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ASCALABLEHIERARCHICALALGORITHM FOR
UNSUPERVISED CLUSTERING

Daniel Boley

Abstract Top-down hierarchical clustering can be done in a scalable way. Here we describe
a scalable unsupervised clustering algorithm designed forlarge datasets from a
variety of applications. The method constructs a tree of nested clusters top-down,
where each cluster in the tree is split according to the leading principal direction.
We use a fast principal direction solver to achieve a fast overall method. The
algorithm can be applied to any dataset whose entries can be embedded in a high
dimensional Euclidean space, and takes full advantage of any sparsity present
in the data. We show the performance of the method on text document data, in
terms of both scalability and quality of clusters. We demonstrate the versatility of
the method in different domains by showing results from textdocuments, human
cancer gene expression data, and astrophysical data. For that last domain, we use
an out of core variant of the underlying method which is capable of efficiently
clustering large datasets using only a relatively small memory partition.

Keywords: Unsupervised Clustering, hierarchical clustering, text mining, genomics, sparse
matrices, principal directions

1. Introduction

Explosive growth in the volume of data available electronically has created
a need to be able to automatically explore large data collections. Unsuper-
vised clustering algorithms are classical tools which haveincreasingly been
reexamined for their applicability to data mining efforts.

Ideally, these algorithms would be fast and scalable, require little or no a-
priori understanding of the data contents or attributes andneed no costly graph
building or association rule preprocessing. In many applications it would be
useful if the algorithm could also impose a natural hierarchy on the data set,
compute properties for the set as a whole, handle cases whereattribute informa-
tion is missing, and be independent of the order in which the data is presented.
Principal Direction Divisive Partitioning (PDDP) is such an algorithm [Bol98].
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Originally applied in the context of text documents retrieved from the WWW
as part of the WebACE project [BGG+99b], PDDP has proven to be computa-
tionally efficient while providing high quality clusters. In addition to producing
a partitioning of the data, the PDDP method

yields weights showing which attributes were most significant in distin-
guishing the contents of one cluster from another,

implements an automated stopping test based on the distribution of the
data,

allows a straightforward way to process datasets with missing attribute
values,

generates a hierarchical tree of clusters which can easily be updated lo-
cally, and

is independent of any particular ordering of the input data,without using
any randomized starting conditions.

The method has been successfully applied in a variety of application domains
in addition to text documents, such as vision-based textureanalysis and movie
recommendation services.

2. The PDDP Algorithm

The PDDP algorithm employs the vector space model, where each data sam-
ple is represented by a vector of numerical attribute values. The data samples
are embedded in a very high dimension Euclidean space, and the algorithm par-
titions this space with a collection of hyperplanes calculated to achieve good
separation among the data samples. The data space is separated by a hyper-
plane into two half-spaces. The process continues recursively by separating
each half-space with new hyperplanes computed independently. The method
builds a binary tree of many polytope regions from the top down, until a stopping
test is satisfied.

Since the PDDP algorithm operates directly with the collection of numerical
attribute vectors, onlya limitedamount of preprocessing is necessary togenerate
the input data necessary for PDDP. This method was originally developed as part
of the WebACE Project [BGG+99b] in the context of text documents where each
document is represented by a scaled vector of word counts. The preprocessing
consisted of removing the stop words and common word endings, and counting
the number of occurrences of each word in each document. The result was ann-
vectord of word counts associated with each document. All these vectors were
combined into a singlen �m matrixM in which each column corresponded
to a document and each row corresponded to a particular word.In this domain,
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Algorithm PDDP.
0. Start with n�m matrixM of vectors, one for each

data sample, and a desired number of clusters
max.
1. Initialize Binary Tree with a single Root Node.
2. For 
 = 2; 3; : : : ; 
max do
3. Selectleaf nodeC with largestScatterValue (1.2),

andL & R := left & right children ofC [step (a) in the text].
4. ComputevC = gC(MC) � uTC (MC �wCeT )
5. For i 2 C, if vi � 0, assign data samplei to L,

else assign it toR [step (b) in the text].
6. Result: A binary tree with
max leaf nodes

forming a partitioning of the entire data set.

Figure 1.1. Summary of the method to do a full build of the PDDP tree from scratch. HereMC is the matrix of data vectors for the data samples in clusterC, andwC;uC are the centroid
and principal direction vectors, respectively forC.

the matrix was generally very sparse, often less than 1% of the entries were
nonzero. This sparsity results in a very fast and memory efficient method for
carrying out the splitting process. However, this algorithm is not restricted to
text domains and here we describe it in general terms.

2.1. Basic Algorithm Description

In the general situation, each data sample is represented byann-vector of
attribute values, and all these vectors (treated as column vectors) are assembled
into ann�m data matrixM. The clustering via PDDP is a recursive process
that operates directly on the matrixM. PDDP starts with a single “cluster”
encompassing the entire dataset, divides this cluster intosubclusters recursively
using a two step process. At each stage, PDDP (a) selects a cluster to split, and
(b) splits that cluster into two subclusters which become children of the original
cluster. The result is a binary tree hierarchy imposed on thedata collection. At
everystage, the leaf nodes in the tree form a partition of theentire data collection.
In the process of going to the next stage, one of those leaf nodes is selected
and split in two. The behavior of the algorithm is controlledby the methods
used to accomplish steps (a) and (b), and these methods are independent of one
another. For step (a), PDDP usually selects the cluster withthe largestscatter
value (defined in the next subsection), which is the sum of all the squared
distances from each data vector to the cluster centroidw, though any suitable
criterion can be used.

Once selected in step (a), the node is split in step (b), and this splitting process
is the single most expensive step in the whole computation. The key to the



4

computational efficiency of the entire approach is the efficient computation of
the vectors needed in this step. Suppose PDDP were to split clusterC consisting
of k data samples of attribute values. It places each data sampled in the left or
right child of clusterC according to the sign of the linear discriminant functiongC(d) = uTC (d�wC) =Xi2C ui(di � wi); (1.1)

whereuC; wC are vectors associated withC to be determined. IfgC(d) � 0, the
data sampled is placed in the new left child, otherwised is placed in the new
right child. Thus the behavior of the algorithm at each node in the binary tree
is determined entirely by the two vectorsuC; wC associated with the clusterC.

The vectorwC def= (1=k)Pj2C dj is themeanor centroidvector. The vectoruC is the direction of maximal variance, also known as the leading left singular
vector for the matrixMC � wCeT . This direction corresponds to the largest
eigenvalue of the sample covariance matrix for the cluster.HereMC is the
matrix of columns of data samples in clusterC. The computation ofuC is the
most costly part of this step. It can be performed quickly using a Lanczos-based
solver for the singular values of the data matrix. This algorithm is very efficient,
especially since low accuracy is all that is required, and can take full advantage
of any sparsity present in the data.

The overall method can be summarized in Figure 1.1. As the method is
“divisive” in nature, splitting each cluster into exactly two pieces at each step,
the result is a binary tree whose leaf nodes are the sought-after clusters.

We use the classical “iris” data collection (see [DH73, p218] and references
therein) to give a simple description of the structures produced by the PDDP
algorithm. This data collection consists of 150 flowers: numbers 1-50 are of
type setosa, numbers 51-100versicolor, and number 101-150virginica. To
illustrate the binary tree on a simple case, data from 6 flowers in the set were
chosen : 1, 2, 51, 52, 101, 102 with attributes shown in Fig. 1.2.

Fig. 1.3 shows the binary tree that results when the PDDP algorithm is used
to to split this collection of six flowers into 3 clusters. Thetop box in Fig. 1.3
represents the root: it contains the indices of all six flowers. The column
headedcentroidis the centroid vector for all six flowers, and the column headed
direction is the principal direction vector for all six flowers. The root has two
children, one of which is a leaf node. In the leaf nodes, the principal direction
vectors are not computed because they are not needed. For thenon-leaf nodes,
shown are the centroid and principal direction vector for the four flowers 51,
52, 101, 102. In this simple case, the PDDP algorithm partitioned the flowers
consistently with their types. At each stage, the scatter value was used to select
the next node to split, and an automatic stopping test employed using this scatter
value (seex2.2 below). Though the scatter values are not shown in Fig. 1.3, the
interior non-leaf node had a higher scatter than its “sibling” leaf node.
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flower 1 2 51 52 101 102
type setosa setosa versicolor versicolor virginica virginica

sepal length 5.10 4.90 7.00 6.40 6.30 5.80
sepal width 3.50 3.00 3.20 3.20 3.30 2.70
petal length 1.40 1.40 4.70 4.50 6.00 5.10
petal width 0.20 0.20 1.40 1.50 2.50 1.90

Figure 1.2. Raw attributes for six flowers selected to illustrate the PDDP algorithm in Fig. 1.3.

�����������9 XXXXXXXXXXXz
���������9 XXXXXXXXXz

(= root node

flowers: 1, 2, 51, 52, 101, 102

centroid direction5.92 .2953.15 -.0263.85 .8671.28 .399
flowers: 1, 2

centroid5.003.251.400.20 flowers: 51, 52, 101, 102

centroid direction6.38 -.3133.10 -.0055.08 .7531.82 .577
flowers: 101, 102

centroid6.053.005.552.20flowers: 51, 52

centroid6.703.204.601.45
Figure 1.3. PDDP binary tree generated from the six irises shown in Fig. 1.2. Each box
represents a node, listing the indices of the flowers represented by that node together with the
average values of the attributes over all flowers in that node(“centroid vector”). In the two
non-leaf nodes, the “principal direction vector” is shown, which is not computed at all for the
leaf nodes.

2.2. Stopping Test

To make a working implementation, it is necessary to choose astopping test,
and in many domains, also a way to handle missing data.

Unless there is some other underlying reason to choose a particular number
of clusters, the following stopping test can be used. It has been very successful
on text documents, giving a number of clusters approximately equal to that
computed by other methods tried. There are two components tothe general
stopping test, (a) a measure of the scatter for each individual cluster and (b)
a measure of the relative separation between the clusters. In a top-down al-
gorithm, the former should decrease while the latter shouldincrease. Hence
these values lead to a stopping test based on the ratio between these two values.
Specifically, the method stops when the ratio of the individual cluster scatter
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(a) to the cluster separation measure (b) decreases below a given threshold. It
only remains to determine how to compute these two quantities.

For cluster scatter (a), we use a quantity already computed to decide which
cluster should be split at each stage (step 3 in Fig. 1.1). This scatter value is
defined by sum of squares of the distances from the individualdata sample
within a cluster to the cluster centroid:

ScatterValueC def= Xj2C(dj �wC)2 = kMC �wCeT k2F ; (1.2)

which can be efficiently computed as the Frobenius norm of thecluster matrix.
For the cluster separation measure (b), we use an approximation which can

be computed efficiently, even if it is less effective than other measures. The
approximation is computed by collecting the centroid vectors for all the indi-
vidual clusters at each stage and computing their mutual scatter value. That is,
letW def= (wC1 � � � wC
 ) be then� 
 matrix of all the collected centers of
the
 individual clusters existing at stage
. Then their mutual scatter value is

CentroidScatter
def= 
Xj=1(wCj � ew)2 = kW � eweT k2F ; (1.3)

whereew = 1
We is the centroid of the collected centroids.
Then the stopping test adopted for the PDDP method is the ratiomax
j=1 ScatterValueCj

CentroidScatter
� some fixed threshold value: (1.4)

The threshold valueis usually set to 1, but it can be set to larger or smaller
values to obtain coarser or finer clusters, respectively.

2.3. Missing Values

Missing values often appear in datasets representing data that is unknown
as opposed to “zero.” It is desireable to avoid having these values affect the
placement of data samples into clusters. In the presence of missing data, it is
a simple matter to compute the centroid vectorwC by averaging each attribute
value only over the non-missing values. Once the centroid vector is computed,
we are able to replace each missing value with the corresponding average value
for that attribute. With this replacement, the corresponding entries inMC �wCeT are zero and hence have no contribution to the principal directionuC or
the linear discriminant value (1.1). This replacement is temporary, and once the
splitting process is completed each missing entry is reset to its original ‘missing’
value before proceeding to the next split. In this fashion missing values never
push samples into the left or right child of a cluster, but thechoice of which
child cluster receives a given sample is based only on the non-missing attribute
values.
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cluster: 1 2 3
setosa 50 0 0
versicolor 0 46 4
virginica 0 0 50

Figure 1.4. PDDP Clustering result (confusion matrix) on the entire dataset of 150 irises,
using norm scaling on the input data and the scatter-based automated stopping test (1.4) [with
a threshold value of 2]. Each entry in the confusion matrix isa count showing the number of
flowers of that type in the computed PDDP cluster. When the threshold value is set to 1, cluster
3 is split in two.

3. Performance

Performance testing has demonstrated PDDP provides high quality clusters
at a relatively low computational cost. Most of the experience has been on
text documents, but the algorithm has also been successful on datasets of movie
ratings, texture images, toxicity databases, etc. In this section we summarize the
main performance results from the experience on text documents. For example,
using the PDDP algorithm with the stopping test on the entire“iris” dataset, the
algorithm yielded the clusters shown in Fig. 1.4.

3.1. Speed

The cost of the PDDP method depends almost entirely on the cost of its
most expensive step, which is the computation of the principal direction vector.
The computation of this vector is carried out with a Lanczos-based eigensolver
[GV96], whose cost is proportional to the number of nonzeroes in the data
matrix. Thus the PDDP method scales linearly with the size ofthe data matrix.
This behavior is shown in Fig. 1.5, where it is seen that the cost depends more
on the number of nonzeroes (the horizontal axis) than the actual number of
documents or words. For example, Fig. 1.5 shows that the timeto obtain the
clusters shown in Fig. 1.6 was approximately 37 seconds on anSGI Challenge
workstation.

To compare the cost of PDDP with that of more classical methods, we ap-
plied PDDP, Hypergraph [HKKM98], K-means - LSI [BDO95], Agglomeration
[DH73], and AutoClass [CS96] methods to a text document collection of 185
documents with 10538 word dictionary. The first three methods all took under
2 minutes a 185MHz Sun workstation, but Agglomeration and Autoclass each
took at least 30 minutes. It is difficult to compare PDDP with the more classical
methods on large examples because, unlike PDDP, most classical methods do
not scale linearly with the size of the problem. In our experiments on larger
datasets, unmodified Agglomeration and Autoclass became prohibitively ex-
pensive. We remark that Agglomeration is a classical algorithm which gener-
ates a tree bottom-up that is very similar to that produced top-down by PDDP.
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Figure 1.5. Time to compute 16 clusters for various datasets using interpreted MATLAB code
on an SGI challenge workstation (196 MHz), against the number of nonzeroes in the data matrix.

Agglomeration is well known to be very effective, but it depends on the choice
of “inter-cluster” separation, and it begins by computing the separation between
every pair of data samples (documents), treating them as “singlet clusters.” This
is anO(m2) process, wherem is the number of data samples. By randomly
splitting the samples into

pm initial clusters, applying Agglomeration to each
cluster, and then agglomerating the resulting clusters, one can reduce the total
asymptotic running time toO(m) (see e.g. [CKPT92]), but the results depend
on the random initial splitting which leads to variability in the final clustering.

Other algorithms also exist which can also lead to high quality results (e.g. k–
nearest neighbor or k–means) [GJJ96], but most suffer from high cost (e.g. near-
est neighbor) or depend critically on a good starting point which is often chosen
randomly (e.g. k-means).Bir
h [ZRL96] incrementally builds a tree during a
single pass over the data, and sweeping over the data in a different order could
change the result.
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cluster: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
business 90 0 0 0 7 0 5 12 0 6 0 1 18 3 0 0
health 0 150 166 171 3 0 1 1 0 0 0 0 0 2 0 0
politics 2 0 0 0 100 1 2 0 0 1 0 2 1 5 0 0
sports 0 0 0 0 1 62 35 0 0 1 0 0 0 42 0 0
technology 8 0 0 0 0 1 14 24 0 8 0 1 4 0 0 0
entertain. 24 0 0 4 11 4 22 61 135 131 148 159 143 137 204 206

Figure 1.6. Confusion Matrix showing how documents were distributed to16 different clusters
by topic labels. This data set has 2340 documents, and was based on a dictionary of 21839 words.
Further subdivisions are necessary to classify the large collection of entertainment documents
in this set.

method entropy
Agglomeration - norm scaling [DH73] 0.684
PDDP - norm scaling 0.689
Hypergraph [HKKM98] 0.787
K-means - LSI [BDO95] 0.837
PDDP -tfidf scaling [SB88] 1.057
AutoClass [CS96] 2.049
Agglomeration -tfidf scaling 2.339

Figure 1.7. Entropies by various methods on a set of 185 documents with a 10538 word
dictionary.

3.2. Quality of Clusters

There is no absolute scale to measure the quality of clusters, but one can see
the so-calledconfusion matrixfor a dataset consisting of 2,340 text documents
using a dictionary of 21839 words in Fig. 1.6. The confusion matrix shows
how the different types of documents in six broad categorieswere distributed
among 16 clusters.

To be able to compare the quality of the clusters produced by PDDP with that
arising from other methods, it is necessary to quantify the measure of quality
using, for example, an entropy measure as in [Bol98, BGG+99a]. This entropy
measure requires that the documents be given category labels in advance by
hand, and hence it is difficult to apply this measure to very large datasets.
However, for the dataset of 185 documents used to compare thecosts of PDDP
with other methods mentioned above, it was relatively easy to assign topic
labels to the documents. These labels were not used by any of the classification
methods discussed in this paper or for any of the performances tests. The labels
were used only to measure the entropy of the resulting clusters as a measure of
quality. The entropy of a given clusterC is defined byeC = �Xi � 
(i; C)Pi 
(i; C)� � log� 
(i; C)Pi 
(i; C)� ;
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where
(i; C) is the number of times labeli occurs in clusterC. A cluster
has zero entropy if the all the documents in the cluster have the same label,
otherwise it has a positive entropy. The total entropy is theweighted average
of the individual cluster entropies:etotal = 1mXC eC � [number of documents in clusterC℄:
As a consequence, the lower the entropy the better the quality.

Various clustering methods were applied to this dataset, and the results are
shown in Fig. 1.7. Each method was forced to produce the same number of
clusters in order to make the results consistent.

4. Scientific Data Set Examples

We illustrate how this clustering method performs on scientific data sets by
using two examples, one drawn from gene expression data and one drawn from
an astronomical sky survey. The aim is to show the kinds of results that can
be obtained in an automated way from the PDDP clustering algorithm. The
goal is to allow easier exploration of large datasets, facilitating the extraction
of new patterns and novel discoveries from the data. The description of novel
discoveries themselves is beyond the scope of this paper.

4.1. Gene Expression Data

Recent years has seen the explosion of genetic data available electronically.
Much genetic data is structural, such as the genetic sequences of base pairs
making up the DNA in living cells. Recently, however, there has been much
interest in functional genetic data, such as showing which genes are active
(i.e.expressed) under a variety of external conditions. Such information can be
used to discover the purpose of many genes as well as to identify which genes
are prone to “misbehavior,” thereby causing disease. For example, it is well
known that cancer is often caused by genes behaving improperly giving rise to
uncontrolled growth in cells. It has been found recently that some cancers have
a distinctive gene signature which can be used to both refine diagnoses and to
focus treatments. We use the data from one such study on the gene signature
for a certain class of lymphomas [AED+00] to illustrate the kinds of analysis
that the PDDP produces in an automated fashion.

The gene expression data in [AED+00] consists of microarray assays of
4026 genes on 96 different tissue samples obtained from patients with a certain
class of non-Hodgkins lymphoma. The goal was to identify which genes were
important for different kinds of cancer, both for the purpose of distinguishing
between cancers and for the purpose of designing therapies tailored for each
particular cancer. The data consists of a4026 � 96 matrix of attribute values
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01 89 CLL−51                                  
02 88 CLL−14                                  
03 92 CLL−71                                  
04 91 CLL−71−Richter’s                        
05 93 CLL−13                                  
06 87 CLL−9                                   
07 86 CLL−68                                  
08 94 CLL−39                                  
09 95 CLL−52                                  
10 90 CLL−65                                  
11 82 Bld B cells−naive CD27−                 
12 83 Bld B cells                             
13 84 Cord Bld B cells                        
14 85 CLL−60                                  
15 78 FL−11−CD19+                             
16 77 FL−11                                   
17 76 FL−10                                   
18 74 FL−12−CD19+                             
19 75 FL−10−CD19+                             
20 73 FL−9−CD19+                              
21 72 FL−9                                    
22 80 FL−5−CD19+                              
23 79 FL−6−CD19+                              
24 81 Bld B cells−memory CD27+                
25 10 Tonsil GC B −08                         
26 11 Tonsil GC Centroblasts −07              
27 54 Bld B cells−IgM+IL−4 6h                 
28 57 Bld B cells−IgM+CD40L+IL−4 6h           
29 56 Bld B cells−IgM+CD40L 6h                
30 55 Bld B cells−IgM 6h                      
31 53 Bld B cells−IgM+CD40L+IL−4 24h          
32 52 Bld B cells−IgM+IL−4 24h                
33 51 Bld B cells−IgM 24h                     
34 48 Bld B cells−IgM+CD40L low 48h           
35 49 Bld B cells−IgM+CD40L high 48h          
36 03 DLCL−0042 +19                           
37 02 OCI Ly10 +20                            
38 62 Thymic T cells−Fetal CD4+ Unstim        
39 61 Bld T cells−Neonatal Naive CD4+ Unstim  
40 58 Bld T cells−Adult Naive CD4+ Unstim     
41 96 DLCL−0009 −04                           
42 12 SUDHL6 −15                              
43 64 OCI Ly1                                 
44 71 DLCL−0041 +21                           
45 14 DLCL−0052 −12                           
46 25 DLCL−0018 −14                           
47 27 DLCL−0010 −18                           
48 26 DLCL−0037 −11                           
49 21 Tonsil                                  
50 24 DLCL−0001 −10                           
51 38 DLCL−0003 −22                           
52 46 DLCL−0012 −24                           
53 18 DLCL−0032 −13                           
54 07 DLCL−0030 −17                           
55 08 DLCL−0004 −06                           
56 42 DLCL−0025 +08                           
57 45 DLCL−0028 +07                           
58 19 DLCL−0006 +23                           
59 44 DLCL−0017 +12                           
60 43 DLCL−0040 +14                           
61 47 DLCL−0021 +09                           
62 31 DLCL−0023 −20                           
63 29 DLCL−0026 −21                           
64 28 DLCL−0015 −19                           
65 36 DLCL−0016 +10                           
66 30 DLCL−0005 +01                           
67 32 DLCL−0027 +04                           
68 33 DLCL−0024 −23                           
69 39 DLCL−0014 +15                           
70 34 DLCL−0013 +05                           
71 35 DLCL−0002 +11                           
72 23 Lymph Node                              
73 22 DLCL−0039 +18                           
74 20 DLCL−0049 +22                           
75 17 DLCL−0011 +02                           
76 37 DLCL−0020 −03                           
77 67 U937                                    
78 66 Jurkat                                  
79 65 WSU1                                    
80 69 OCI Ly13.2                              
81 01 OCI Ly3 +13                             
82 68 OCI Ly12                                
83 70 SUDHL5                                  
84 60 Cord Bld T cells−Neonatal Naive I+P Stim
85 59 Bld T cells−Adult Naive CD4+ I+P Stim   
86 63 Thymic T cells−Fetal CD4+ I+P Stim      
87 50 Bld B cells−IgM+CD40L 24h               
88 13 DLCL−0008 −09                           
89 09 DLCL−0029 −05                           
90 15 DLCL−0034 −16                           
91 40 DLCL−0048 +03                           
92 41 DLCL−0033 −01                           
93 16 DLCL−0051 −02                           
94 05 DLCL−0031 +16                           
95 04 DLCL−0007 +06                           
96 06 DLCL−0036−OCT +17                       

Level Tree of tissue clusters (using only 1485 genes)

Figure 1.8. PDDP tree using the 1485 most distinctive genes from the4026�96gene expression
matrix from [AED+00]. Node 9 is illustrated in Fig. 1.9.
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hinoderm mi
Figure 1.9. Excerpt from web browser display of Node 9 in the tree of Fig. 1.8 showing the
genes distinguishing this Node from its sibling node. The symbol “+” has been added to identify
the germinal centre B cell genes, (known to differ in FL compared to CLL).

in the range[�2; 2℄ representing logarithms of the activity of each gene within
each tissue. Approximately 5% of the data is missing becauseof faults during
the collection of the experimental data. The authors of [AED+00] applied
hierarchical agglomeration to obtain a tree structure on the 96 tissue samples,
and then manually examined the clusters within that tree to identify significant
genes. PDDP also produces a very similar tree, but top-down instead of bottom-
up.

The PDDP tree can be used in at least two ways on this dataset. The simplest
is to use the principal direction information to identify which genes are signifi-
cant in splittinganywherein the tree. One may remove any gene for which the
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corresponding entry (weight) in any principal direction vector is small in abso-
lute value. Such genes are never significant in splitting a cluster into subclusters
using the inner product (1.1). Therefore the genes that remain are more useful
in distinguishing among the tissues samples. In this experiment, we kept the
genes whose weight in any principal direction vector exceeds a given threshold
value. This value was chosen by noting that if all the entriesin a principal
direction vector had equal weight, the weight would have to be1=pn because
the vector is normalized to make the sum of squares equal to 1.To extract
the significant genes, a value of 3 times this neutral value was chosen, namely3=pn = :078. This reduced the number of genes from 4062 down to 1485,
and PDDP was then applied to this reduced set (96 tissues by 1485 genes). The
PDDP trees produced using all 4026 genes and with only 1485 genes were very
similar, and we show the latter tree in Fig. 1.8.

To allow a user to explore the tree and identify these distinctive genes, the
software converts the tree from the internal representation into an HTML doc-
ument which can be browsed using any standard web browser. Asan example,
an excerpt from a web browser display is reproduced in Fig. 1.9, showing the
distinctive genes for the cluster shown in bold in Fig. 1.8. Of course, there is
no intention to claim that the genes listed in Fig. 1.9 are allsignificant for this
cluster or any other cluster, but we do remark that many of thelisted genes
were specifically identified in [AED+00] as germinal centre B cells, known to
distinguish the FL tissue samples in this cluster from the CLL tissue samples
in the sibling cluster.

4.2. Astronomical Sky Survey

The advent of high-powered computational facilities has given rise to au-
tomated surveys of the sky with a view of cataloging and/or classifying the
enormous number of objects that can be observed from Earth. Afurther goal of
such surveys is to allow automated or semi-automated exploration to permit one
to find “interesting” objects or clusters of objects for further study. Automated
clustering methods would permit the exploration of this enourmous dataset in
many dimensions, allowing astronomers to identify distinctive objects and rela-
tionsips between objects. In [PM99],kd-trees were proposed as a way to speed
up a k-means clustering of Sloan Digital Sky Survey (a more recent automated
sky survey) data. Though computed using different algorithms,kd-trees can be
thought of as a special case of PDDP trees in which each separating hyperplane
is normal to a coordinate axis. Hence PDDP trees share many ofthe same
favorable properties, including yielding good seeds for the k-means method.
This is an area which requires further research.

Preliminary experiments were carried out with data derivedfrom the Min-
nesota Automated Plate Scan (APS) [PHO+93, Web98]. This is a project to
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digitize the contents of photographic plates of the heavensfrom the Palomar
Observatory Sky Survery (POSS I) originally produced in the1950s, before the
advent of artificial satellites.

The size of this data set spurred the development of an out-of-core version
of the PDDP method, since the data set is too large to be loadedinto memory at
one time. This out-of-core version of the PDDP method has been designed for
the situation where there is a large number of data samples, but relatively few
attributes. Suppose the number of attributesn is much less than the number
of data samplesm, so that the data matrixM is very wide but not tall. In the
following we usee def= ( 1 � � � 1 )T to denote a column vector of all ones of
appropriate size. To compute the centroid vectorwC = 1kMCe (wherek is the
size of the clusterC), it is necessary to make a pass over the entire matrixMC.
To compute the principal direction vectoruC, to the low accuracy needed for
this algorithm, it suffices to accumulate then� n matrixA def= (MC �wCeT )(MC �wCeT )T =MCMTC � Z� ZT + kwCwTC ;
whereZ def= MCewTC = kwCwTC . Thus the matrixA isA =MCMTC � kwCwTC
With one pass through the data, column by column, we can accumulateMCMTC=Pj2C djdTj , andwC def= (1=k)Pj2C dj , and use the result to formAwithout
any further access to the data. By saving the columns associated with each
cluster in a separate scratch file as each cluster is formed, the passes over the
data matrix can be made very fast.

As a small test case to demonstrate the out-of-core method, we used a small
sample from the APS consisting of 212089 galactic objects, each with 26 at-
tribute values. Using a 195 MHz SGI challenge machine (relatively old machine
chosen to match that used to produce the timings in Fig. 1.5) and a Matlab im-
plementation of the out-of-core algorithm, a PDDP tree with4000 clusters can
be computed in under 10 minutes. Of course it needs enough scratch disk space
to store two copies of the data set, but the access to each copyof the data is
sequential and hence reasonably efficient. Of course with enough memory and
a compiled version, this can be computed much more efficiently with a standard
in-core algorithm, but this experiment serves to demonstrate the practicality of
the out-of-core algorithm. To visualize the results, we collected all the centroids
for the 4000 clusters and displayed them side by side using color-coding to dis-
play the magnitude of each attribute value. The result is shown in Fig. 1.10,
where it is seen that certain attributes appear to vary together over a portion of
the data. The interpretation of these results is still an active area of research,
especially an analysis of the utility of the encodings used in this digitization of
the APS data set.
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5. Conclusion

This brief introduction to the method of Principal Direction Divisive Par-
titioning is intended to show that this algorithm is a usefultool in situations
which call for unsupervised clustering of large data collections which can be
represented using very high dimensional numerical vectors. The PDDP method
operates on the entire data collection as a unit, producing clusters of a quality
comparable with those of the best alternative methods, but often at less cost.
This brief description should be sufficient to show that the PDDP algorithm
can be adapted to a wide variety of datasets and different situations, such as
the presence of missing data, as well as providing useful information on the
factors that were most significant in yielding the clusters that are eventually
computed. The examples include some hints on the kinds of information which
can be extracted from the PDDP tree, both to explain the results and to extract
the most significant parts of the dataset.

Of course, there are limitations to the PDDP algorithm. The main limitations
are PDDP’s sensitivity to scaling of the data and the need to have all the data
available at once. The sensitivity to scaling is a natural consequence of the
way the data is represented with vectors of real numbers, andany algorithm
using such a representation will suffer from the same limitation. The second
limitation is the object of current research, where we have the goal of allowing
the tree to be computed using a fraction of the data and updating the tree as new
data becomes available.
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