signature which can be used to both refagndses and to
focus treatments. We use the data from one such study on tieesignature
for a certain class of lymphomas [AEDO] to illustrate the kinds of analysis
that the PDDP produces in an automated fashion.

The gene expression data in [AEDO] consists of microarray assays of
4026 genes on 96 different tissue samples obtained fromrpativith a certain
class of non-Hodgkins lymphoma. The goal was to identifyclgenes were
important for different kinds of cancer, both for the purpad distinguishing
between cancers and for the purpose of designing theragileset for each
particular cancer. The data consists aft@6 x 96 matrix of attribute values
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Level Tree of tissue clusters (using only 1485 genes)

96 06 DLCL-0036-OCT +17
31 -5 95 04 DLCL-0007 +06
94 05 DLCL-0031 +16
15 93 16 DLCL-0051 —02
43 55 92 41 DLCL-0033 —01
32 91 40 DLCL-0048 +03
90 15 DLCL-0034 16
7 44 55 89 09 DLCL-0029 -05
88 13 DLCL-0008 —09
T 87 50 Bld B cells—IgM+CDA40L 24h
23 86 63 Thymic T cells—Fetal CD4+ +P Stim
38 135 8559 BId T cells-Adult Naive CD4+ |+P Stim
16 84 60 Cord BId T cells-Neonatal Naive 1+P Stim
83 70 SUDHL5
49 -5 8268 OCI Ly12
24 81 01 OCI Ly3 +13
[ 80690CILy13.2
50 79 65 WSU
78 66 Jurkat
77 67 U937
76 37 DLCL-0020 -03
75 17 DLCL-0011 +02
74 20 DLCL-0049 +22
73 22 DLCL-0039 +18
72 23 Lymph Node
71 35 DLCL-0002 +11
70 34 DLCL-0013 +05
69 39 DLCL-0014 +15
68 33 DLCL-0024 —23
67 32 DLCL-0027 +04
66 30 DLCL-0005 +01
65 36 DLCL-0016 +10
64 28 DLCL-0015 —19
8 90 118 63 29 DLCL-0026 —21
62 31 DLCL-0023 —20
61 47 DLCL-0021 +09
57 50 60 43 DLCL-0040 +14
17 59 44 DLCL-0017 +12
58 19 DLCL-0006 +23

14 55 08 DLCL—-0004 -06

54 - 52 46 DLCL-0012 -24

onsi
40 73 48 26 DLCL-0037 —-11

-04
{22 40 58 BId T cells—Adult Naive CD4+ Unstim
48 108 39 61 BId T cells—Neonatal Naive CD4+ Unstim
5 38 62 Thymic T cells—Fetal CD4+ Unstim
33 37 02 OCI Ly10 +20
19 36 03 DLCL-0042 +19
34 35 49 Bld B cells-IgM+CD40L high 48h
34 48 Bld B cells—| IgM+CD4OL low 48h
12 33 51 Bld B cells-IgM
59 130 32 52 Bld B cells-IgM+IL—4 24h
20 31 53 Bld B cells—| IgM+CD40L+IL 4 24h
113 30 25 Bld B cells-IgM

6h
114 28 57 Bld B cells—| IgM+CD4OL+IL 4 6h
3 27 54 Bld B cells-IgM+IL-4 6h
26 11 Tonsil GC Centroblasts -07
29 2510 Tonsil GC B
24 81 Bld B cells—memory CD27+
42 23 79 FL-6-CD19+
9 22 80 FL-5-CD19+
2172 FL-9
20 73 FL-9-CD19+
30 19 75 FL-10-CD19+
46 18 74 FL-12-CD19+
17 76 FL 10
6 116 16 7
15 78 FL 11 CD19+
14 85 CL| 0
1384 Cord Bld B cells
12 83 Bld B cells
11 82 Bld B cells—naive CD27-
10 90 CLL-65
09 95 CLL-52
0894 CLL-39
07 86 CLL-68
06 87 CLL-9
0593 CLL-13
04 91 CLL-71-Richter’'s
0392 CLL-71
02 88 CLL-14
0189 CLL-51

10

Figure1.8. PDDP tree using the 1485 most distinctive genes from®26 x 96 gene expression
matrix from [AED"00]. Node 9 is illustrated in Fig. 1.9.
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{ 29 (left child)
/ p:HERE

I \ 30 (right child)
=====|6 (parent) -
I

|
\ 110 (sibling)
—

Most Distinctive Attributes from Principal Direction
Vector (top 20 entries)

.0977 19370 *Immunoglobulin J chain; Clone=161023

.0936 18293 *Immunoglobulin J chain; Clone=1240978
.0834 19279 (Unknown UG Hs.49614 ESTs; Clone=814622)
.0824 19254 *CD10=CALLA=Neprilysin=enkepalinase; Clone
.0799 18388 *CD10=CALLA=Neprilysin=enkepalinase; Clone
.0777 19268 *BCL-6; Clone=712395

.0758 16720 *BCL-7A; Clone=306139

.0751 16299 *Immunoglobulin J chain; Clone=117806

.0740 19460 *BCL-6; Clone=1340526

.0733 13394 (Unknown UG Hs.120716 ESTs; Clone=1334260)
19238 *TTG-2=Rhombotin-2=translocated in t(11;14)
.0715 14423 *Unknown; Clone=1353041

.0713 19252 (Similar to FXI-T1=FX-induced thymoma trans
.0712 18509 *BCL-7A; Clone=1337241

.0711 19312 *Unknown UG Hs.28355 ESTs; Clone=703735
.0707 15564 (Lamin B receptor (LBR); Clone=1370570)
.0700 21332 *Unknown UG Hs.23017 ESTs; Clone=1319066
.0696 14304 *FMR2=Fragile X mental retardation 2=putati
.0677 15864 *CD10=CALLA=Neprilysin=enkepalinase; Clone=
.0675 14573 (Similar to HuEMAP=homolog of echinoderm mi

+ 4+ + +

+

[eloloNololololololololoNoNolololoNoNoNo]
(@)
\]
N
=

Figure 1.9. Excerpt from web browser display of Node 9 in the tree of Fi§. gdhowing the
genes distinguishing this Node from its sibling node. Thalsgl “+” has been added to identify
the germinal centre B cell genes, (known to differ in FL congplato CLL).

in the rangd 2, 2] representing logarithms of the activity of each gene within
each tissue. Approximately 5% of the data is missing becatfsilts during
the collection of the experimental data. The authors of [ABD] applied
hierarchical agglomeration to obtain a tree structure erBhtissue samples,
and then manually examined the clusters within that tredentify significant
genes. PDDP also produces a very similar tree, but top-dastead of bottom-
up.

The PDDP tree can be used in at least two ways on this datasesifiplest
is to use the principal direction information to identify iwh genes are signifi-
cant in splittinganywheren the tree. One may remove any gene for which the
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corresponding entry (weight) in any principal directiorctige is small in abso-
lute value. Such genes are never significant in splittingistet into subclusters
using the inner product (1.1). Therefore the genes thatireara more useful
in distinguishing among the tissues samples. In this ewxpart, we kept the
genes whose weight in any principal direction vector exseegiven threshold
value. This value was chosen by noting that if all the entmea principal
direction vector had equal weight, the weight would haveda k/n because
the vector is normalized to make the sum of squares equal fBolextract
the significant genes, a value of 3 times this neutral valugchasen, namely
3/+/n = .078. This reduced the number of genes from 4062 down to 1485,
and PDDP was then applied to this reduced set (96 tissues3s/gehes). The
PDDP trees produced using all 4026 genes and with only 14&&sg&ere very
similar, and we show the latter tree in Fig. 1.8.

To allow a user to explore the tree and identify these ditiagenes, the
software converts the tree from the internal represemtatito an HTML doc-
ument which can be browsed using any standard web browsem Agample,
an excerpt from a web browser display is reproduced in F&y.showing the
distinctive genes for the cluster shown in bold in Fig. 1.8.cQurse, there is
no intention to claim that the genes listed in Fig. 1.9 arsighificant for this
cluster or any other cluster, but we do remark that many ofithed genes
were specifically identified in [AEDOQO] as germinal centre B cells, known to
distinguish the FL tissue samples in this cluster from thé @&sue samples
in the sibling cluster.

4.2. Astronomical Sky Survey

The advent of high-powered computational facilities haggirise to au-
tomated surveys of the sky with a view of cataloging and/assifying the
enormous number of objects that can be observed from Earftlwttéer goal of
such surveys is to allow automated or semi-automated extpdorto permit one
to find “interesting” objects or clusters of objects for hat study. Automated
clustering methods would permit the exploration of thiswenwus dataset in
many dimensions, allowing astronomers to identify digtircobjects and rela-
tionsips between objects. In [PM9%[}-trees were proposed as a way to speed
up a k-means clustering of Sloan Digital Sky Survey (a mocemeautomated
sky survey) data. Though computed using different algoritkkd-trees can be
thought of as a special case of PDDP trees in which each seypghgperplane
is normal to a coordinate axis. Hence PDDP trees share matheaame
favorable properties, including yielding good seeds fa kkmeans method.
This is an area which requires further research.

Preliminary experiments were carried out with data derivech the Min-
nesota Automated Plate Scan (APS) [PHI3, Web98]. This is a project to
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digitize the contents of photographic plates of the heayem the Palomar
Observatory Sky Survery (POSS |) originally produced intf80s, before the
advent of artificial satellites.

The size of this data set spurred the development of an ectref version
of the PDDP method, since the data set is too large to be laatechemory at
one time. This out-of-core version of the PDDP method hag besigned for
the situation where there is a large number of data sampléselatively few
attributes. Suppose the number of attributeis much less than the number
of data samples:, so that the data matrikI is very wide but not tall. In the
following we usee & (1 --- 1)’ to denote a column vector of all ones of
appropriate size. To compute the centroid veeter= %Mce (wherek is the
size of the clustee), it is necessary to make a pass over the entire mbdigx
To compute the principal direction vectag, to the low accuracy needed for
this algorithm, it suffices to accumulate thex n matrix

A d:(af (Mc — chT)(Mc — chT)T = McMg -7 — ZT + chWZ,
whereZ & Mcew! = kwcw}. Thus the matrixA is
A= MCMZ - I{IWCWZ

With one pass through the data, column by column, we can adeeM ;M
=2 jec d;d;, andwc < (1/k) >_jec dj, and use the result to fors without
any further access to the data. By saving the columns assdoidth each
cluster in a separate scratch file as each cluster is forrhedgydsses over the
data matrix can be made very fast.

As a small test case to demonstrate the out-of-core meth®dsed a small
sample from the APS consisting of 212089 galactic objectsh avith 26 at-
tribute values. Using a 195 MHz SGI challenge machine (k&lbtold machine
chosen to match that used to produce the timings in Fig. hdpaMatlab im-
plementation of the out-of-core algorithm, a PDDP tree W0 clusters can
be computed in under 10 minutes. Of course it needs enougtthdaisk space
to store two copies of the data set, but the access to eachatdbg data is
sequential and hence reasonably efficient. Of course wihgimmemory and
a compiled version, this can be computed much more effigigrnth a standard
in-core algorithm, but this experiment serves to demotestrae practicality of
the out-of-core algorithm. To visualize the results, weared all the centroids
for the 4000 clusters and displayed them side by side usilog-coding to dis-
play the magnitude of each attribute value. The result isvehio Fig. 1.10,
where it is seen that certain attributes appear to vary hegetver a portion of
the data. The interpretation of these results is still aivaetrea of research,
especially an analysis of the utility of the encodings ugdithis digitization of
the APS data set.
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5. Conclusion

This brief introduction to the method of Principal Directi®ivisive Par-
titioning is intended to show that this algorithm is a usefdl in situations
which call for unsupervised clustering of large data cdiltets which can be
represented using very high dimensional numerical veciidie PDDP method
operates on the entire data collection as a unit, produdusjers of a quality
comparable with those of the best alternative methods, fbem @t less cost.
This brief description should be sufficient to show that tEDIP algorithm
can be adapted to a wide variety of datasets and differamtmins, such as
the presence of missing data, as well as providing usefaknmétion on the
factors that were most significant in yielding the clustdvat tare eventually
computed. The examples include some hints on the kindsarfrirdtion which
can be extracted from the PDDP tree, both to explain thetseanH to extract
the most significant parts of the dataset.

Of course, there are limitations to the PDDP algorithm. Th@rtimitations
are PDDP’s sensitivity to scaling of the data and the needte lall the data
available at once. The sensitivity to scaling is a naturaseguence of the
way the data is represented with vectors of real numbersaapdalgorithm
using such a representation will suffer from the same litisita The second
limitation is the object of current research, where we haeegpal of allowing
the tree to be computed using a fraction of the data and uqugdte tree as new
data becomes available.
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