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ON BILINEAR FUNCTIONS
by

E. BELTRAMI

The theory of bilinear functions, already the subject of subtle and ad-
vanced research on the part of the eminent geometers Kronecker and
Christoffel (Journal of Borchardt t. 68), gives occasion for elegant
and simple problems, if one removes from it the restriction, almost always
assumed until now, that the two series of variables be subjected to identical
substitutions, or to inverse substitutions. I think it not entirely unuseful
to treat briefly a few of these problems, in order to encourage the young
readers of this Journal to become familiar ever more with these algebraic
processes that form the fundamental subject matter of the new analytic
geometry, and without which this most beautiful branch of mathematical
science would remain confined within a symbolic geometry, which for a long
time the perspicuity and the power of pure synthesis has dominated.

Let
f = Σrscrsxrys

be a bilinear function formed with the two groups of independent variables

x1, x2, ...xn;

y1, y2, ...yn.

Transforming these variables simultaneously with two distinct linear sub-
stitutions

(1) xr = Σrarpξp, ys = Σsbsqηq,

(whose determinants one supposes to be always different from zero) one
obtains a transformed form

ϕ = Σpqγpqξpηq,

whose coefficients γpq are related to the coefficients crs of the original func-
tion by the n2 equations that have the following form:

(2) γpq = Σrscrsarpbsq.
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Setting for brevity

Σmcmrams = hrs, Σmcrmbms = krs,

this typical equation can be written in the two equivalent forms

(3) Σshspbsq = γpq, Σrkrqarp = γpq.

Indicating with A, B, H, K, Γ the determinants formed respectively with
the elements a, b, c, h, k, γ, one has, from these last equations, Γ = HB =
KA. But, by the definition of the quantities h, k, one has as well H = CA,
K = CB; hence

Γ = ABC,

that is, the determinant of the transformed function is equal to that of the
original one multiplied by the products of the moduli of the two substitu-
tions.

Let us suppose initially that the linear substitutions (1) are both orthog-
onal. In such a case, their 2n2 coefficients depend, as is known, on n2 − n

independent parameters, and on the other hand, the transformed function
ϕ can be, generally speaking, subjected to as many conditions. Now the
coefficients γpq whose indices p, q are mutually unequal are exactly n2 − n

in number: one can therefore seek if it is possible to annihilate all these
coefficients, and to reduce the bilinear function f to the canonical form

ϕ = Σmγmξmηm.

To resolve this question, it suffices to observe that if, after having set in
equations (3)

γpq = 0 for p
>

<
q and γpp = γp,

one multiplies the first by brq and one carries out on the result the summation
Σq; then one multiplies the second by asp and one carries out the summation
Σp, one obtains

hrp = γpbrp, ksq = γqasq.

These two typical equations are mutually equivalent to the corresponding
ones of equations (3), and, as a consequence of these latter ones, one could
in this way recover the equations (3) in the process. In them are contained
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the entire resolution of the problem posed, that one obtains in this way:
Writing out the last two equations in the following way

(4)

{

c1ra1s + c2ra2s + ...+ cnrans = γsbrs,

cr1b1s + cr2b2s + ...+ crnbns = γsars,

then setting, for brevity,

cr1cs1 + cr2cs2 + ...+ crncsn = µrs,

c1rc1s + c2rc2s + ...+ cnrcns = νrs,

(so that µrs = µsr, νrs = νsr), the substitution into the second equation (4)
of the values of the quantities b obtained from the first one yields

(5)1 µrqa1s + µr2a2s + ...+ µrnans = γ2ars;

likewise, the substitution onto the first equation (4) of the values of the
quantities a recovered from the second one yields

(5)2 νr1b1s + νr2b2s + ...+ νrnbns = γ2brs.

The elimination of the quantities a from the n equations that one deduces
from equations (5)1 setting r = 1, 2, ... n in succession, leads one to the
equation

∆1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

µ11 − γ2 µ12 ... µ1n

µ21 µ22 − γ2 ... µ2n

... ... ... ... ... ... ... ... ... ...

µn1 µn2 ... µnn − γ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

which the n values γ2
1 , γ2

2 , ... γ2
n of γ2 must satisfy. Likewise, the elimination

of the quantities b from the n equations that one deduces from equation (5)2
setting r = 1, 2, ...n in succession, leads one to the equation

∆2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ν11 − γ2 ν12 ... ν1n

ν21 ν22 − γ2 ... ν2n

... ... ... ... ... ... ... ... ... ...

νn1 νn2 ... νnn − γ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

possessing the same properties as the preceding equation. It follows that
the two determinants ∆1, and ∆2 are mutually identical for any value of
gamma (*). In fact, they are entire functions of degree n with respect to γ2,

(*) This theorem one finds demonstrated in a different way in §VII of Determinants

by Brioschi
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which become identical for n+ 1 values of γ2, that is for the values γ2
1 , γ2

2 ,
... γ2

n that simultaneously make both determinants zero, and for the value
γ = 0 that makes them both equal to C2.

The n roots γ2
1 , γ2

2 , ... γ2
n of the equation ∆ = 0 (likewise indicating

indifferently ∆1 = 0 or ∆2 = 0) are all real , by virtue of a very well known
theorem; to convince oneself that they are also positive , it suffices to observe
that the coefficients of

γ0,−γ2, γ4,−γ6, etc.

are sums of squares. But one can also consider that, by the elementary
theory of ordinary quadratic forms and by virtue of the preceding equations,
one has

F = Σrsµrsxrxs = γ2
1ξ

2
1 + γ2

2ξ
2
2 + ...+ γ2

nξ
2
n,

G = Σrsνrsyrys = γ2
1
η2
1

+ γ2
2
η2
2

+ ...+ γ2
nη

2
n;

on the other hand, one has as well

F = Σm(c1mx1 + c2mx2 + ...+ cnmxn)2,

G = Σm(cm1y1 + cm2y2 + ...+ cmnyn)2;

hence the two quadratic functions F, and G are essentially positive, and the
coefficients γ2

1 , γ2
2 , ... γ2

n of the transformed expressions, i.e. the roots of the
equation ∆ = 0, are necessarily all positive.

The proposed problem is therefore susceptible of a real solution, and here
is the procedure: Find first the roots γ2

1 , γ2
2 , ... γ2

n of the equation ∆ = 0,
(which is equivalent to reducing one or the other of the quadratic functions
F, G to the canonical form); then with the help of the equations of the form
(5)1 and of those of the form

a2

1s + a2

2s + ...+ a2

ns = 1,

one determines the coefficients a of the first substitution (coefficients that
admit an ambiguity of sign common to all those items in the same column).
This done, the equations that have the form (4) supply the values of the
coefficients b of the second substitution (coefficients that also admit an am-
biguity of sign common to all those items in the same column, so that each
of the quantities γs are determined only by its square γ2

s ). Having done all
these operations, one has two orthogonal substitutions that yield, exactly as
desired by the problem, the identity

Σrscrsxrys = Σmγmξmηm,
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in which everyone of the coefficients γm must be taken with the same sign
that it is assigned in the calculation of the coefficients b.

It is worth observing that the quadratic functions denominated F and G
can be derived from the bilinear function f setting in the latter on the one
hand

ys = c1sx1 + c2sx2 + ...+ cnsxn,

and on the other
xr = cr1y1 + cr2y2 + ...+ crnyn.

Now if in these two relations one applies the substitutions (1), one then sees
immediately that they are respectively converted into the following relations
in the new variables ξ and η:

ηm = γmξm, ξm = γmηm,

which transform the canonical bilinear function

γ1ξ1η1 + γ2ξ2η2 + ...+ γnξnηn

into the respective quadratic functions

γ2
1ξ

2
1 + γ2

2ξ
2
2 + ...+ γ2

nξ
2
n,

γ2
1
η2
1

+ γ2
2
η2
2

+ ...+ γ2
nη

2
n.

And, in fact, we have already noted that these two last functions are equiv-
alent to the quadratics F, G.

We ask of what form must be the bilinear function f so that the two
orthogonal substitutions that reduce it to the canonical form turn out sub-
stantially mutually identical. To this end, we observe that setting

b1s = ±a1s, b2s = ±a2s, ... bns = ±ans

the equations (4) are converted to the following:

c1ra1s + c2ra2s + ...+ cnrans = ±γsars,

cr1a1s + cr2a2s + ...+ crnans = ±γsars,

which, since they must hold for every value of r and s, give crs = csr.
Reciprocally this hypothesis implies the equivalence of the two linear sub-
stitutions. So every bilinear form of the desired form is associated harmon-
ically with an ordinary quadratic form: that is to say that designating this
quadratic form with

ψ = Σrscrsxrys (crs = csr)
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the bilinear function is

f = Σs

1

2

dψ

dxs

ys.

In this case, the equation ∆ = 0 can be decomposed in this way:

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

c11 − γ c12 ... c1n

c21 c22 − γ ... c2n

... ... ... ... ... ... ... ... ... ...

cn1 cn2 ... cnn − γ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c11 + γ c12 ... c1n

c21 c22 + γ ... c2n

... ... ... ... ... ... ... ... ... ...

cn1 cn2 ... cnn + γ

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The first factor of the second member, set to zero, gives the well known
equation that serves to reduce the function ψ to its canonical form. If the
two substitutions are absolutely mutually identical, then coefficients γ are
the same for the quadratic function and for the bilinear one. But if, as we
have already supposed, one concedes the possibility of an opposition of sign
between the coefficients a and b belonging to two columns of equal index,
the coefficient γs of the corresponding index in the bilinear function can
have sign opposite to that in the quadratic. From this, the presence in the
equation ∆ = 0 of a factor having for roots the quantities γ taken negatively.

In the particular case just now considered, the quadratic function de-
noted F is

F = Σr

(

1

2

dψ

dxr

)2

,

and, on the other hand, one finds that there always exists an orthogonal
substitution which makes simultaneously identical the two equations

ψ = Σγξ2, Σ

(

1

2

dψ

dx

)2

= Σγ2ξ2.

This is a consequence of the fact that, as is well known,

Σr

(

1

2

d

dxr

)2

is a symbol invariant with respect to any orthogonal substitution.
We translate into geometrical language the results of the preceding anal-

ysis, assuming (as is generally useful to do) that the signs of the coefficients
γ are chosen to make AB = 1 and hence Γ = C.

Let Sn, S′

n be two spaces of n dimensions with null curvature, referred
to, respectively, by the two systems of orthogonal linear coordinates x and
y, for which we will call O and O′ the origins. To a straight line S1 drawn
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through the origin O in the space Sn, there corresponds a specific set of ratios
x1 : x2 : ... : xn; and on the other hand, the equation f = 0, homogeneous
and of first degree in the x1, x2, ..., xn and in the y1, y2, ..., yn defines a
correlation of figures in which to each line through the point O in the space
Sn corresponds a locus of first order in n − 1 dimensions that we call S′

n−1

within the space S′

n; and vice-versa.
By virtue of the demonstrated theorem, it is always possible to substitute

for the original coordinate axes in the x’s and y’s new axes in the ξ’s and
η’s, respectively, with the same origins O and O′, so that the correlation
rule assumes the simpler form

γ1ξ1η1 + γ2ξ2η2 + ...+ γnξnηn = 0.

Said this, one may think of the axis system η, together with its figure, moved
so that its origin O′ falls on O, and that each axis ηr falls on its homologous
axis ξr (*). In such a hypothesis, the last equation expresses evidently that
the two figures are found to be in polar or involutory correlation with
respect to the quadric cone (in n− 1 dimensions)

γ1ξ
2

1 + γ2ξ
2

2 + ...+ γnξ
2

n = 0

that has its vertex on O. Hence, one can always convert a correlation of first
degree of the above type, through a motion of one of the figures, into a polar
or involutory correlation with respect to a quadric cone (in n−1 dimensions)
having its vertex on the common center of the two figures overlaid.

In the case of n = 2, this general proposition yields the very well known
theorem that two homographic bundles of rays can always be overlaid in
such a way that they constitute a quadratic involution of rays.

In the case that n = 3, one has the theorem, also known, that two
correlative stars (i.e., such that to every ray in one corresponds a plane in
the other, and vice-versa) can always be overlaid in such a way that they
become reciprocal polar with respect to a quadric cone having its vertex on
the common center.

One can interpret the analytic theorem in another way, and recover other
geometric properties in the cases n = 2, and n = 3. If with

y1Y1 + y2Y2 + ...+ ynYn + 1 = 0

(*) Something that is possible by having AB = 1.
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one represents a locus of first order (S′

n−1) lying in the space S′

n, to every
orthogonal substitution of the form

ys = Σqbsqηq

applied on the local coordinates y, corresponds an identical orthogonal
substitution

Ys = ΣqbsqEq

applied to the tangential coordinates Y. Given this, suppose that between
the x’s and y’s one institutes the n − 1 relations that result from setting
equal the n ratios

yr

c1rx1 + c2rx2 + ...+ cnrxn

(r = 1, 2, ...n).

This is equivalent to considering two homographic stars with centers on the
points O and O′. With such hypotheses, the equation

y1Y1 + y2Y2 + ...+ ynYn = 0,

which corresponds to this other equation in the η-axis system

η1E1 + η2E2 + ...+ ηnEn = 0,

is equivalent to the following relation between the x’s and the y’s

ΣrscrsxrYs = 0,

and this is in turn reducible, with two simultaneous orthogonal substitutions,
to the canonical form

γ1ξ1E1 + γ2ξ2E2 + ...+ γnξnEn = 0.

Now the relation that this establishes between the new tangential coordi-
nates E cannot differ from that contained in the third to last equation; hence
it must be

η1

γ1ξ1
=

η2

γ2ξ2
= ... =

ηn

γnξn
.

From these equations, which are nothing else than the relations of homogra-
phy, expressed in the new coordinates ξ and η, it emerges evidently that the
axis ξ1 and η1, ξ2 and η2, ... ξn and ηn are pairs of corresponding straight
lines in the two stars. Since it is thus possible to move one of the stars in
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such a way that the ξ axes and the η axes coincide one for one, one con-
cludes that, given two homographic stars in an n dimensional space, one can
always overlay one upon the other so that the n double rays acted upon by
the overlaying, constitute a system of n orthogonal cartesian rays.

From this, setting n = 2 and n = 3, one deduces that two homographic
groups of rays can always be overlaid so that the two double rays are orthog-
onal; and that the two homographic stars can always be overlaid so that the
three double rays form an orthogonal cartesian triple.

Returning now to the hypothesis of two arbitrary linear substitutions,
but always acting to give to the transformed function ϕ the canonical form
ϕ = Σmγmξmηm, one solve the equations (3) with respect to the quantities h
and k, respectively, with which one finds the two typical equations, mutually
equivalent,

(6) Bhrs = Brsγs, Akrs = Arsγs,

in which Ars, Brs are the algebraic complements of the elements ars, brs in
the respective determinants A, B. The equations (4) are nothing else than
particularizations of these.

Let f ′ be a second bilinear function, given by the expression

f ′ = Σrsc
′

rsxrys,

and suppose we want to transform simultaneously, with the very same linear
substitutions (1), the function f into the canonical form ϕ and the function
f ′ into the canonical form ϕ′ = Σmγ

′

mξmηm.
Indicating with h′ and k′ quantities analogous to the h and k for the

second function, together with the equations (6), these further equations
must hold

(6)′ Bh′rs = Brsγ
′

s, Ak′rs = Arsγ
′

s.

Dividing the first two equations of each of the pairs (6) and (6)′ one by the
other, one obtains

hrs − λsh
′

rs = 0 where λs =
γs

γ′s
,

or

(7) (c1r − λsc
′

1r)a1s + (c2r − λsc
′

2r)a2s + ...+ (cnr − λsc
′

nr)ans = 0.
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Setting r = 1, 2, ...n in this last equation and eliminating the quantities
a1s, a2s, ... ans from the n equations obtained in this way, one arrives at the
equation

Θ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

c11 − λc′11 c12 − λc′12 ... c1n − λc′1n

c21 − λc′21 c22 − λc′22 ... c2n − λc′2n

... ... ... ... ... ... ... ... ... ...

cn1 − λc′n1 cn2 − λc′n2 ... cnn − λc′nn

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

which must be satisfied by the n values λ1, λ2, ... λn of λ. One can convince
oneself of this by another way, by observing that Θ is the determinant of the
bilinear function f − λf ′, and that hence one has by virtue of the general
theorem on the transformation of this determinant (*)

Θ = AB(γ1 − λγ′1)(γ2 − λγ′2)...(γn − λγ′n),

whence emerges just as expected, for A and B to be different from zero, that
the equation Θ = 0 has for its roots the n ratios

γ1

γ′
1

,
γ2

γ′
2

, ...
γn

γ′n
.

Of the rest, since the two series of quantities γ and γ′ are not determined
except by these ratios, it is useful to assume for more simplicity that γ′1 =
γ′2 = ... = γ′n = 1, and hence γs = λs.

Here then is the procedure that leads to the solution of the problem:
Find the n roots (real or imaginary) λ1, λ2, ..., λn of the equation Θ = 0;
then substitute them successively into the equations of the form (7). One
obtains in this way, for each value of s, n linear and homogeneous equations,
one of which is a consequence of the other n − 1, so that one can recover
only the values of the ratios a1s : a2s : ... : ans. Having chosen arbitrarily
the values of the quantities a1s, a2s, ..., ans so that they have these mutual
ratios, the equations that are of the form of the second part of (6)′ yield

(8) brs =
C′

1rA1s + C′

2rA2s + ...+ C′

nrAns

C′A
;

and in this way all the unknown quantities can be determined.

(*) from this one sees that the determinant of a bilinear function is zero only when
the function itself can be reduced to contain two fewer variables, a property that one can
easily show directly.
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One can observe that if for the coefficients ars one substitutes the prod-
ucts ρsars, something that is legitimate by a previous observation, the co-
efficients brs, determined by the last equation, are converted into brs

ρs

. This
is the same as saying that if for the variables ξs one substitutes ρsξs, the
variables ηs are converted to ηs

ρs

; but this change leaves unaltered the trans-

formed functions ϕ and ϕ′.
If one denotes by Θrs the algebraic complement of the element crs−λc

′

rs

in the determinant Θ, and by Θrs(λs) what results by setting λ = λs in this
complement, it is easy to see that the equations (7) are satisfied by setting

ars = αsΘrs(λs).

In this way, if one forms the equations analogous to (7) and containing the
coefficients b in place of the coefficients a, they can be satisfied by setting

brs = βsΘsr(λs).

The quantities αs and βs are not determined completely: but the equa-
tions analogous to (2) determine the product αsβs. In any case, these factors
are not essential, since by writing ξs in place of αsξs and ηs in place of βsηs,
they can be removed. From the expressions

ars = Θrs(λs), brs = Θsr(λs),

that result from this supposition, it is evident that this important property
emerges, that when crs = csr, c

′

rs = c′sr, i.e., when the two bilinear functions
are associated harmonically to two quadratic functions, the substitutions
that reduce them both simultaneously to canonical form are substantially
mutually identical.

If we suppose that the second bilinear function f ′ has the form

f ′ = x1y1 + x2y2 + ...+ xnyn,

the general problem just treated assumes the following form: Reduce the
bilinear function f to the canonical form

ϕ = λ1ξ1η1 + λ2ξ2η2 + ...+ λnξnηn

with two simultaneous linear substitutions, so that the function

x1y1 + x2y2 + ...+ xnyn
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is transformed into itself. In this case, the general formula (8) becomes

Abrs = Ars,

whence
Ayr = Ar1η1 + Ar2η2 + ...+ Arnηn,

and hence
ηs = a1sy1 + a2sy2 + ...+ ansyn.

This last formula shows that the two substitutions (a) and (b) are inverses
of each other, something that follows necessarily from the nature of the
function that is transformed into itself. The relations among the coefficients
a and b that follow from this

Σrarsbrs = 1, Σsarsbrs = 1
Σrarsbrs′ = 0, Σsarsbr′s = 0,

AB = 1

make a perfect contrast to those that hold among the coefficients of one
orthogonal substitution, and they reduce to them when ars = brs, such a
case arising (by what we have recently seen) when the form f is associated
to a quadratic form. In the special problem which we have mentioned (and
which has already been treated by Mr. Christoffel at the end of his
Memoirs), the equation Θ = 0 takes on the form

∣

∣

∣

∣

∣

∣

∣

∣

∣

c11 − λ c12 ... c1n

c21 c22 − λ ... c2n

... ... ... ... ... ... ... ... ... ...

cn1 cn2 ... cnn − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

and under the hypothesis crs = csr (that we have just alluded to), it is
identified, as is natural, with what the analogous problem leads to via a
true quadratic form.

We will not add any word on the geometric interpretation of the preced-
ing results, since their intimate connection with the whole theory of homo-
geneous coordinates is evident.

Likewise, we will not discuss for now the transformations of bilinear
functions into themselves, an important argument but less easy to handle
than the preceding ones, for which Mr. Christoffel has already presented
the treatment in the case of a single function and a single substitution.
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