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ABSTRACT
We have developed a novel Markov model which models
the genetic distance between viruses based on the Hemag-
glutinin (HA) gene, a major surface antigen of the avian
influenza virus. Using this model we estimate the prob-
ability of finding highly similar virus sequences separated
by long time gaps. Our biological assumption is based on
neutral evolutionary theory, which has been applied previ-
ously to study this virus [Gojobori, Moriyama, and Kimura.
PNAS Vol 87. 1990]. Our working hypothesis is that after
a long enough time gap and with the high mutation rate
usually found in RNA viruses, many site mutations should
accumulate, leading to distinct modern variants. We ob-
tained 3439 HA protein sequences isolated through years
1918 to 2006 from around the globe, aligned them to a con-
sensus sequence using the NCBI alignment tool, and used
a Hamming distance metric on the aligned sequences. We
tested our hypothesis by combining a standard Poisson pro-
cess with a Markov model. The Poisson process models the
occurrences of mutations in a given time interval, and the
Markov model estimates the probabilities of changes to the
genetic distances due to mutations. By coalescing all se-
quences at a given genetic distance to a single state, we
obtain a tractable Markov chain with a number of states
equal to the length of the base peptide sequence. The model
predicts that the probability of finding highly similar virus
after several decades is extremely small. The existence of re-
cent viruses which are very similar to older viruses suggests
that potentially there exists some reservoir which preserves
viruses over long periods.
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1. INTRODUCTION
For the past century researchers have been studying in-

fluenza viruses (IV). Belonging to the viral family Orthomyx-

oviridae, influenza viruses have eight unique RNA segments
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[20] that encode 10 different gene products (PB1 polymerase,
PB2 polymerase, PA polymerases, Hemagglutinin (HA), Nu-
cleoprotein (NP), Neuraminidase (NA), Matrix M1 and M2
proteins, and Nonstructural NS1 and NS2 proteins). The
target of our study is the Hemagglutinin HA gene product.
We have developed a novel Markov model which models the
genetic distance between viruses based on the Hemagglu-
tinin (HA) gene, a major surface antigen of the avian in-
fluenza virus. Our working hypothesis is that after a long
enough time gap, many site mutations should accumulate
in the virus due to a lack of a proofreading function [6],
leading to distinct modern variants. We based our biolog-
ical assumption on neutral theory of evolution [7, 12, 17,
8] and that each amino acid site is under a neutral muta-
tion pressure. Previous studies have shown that subtypes
of influenza virus are subjected to higher silent substitution
rate [7, 24], which is consistent with the neutral theory of
molecular evolution. Although their studies were conducted
using nucleotide sequences, we believe that the same gen-
eral concept and framework can be applied to study protein
sequences of this virus under this evolutionary assumption.
We test our hypothesis by combining a standard Poisson
process with the Markov model. The Poisson process mod-
els the occurrences of mutations in a given time interval, and
the Markov model estimates the probabilities of changes to
the genetic distances due to mutations. We show that it
is highly unlikely that very similar sequences would arise
long after the original sequence. Given the observations of
several pairs of very similar sequences separated by several
decades, we conclude that there must be some reservoir or
evolutionary mechanism that is capable of preserving old
virus strains, allowing them to reappear after extended time
intervals.

2. MATERIALS AND METHODS

2.1 Protein Sequence Data and Processing
The HA protein is the major surface antigen of the in-

fluenza virus. Its role is to bind to host cell receptors pro-
moting fusion between the viron envelope and the host cell
[20]. Influenza A virus HA genes have been classified into
16 subtypes (H1-H16) according to their antigenic proper-
ties. This HA protein is cleaved into two peptide chains
HA1 and HA2 respectively when matured [19]. The HA2
chain has been found to vary less and is more conserved
compared to HA1 chain [10]. The HA1 chain is 329 residues
long and is the immunogenic part of HA protein. Past stud-
ies have shown that HA1 is undergoing continual diversify-

38



ing change [5, 14] and is the most variable portion of the
influenza genome[16].

Using the NCBI Influenza database available online [23],
we have collected 3439 influenza virus type A protein se-
quences deposited before December, 2007 (excluding iden-
tical sequences and lab strains/NIAID FLU project). This
collection of protein sequences contains isolates from around
the globe and from a diverse range of hosts. We used pro-
tein sequences because they were known to give more re-
liable results than nucleotide sequences when constructing
evolutionary history [19]. Each of the 3439 sequences has
a unique annotation which contains the host organism, the
strain number, the year of isolation, subtype, and protein
name. We aligned all sequences to a consensus sequence
using the NCBI alignment tool. According to the study pre-
sented by [16], a uniform consensus strain tends to circulate
for some time, since the mutations that occur during repli-
cation do not become fixed in the early stages of circulating.
The aligned sequence data were then used with a genetic
distance function to determine the pairwise genetic distance
(including gaps) of the sequences.

The genetic distance between two sequences can be thought
of as the “edit” distance, which is the number of single letter
changes needed to transform one sequence to the other. This
yields a simple scoring function assigning a zero to a match-
ing amino acid base and a one to a mismatch. The sum
of all mismatches is usually called the Hamming distance
(k) or Hamming score for the pairwise sequence compari-
son. For comparison of very similar biological sequences,
this Hamming distance can be used under the assumption
that the observed difference between a pair of sites repre-
sents one mutation [3]. The present study could also be
carried out using BLAST or any alignment algorithm, but
as considerably greater expense. In [15], Hamming distance
was successfully used to find interesting clusters of IV HA
sequences and to predict vaccine strains with good results.
Hamming distance as genetic distance between viruses has
also been used effectively in modeling influenza viruses [18].
In our study, we compute the Hamming distance based on
a consensus alignment to account for the small number of
insertions and deletions. We then store the pairwise Ham-
ming distance scores of HA gene in a pairwise affinity matrix
and identify virus sequence pairs sharing high sequence sim-
ilarity (at least 90 percent) but separated by a long time
gap.

2.2 Markov model
We model all mutations as the combination of several sin-

gle point mutations and use a Poisson process to model the
mutation rate. The Poisson process naturally admits more
complex mutations, treating them as several single point
mutations occurring in rapid succession. Then we build a
compact Markov model to model the mutations themselves.
Markov models have proven to be a powerful tool for phy-
logenetic inference and hypothesis testing when modeling
transitions between amino acid states. Modeling amino acid
transitions is complex since proteins are made of twenty
amino acids. Because of this, we take a very different ap-
proach in building our Markov model. We are trying to avoid
a Markov chain where each sequence is a state because this
would give rise to an exponentially large number of states
(20n where n is the number of sites). In our Markov model,
we collect into a single state Hk all the protein sequences
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Figure 1: Markov transition matrix

at given Hamming distance k from the starting sequence
s0 ∈ H0. The starting sequence s0 can be chosen either as
the earliest isolated sequence or the most recent one as long
as a large time gap is observed when comparing to other
sequences. Our Markov model assigns the probability of an
arbitrary HA sequence s1 ∈ Hk mutating into a different HA
sequence s2 ∈ Hl through a single point mutation, where l
must be one of k − 1, k, k + 1.

Previous studies [4, 13] have shown that to better fit the
model, active sites should be excluded in the analysis under
the neutral theory framework. Here we have taken the same
approach where we have limited the mutations captured by
our Markov chain to the HA1 domain consisting of n = 329
sites, since this region is less conserved than the HA2 region
[15, 14]. Therefore, our Markov model has only n + 1 = 330
states instead of the 20n states it would have if we kept each
state and each possible transition separate.

Formally, consider a finite set of states labeled {H0, ..., Hn}.
In order to keep the Markov chain to a manageable size, we
group all the sequences within Hamming distance of k from
a start sequence into a single“super state”Hk. At each tran-
sition, we assume a single point mutation occurs, and that
this mutation of amino acid replacement exhibits uniform
rate of evolution throughout long periods of evolutionary
time [25]. This assumption is particularly consistent with
the concept of ”molecular evolutionary clock” and is central
to the neutral theory [1, 7, 22]. Because of the high rate at
which RNA viruses evolve, it has been observed that these
sequences show the typical pattern of neutral evolution [7].

We denote by a the size of the alphabet of amino acids,
in our case 20. For a sequence s1 ∈ Hk, there is a probabil-
ity k/n that the mutation occurs in one of the k positions
where s1 differs from s0, and if this change occurs, there is
a 1/(a − 1) chance that the new amino acid in this position
will match that in the same position of s0. Hence the prob-
ability xk of a transition from Hk to Hk−1 is xk = k

n
· 1

a−1
.

Similar reasoning yields the probability yk that a transition
will remain at the same Hamming distance: yk = k

n
· a−2

a−1
.

The probability that mutation will be in one of the n − k
sites that still match s0 is zk = 1 − k

n
, corresponding to

a transition from Hk to Hk+1. The resulting probabilities
xk, yk, zk are assembled into a Markov transition matrix M
shown in Figure 1. The entries in each row of M add up to
1.

Using this model, we can compute the probability qt that
a virus will have a Hamming distance at most k from the
initial source sequence after t mutations. We give the gen-
eral form of how to compute the above probability. We
let vt = (vt0, vt1, . . . , vtn) be the row vector of probabili-
ties of being in state H0, H1, . . . , Hn, respectively, after t
mutations. At t = 0 we are in state H0 consisting of just
the initial sequence. This is represented by the row vector
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Figure 2: H1 subtype pairwise Hamming distance
plot

Table 1: H1N1 subtype long time gap strains (Rate:
2×10−3 per site per year). H = Hamming distance,
Y = Year, EG = Expected number of mutations.

Strain H Y EG P-value

AAD17229: A/South
Carolina/1/1918 0 0 0

source
sequence

AAA91616: A/swine/St-
Hyacinthe/148/1990(H1N1) 20 72 47.3 6.3499e-06

v0 = (1, 0, 0, ..., 0). Then the vector of probabilities after
t + 1 mutations is related to the probabilities after t muta-
tions by vt+1 = vt ∗ M . The probability of being at most
distance k from s0 after t mutations is the sum of the first
k + 1 components of vt: qt(k) =

P

k

i=0 vti.
The above analysis counts events consisting of a single

mutation. The mutation rate is modeled by a Poisson pro-
cess [4, 11]. This includes the possibility that no mutation
or several mutations take place in a given time interval, as-
suming all sites undergo the same substitution rate. This
assumes that the probability of a mutation in a given time
interval depends only on the length of the interval but is
independent of the behavior outside the time interval. If
λ is the average number of mutations in a time interval of
1 year, then the probability that t mutations occur in any

time interval of length Y is given by pt(Y ) = (Y λ)t

t!
e−Y λ.

The Poisson process models when mutations occur, and the
Markov model models the nature of the mutations. Combin-
ing these two models yields the probability Pκ(Y ) that after
Y years a sequence would appear with a genetic distance
from s0 of κ, namely Pκ(Y ) =

P

∞

t=0 pt(Y ) · qt(κ).

3. RESULTS AND DISCUSSION
We first identified viruses having very close genetic dis-

tance but with large time gap. Figure 2 shows the H1 sub-
type HA1 domain pairwise sequence genetic distance plotted
against time of isolation in year. The genetic distance cor-
responds to the Hamming distance including gaps. Tables 1
and 2 show viruses sharing very high sequence similarity but
with large time gap. We used the amino acid substitution
rate of r = 2×10−3 per site per year for H1 and H2 subtype
viruses, estimated using the entire region of the HA gene and

Table 2: H2 subtype long time gap strains
Strain H Y EG P-value
AAY28987: A/Human/
Canada/720/2005(H2N2) 0 0 0 source

sequence
AAA64365: A/RI/5+/
1957(H2N2) 6 48 31.5 7.807e-09

AAA64363: A/RI/5-/
1957(H2N2) 3 48 31.5 1.206e-11

AAA64366: A/Singapore
/1/1957(H2N2) 5 48 31.5 1.155e-09

AAA43185:A/Human/
Japan/305/1957(H2N2) 5 48 31.5 1.155e-09

assuming that the molecular clock is followed [19] through-
out evolutionary history. This yields an annual mutation
rate of λ = nr = 329·2×10−3 = 0.658. We give two examples
of unlikely similarities over long time gaps in table 1 and 2.
Each table includes the accession number“Accession”, strain
name “Strain”, the Hamming distance “H” (calculated from
the first strain), expected number of mutations “EG”, the
year difference “Y”, and the P-value, the probability that
this Hamming distance (or less) would be observed after the
given time interval as predicted by our model. Using the
pandemic strain A/South Carolina/1/1918 and A/swine/St-
Hyacinthe/148/1990(H1N1) from Table 1, the interpretation
of the result is that after 72 years, the expected number
of mutations is 47.3 and the probability of being within a
Hamming distance of 20 of the original source sequence is
6.35×10−6. A very recent published research study [22] em-
ploying the state-of-the-art Bayesian Markov chain Monte
Carlo [2] which allows for substitution rate variation and
maximum likelihood phylogenetic methods indicates that
this A/swine/St-Hyacinthe/148/1990(H1N1) virus is a con-
taminant from the A/swine/1930 strain. The genetic dis-
tance of the pandemic strain to the A/swine/1930 strain is
22. The genetic distance of A/swine/1930 to A/swine/St-
Hyacinthe/148/1990(H1N1) is only 3 indicating that these
two strains are virtually identical. From table 2, we see that
A/Human/Canada/720/2005(H2N2) strain isolated in 2005
is exceptionally similar to the two asian pandemic strains
A/Singapore/1/1957(H2N2) and A/Human/Japan/305/
1957(H2N2) in terms of the genetic distance. These two
pandemic strains were human transmissible and currently
no influenza vaccines contained the H2N2 virus [21]. This
reappearance of the highly pathogenic H2N2 virus could
cause a potential pandemic as current population is not
immunized against this strain of virus. The origin of the
A/Human/Canada/720/ 2005(H2N2) strain was traced back
to human error at a laboratory distributing virus samples for
training purposes and the distributed strains were quickly
destroyed at all receiving laboratories [21].

To check how our model matches the data, we show the
predicted distribution of Hamming distances in Figure 3
based on a time interval of Y = 49 and annual mutation rate
of nr = 0.658 for the H2 subtype. The peak of the curve
indicates that with high probability, roughly 30-40 muta-
tion events would have taken place. This tells us that we
should expect to see the majority of H2 sequence pairs with
Hamming distances in the vicinity of 40 given the length
of time interval equals 49 years base on Poisson process as-
sumption. We compare this to the actual distribution of
Hamming distances found in the H2 subtype data shown in
Figure 4 over the range of data available (from 1957 through
2006 or a span of 49 years). Figure 4 shows that the majority

40



0 10 20 30 40 50 60 70
10

−15

10
−10

10
−5

10
0

Number of mutations

P
ro

b
a

b
il
it
y
 i
n

 l
o

g
 s

c
a

le

Figure 3: Poisson process distribution plot
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Figure 4: H2 subtype histogram plot

of the H2 sequence pairs have Hamming distances around
35, which matches the Poisson process prediction. Figure
6 illustrates how the probability values of 3 H2 strains in
Table 2 are rapidly dropping against the expected number
of mutations from the Markov model calculation. Figure 5
shows the predicted distribution within the time interval of
70-85 years from the combined Poisson process and Markov
chain model using H1 subtype HA1 sequences. The curve
shows that with high probability most sequences should be
in states H60 to H70. This reflects what is observed in figure
2 and figure 7 where most sequences have Hamming distance
around 60-70. This suggests that our model is able to cap-
ture the overall evolutionary behavior of the influenza virus
according to a molecular clock, leading to a natural increase
in the genetic distance as time passes, consistent with [1].
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4. CONCLUSIONS
The extensive genetic diversity of influenza A viruses through

genetic drift and reassortment in the past century has re-
sulted in many new strains being produced. However, H1,
H2, and H3 subtypes strains have displayed cyclic behavior
resulting in influenza pandemics [6]. In the present study,
we applied neutral evolution theory to influenza virus HA
protein sequences to investigate the evolutionary dynamics
of the virus. Using the combination of a Poisson model with
a novel Markov model, we were able to calculate the proba-
bility values of finding a very similar sequence composition
separated by a large time gap. We have so far been able
to identify several anomalies due to laboratory artifacts or
human error. This finding is promising since we have yet
to apply it in a full scale comprehensive analysis of all 16
subtypes of the virus. However, judging by the extremely
low probability values obtained for some observed sample
strains, we conclude that there may be one or more sources
of various strains of the virus in which they are preserved
over long time periods. The existence of reservoirs preserv-
ing viruses for decades cannot be completely eliminated.
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5. FUTURE WORK
For future work, our immediate next steps are: (1) ap-

ply our model to nucleotide sequences which allows us to
compare our model with other existing models that study
nucleotide sequences of the virus, and (2) use a more robust
distance function in which we can incorporate antigenic dis-
tance information to the model. The evolutionary modeling
of influenza virus has primarily been based on models us-
ing nucleotides substitution models and phylogenetic analy-
sis. Our approach is different in that we demonstrated that
by applying the same theoretical concept, we can instead
model the differences between viral protein sequences. A
key advantage of modeling the differences between sequences
is that the distance function can be further refined so that
additional genetic information can be incorporated into the
model. However, it is imperative that we compare our model
to existing models where nucleotide sequences are used and
to provide a rigorous statistical framework in support of our
new Markov model.

Incorporating antigenic distance information is vital due
to the fact that vaccine strain selection is largely based on
the antigenic differences between circulating strains and in-
fluenza viruses are antigenically variable in each influenza
season. The antigenic distance map, originally proposed
by Lapedes and Farber [9], is a geometric interpretation of
Hemagglutination Inhibition (HI) binding assay data wheres
a point is assigned in a two dimensional grid between each
antigen and antiserum and this distance reflects the direct
HI measurement. The antigenic distance measurement can
be included in the genetic distance function to find a total
distance value. Further, HI binding assay data is generated
through the binding of individual viral protein to red blood
cells[6], this implies that a pairwise alignment scheme for se-
quence comparison can be used to capture each sequence’s
compositional characteristic.
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