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ABSTRACT
Capturing mutation patterns of each individual influenza
virus sequence is often challenging; in this paper, we demon-
strated that using a binary encoding scheme coupled with
dimension reduction technique, we were able to capture the
intrinsic mutation pattern of the virus. Our approach looks
at the variance between sequences instead of the commonly
used p-distance or Hamming distance. We first convert the
influenza genetic sequence to a binary string and then ap-
ply Principal Component Analysis (PCA) to the converted
sequence. PCA also provides a prediction capability for de-
tecting reassortant virus by using data projection technique.
Due to the sparsity of the binary string, we were able to
analyze large volume of influenza sequence data in a very
short time. For protein sequences, our scheme also allows
the incorporation of biophysical properties of each amino
acid. Here, we present various results from analyzing in-
fluenza nucleotide, protein and genome sequences using the
proposed approach. With the Next-Generation Sequencing
(NGS) promises of sequencing DNA at unprecedented speed
and production of massive quantity of data, it is imperative
that new technique needs to be developed to provide quick
and reliable analysis of any sequence data. Here, we believe
our approach can be used at the upstream stage of sequence
data analysis pipeline to gain insight as to which direction
should be continued on in analyzing the available data.
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1. INTRODUCTION
The influenza A virus is a negative stranded RNA virus

with eight gene segments that code for 10 proteins in its
genome. It is categorized by the serology and genetics of
its two surface glycoproteins hemagglutinin (HA) and neu-
raminidase (NA). The virus is capable of infecting about
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twenty five percent of the worldwide human population each
year [13]. 16 HA antigenetically distinct subtypes have been
isolated from mammalian and avian hosts, with the H3N2
being the most widespread and dominant circulating strain
in the human population [9]. Selective pressure exists for
the virus to generate immunological escape variants that are
antigenetically different and to diversity because immunized
hosts are resistant to infection with influenza they have been
exposed to for several years [10].

Large effort and vast amount of sequence data have been
used together to piece together the evolutionary history of
Influenza viruses. The influenza evolutionary tree itself is
one of the most popular and powerful tools we have in under-
standing the evolution of the virus. The continuous evolving
of the virus makes it challenging to get a global picture of
how all the viruses are inter-related. With an evolutionary
tree, we can: (1) build a more complete understanding of
how and where virus evolved that would help explain how
certain changes ended up in certain clade along the evolu-
tionary tree. (2) enable us to more easily decipher what’s
in the virus samples we already have and to make predic-
tion on what antigenic property we’ll find in newly isolated
viruses. Evolution turns out to be a good structural frame-
work for understanding influenza virus evolution dynamic
[7, 9]. However, with the large number of sequence data
continuously being deposited to the influenza database, the
data often appears to be clouded, unclear, and even redun-
dant. An approach that can quickly provide an overview of
the virus evolution under these challenges is most valuable
to influenza analysis.

Our aim in this paper is to present an alternative se-
quence representation method that is capable of capturing
the intrinsic patterns of mutation of the virus and extract
these patterns through a dimension reduction technique. To
show the utility and flexibility of the encoding scheme, we
performed influenza sequence analysis to expose avian-host
to human-host cross-overs using both nucleotide, protein
and genome sequences downloaded from NCBI Influenza
database [1].

2. RESULTS
In this section, we present various results from applying

our encoding scheme to influenza genetic sequences using
Principal Component Analysis as the processing algorithm.
We illustrate the evolution trajectory of H3N2 virus ob-
tained from using nucleotide sequences. We then provide
a global view of all the subtypes of influenza viruses based
on their HA surface protein. Next, we give result from in-



tegrating biophysical information of each amino acid to en-
hance the distinguishing feature of each virus sequence. We
tested this approach on H3 and H5 subtype viruses. Last,
we present results of the predictive power of PCA based on
our encoding scheme by detecting reassortant virus using
complete virus genome sequence.

2.1 H3N2 evolution trajectory
Multi-Dimensional Scaling (MDS) was used as a dimen-

sion reduction technique by [14] to project genetic and anti-
genic influenza data to visualize the relationship between
strains on a two dimensional plane. MDS must first com-
pute the pairwise distance between strains and then pro-
ceed to optimize an objective function to preserve the pair-
wise distance between strains as best as possible. MDS is
often used to provide visualization of influenza clusters to
gain a first hand understanding of their evolution trajectory.
On the other hand, the same objective can be achieved by
using PCA where strains’ pairwise distance computations
are not needed. To achieve this objective, PCA uses the
covariance between each strain and find the new and re-
duced dimensions to visualize the data (please see Materials
and Methods section for more detail on PCA). The results
from using the proposed encoding scheme on nucleotide se-
quences show that the evolution trajectory of the H3N2 virus
produced from Principal Component Analysis (PCA) is the
same as that produced from Multi-Dimensional Scaling al-
gorithm when the Euclidean metric was used for pairwise
distance calculation between strains. In the PCA case, two
dimensions are usually sufficient to explain most of the vari-
ability of the data. Here, in figure 1 top plot, we show that
it produced the same H3N2 evolution trajectory as MDS
using H3N2 nucleotide sequences. We colored the vaccine
strains in red in top figure and also listed them in table 1.
Each vaccine strain follows nicely in a chronological manner
in the curved pattern (from lower left to lower right) among
all other H3N2 strains. This trajectory indicates that H3N2
virus is evolving away from its earliest 1968 isolated strain.

Table 1: Vaccine strains shown in red in figure 1
(top).

Number Vaccine strain
1 A/Aichi/1968
2 A/Port Chalmers/1/1973
3 A/Philippines/2/1982
4 A/leningrad/360/1986
5 A/Shanghai/11/1987
6 A/Beijing/353/1989
7 A/Shangdong/9/1993
8 A/Johannesburg/33/1994
9 A/Sydney/5/1997
10 A/Moscow/10/1999
11 A/Fujian/411/2002
12 A/California/7/2004
13 A/Wisconsin/67/2005
14 A/Brisbane/10/2007
15 A/Perth/16/2009

2.2 Incorporating amino acid biophysical in-
formation
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Figure 1: H3N2 evolution trajectory using PCA
(top plot) and MDS (bottom plot)

The proposed encoding scheme with the inclusion of amino
acids’ biophysical properties leads to substantially better re-
sults in distinguishing different subtype when protein se-
quences are used. The biophysical property we have used
in this study is the hydrophobicity property of amino acids.
Ray [12] carried out a study to determine the most suitable
biophysical properties to use with unsupervised classifiers
[12] and found that three properties: Volume, Hydropho-
bicity, and Isoelectric property are best suited for classifi-
cation purposes. In our study, we have tried all three of
the said properties and found that hydrophobicity is best
suited for influenza sequences. We demonstrate this result
by applying our coding scheme combined with hydropho-
bicity values (H-value) on H3 and H5 subtypes nucleotide
sequences. We obtained the hydrophobicity values for all
the amino acids published from the study conducted by Ray
and Kepler [12]. After appending each H-value to the bi-
nary string of each amino acid and converted all the protein
H3 and H5 sequences into binary strings, PCA was used to
provide visualization (figure 2 and 3) between the two sub-
types on two dimensional plane. For comparison purpose,
we produced a projection of H3 and H5 sequence without
using the H-value, as shown in figure 2. Although we see
data separation in both cases, the projection result with H-



value applied clearly explained more variance (at 70 percent)
than the one without (at upper 30 percent). The separation
between H3 and H5 also has become more pronounced with
less overlapping strains from each subtype.

   1    2    3    4    5    6    7    8    9   10
0

20

40

60

80

100

V
ar

ia
nc

e 
E

xp
la

in
ed

(%
)

−10 −5 0 5 10 15
−10

−5

0

5

10
H5N1 and H3N2

1st component

2n
d 

co
m

po
ne

nt

0%

20%

40%

60%

80%

100%

Figure 2: PCA projection of H3 and H5 protein se-
quences without applying hydrophobicity informa-
tion.
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Figure 3: PCA projection of H3 and H5 protein se-
quences with hydrophobicity information incorpo-
rated.

2.3 Complete view of all subtypes of influenza
viruses

The diversity and distribution of the influenza virus has
been studied by [3, 7] by building a panorama of phyloge-
netic trees. Here, we decided to apply our encoding scheme
to all 16 subtypes of the influenza virus hemagglutinin nu-

cleotide sequences totalling 16993 to produce a two dimen-
sional whole view of all subtypes. After converting the
hemagglutinin nucleotide sequences to binary strings, we
used PCA to project all the subtypes (H1 to H16), obtaining
a global view of the virus. From figure 4, we see a tripod
shape with H1N1, H3N2, and H5 each occupying a tripod leg
(each of the green dots designates the earliest of each isolate
subtype). All the other subtypes remain in the center of the
tripod, showing very little change. This indicates that the
three subtypes H1N1, H3N2, and H5 are evolving faster than
the other subtypes. On the H3N2 leg, the black dots repre-
sent H3N2 vaccine strains used from 1968 to 2007. Among
the 16 subtypes, H13 and H16 are very close to each other.
This is in agreement with [7]. On the other hand, H2, H4,
H9, H10, and H15 appear to be close to each other. Subtypes
H2 and H9 are are very close to each other, but phylogenetic
analysis indicates that these two subtypes were derived from
different lineages. One explanation is that there is small syn-
onymous differences (mutation at nucleotide level but does
not change the encoded amino acid) exist between these two
subtypes based on sequence level analysis. The lineage dif-
ferent can come from viruses evolving within the same host
type (e.g. Human H1N1 and Human H3N2) but with dif-
ferent antigentic property for each lineage. Subtypes H4,
H10, and H15 are clustered together in the plot, and phylo-
genetic analysis from [7] showed that they were derived from
the same lineage.
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Figure 4: A complete view of all subtypes from 1918
to 2009. The three active evolving subtypes (H1,
H3, and H5) are spread out to each tripod leg in-
dicating their dominance in establishing their own
lineage.

2.4 Detecting reassortants
Due to the segmented nature of influenza virus genome (8

individual segments of single stranded RNA that encodes 2
surface proteins and 8 internal proteins), reassortment be-
tween influenza viruses are common and can lead to the gen-
eration of novel strains of the virus [8]. In fact, pandemic
strains have been found to carry gene segments originating
from multiple hosts within their genome [11]. Here, we de-
sire to test the predictive power of PCA coupled with our



binary encoding scheme with hydrophobicity information in-
corporated. We wish to identify influenza viruses originating
from a single host but carrying gene segments belonging to
multiple hosts. Our objective is to see whether PCA is able
to identify virus’s surface proteins that have gone through
reassortment process. For the first test, we built an artifi-
cial reassortant virus (RV) dataset consisting of viruses with
surface proteins HA and NA from avian hosts but internal
proteins originating from a human host. Each RV genome is
constructed by replacing the flu virus’s (FV1) human-host
HA and NA proteins with avian-host HA and NA proteins.
We first pre-computed the principal components using flu
virus (FV1) genome sequences whose genes all originated
from human host only. Then we projected the reassortant
virus (RV) genome sequences containing avian HA and NA
genes onto these pre-computed FV1 principal components.
From figure 5, we see that reassortant virus (RV) with pro-
teins originating from human host (green) are closely ”at-
tached” to the human proteins (black) of the flu virus(FV1).
On the other hand, its surface proteins (red dots) are clearly
isolated from the surface proteins of human-host origin (blue
dots).
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Figure 5: Plot of reassortant virus (RV) genome pro-
jected onto principal components computed using
flu virus (FV1) genome of human origin. Each dot
represents a gene sequence from the genome. RV
genome are represented by green dots (internal pro-
teins) and red dots (surface proteins). FV1 genome
are represented by black dots (internal proteins) and
blue dots (surface proteins).

We performed a second analysis test using a real reassor-
tant virus H3N2 A/SW/CO/77 genome sequence identified
in [5] to test the predictive power of our approach. We se-
lected this isolate because its genetic characterization by [5]
using phylogenetic trees indicated that
SW/CO/77 pig isolate’s HA and NA proteins are closely
related to the human influenza virus. In this second anal-
ysis, we conducted two tests: an experiment test and a
control test. For the experiment test (result shown in fig-
ure 6), we first computed the principal components using
field isolates of human origin flu viruses (see Materials and
Methods for human virus genomes used) and then projected

the A/Swine/CO/77 genome onto these precomputed prin-
cipal components. We see that the HA and NA proteins
of SW/CO/77 are closely ”attached” to the human HA and
NA counterparts, which suggests that these two surface pro-
teins were originated from a human-host type virus during
reassortment event.

For the control test (result shown in figure 7), we selected
the H3N2 A/swine/Wisconsin/2/1970 swine virus as the
control genome because SW/CO/77 was isolated in 1977.
The reason for selecting a 1977 strain as a control is that
the swine flu virus lineage at that time had not diverged
into multiple lineages that carried gene segments with mixed
host type [5]. This is also to assure that the control strain
contains only gene segments from a single host type of swine
origin. Based on phylogenetic analysis,
A/swine/Wisconsin/2/1970 does not contain foreign host
type gene. In this control test, we precomputed the prin-
cipal components using the control genome sequence and
then projected the A/SW/CO/77 genome onto the first two
components. Clearly, we can see that A/SW/CO/77 strain’s
HA and NA proteins (red dots) are clearly distantly apart
from the swine origin counterparts (blue dots). From the
results of these two reassortant detection tests, we can see
that there is an unique feature or a signature pattern that
represent each specific host type. With the right feature
representation, PCA can quickly isolate and identify these
type of attributes in the dataset.

−30 −20 −10 0 10 20 30 40 50
−30

−20

−10

0

10

20

30

40

50

2
n

d
 c

o
m

p
o

n
e

n
t

1st component

Sw/CO/77 projected on Human H3N2 genome

Sw HA

Sw NA
HA

NA

Figure 6: SW/CO/77 genome projected onto prin-
cipal components computed using human origin flu
viruses genomes. Green dots represent the Hu-
man HA and NA surface genes, red dots are the
SW/CO/77 genes, and blue dots are the internal
genes from human host genome.

3. DISCUSSION
In this paper, we have shown that using a flexible encod-

ing scheme to convert influenza virus’s nucleotide or pro-
tein sequence can enable us to automatically extract unique
mutation pattern that carries evolution information of the
virus. We have highlighted some analysis results using our
approach that are important in the field of influenza se-
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Figure 7: SW/CO/77 genome projected onto princi-
pal components computed using swine virus genome
as control. Red dots are the SW/CO/77 genes and
blue dots are the Control A/Swine/Wisconsin/ virus
genes.

quence analysis. For example, a hidden difficulty when an-
alyzing sequences from each flu season is that we do not
know which strains in the data evolved from which other
strains in the data, there is no indication or extra informa-
tion showing the relationship between strains [2]. A pairwise
comparison with this uncertainty can give results that could
be biased because pairwise comparison implicitly assumes
that one virus of the pair is the progenitor of the other [2].

The encoding approach proposed here still involves pair-
wise comparisons as part of the covariance calculation in
PCA, but the encoding scheme introduced here allows PCA
to automatically capture the locations of the mutation pat-
terns. This is to say that the location of mutation along the
sequence is more important than the pairwise distance infor-
mation. We have demonstrated this with the plots of H3N2
evolution trajectory using PCA (figure 1). With PCA, we
can quickly examine the variances associated with strains in-
stead of relying on pairwise Hamming or P distance between
strains. Usually only a small number K of components is
needed to capture a large fraction of the total variance. The
largest K variances are associated with the first K princi-
pal components, and there is usually a precipitous drop off
in the variances after the K-th. Therefore, the most inter-
esting dynamic of the data can be captured in the first K

dimensions. With influenza virus sequences showing a very
high genetic similarity characteristic within subtypes [15],
this means that most of the sites carry redundant informa-
tion and only a portion of the sequence contains vital genetic
variation signal. This underlying phenomenon seems to be
tailor made for PCA. We have shown that after convert-
ing the sequences to binary strings, PCA has no problem in
capturing the intrinsic pattern of the virus sequence data.
Although PCA and MDS yield approximately the same tra-
jectory results, an advantage of using PCA is that PCA
carries prediction capability. The prediction power of PCA
comes from the fact that one can pre-compute a set of prin-
cipal components with existing data (or training data) and

then project a set of new data (test data) onto the pre-
computed principal components. This simple procedure can
highlight the differences or similarity between the two data
sets. We illustrated this by using it to detect reassortant
viruses. To detect reassortant, we precomputed principal
components from existing virus dataset that do not contain
any mixed-host proteins within its genome. We then project
new virus genome dataset suspected to contain reassortant
proteins onto the precomputed principal components to de-
tect any outliner or abnormally. Here, we have shown that
PCA can quickly identify the mixing of human and avian
genes in a virus genome. This aspect of prediction power
from PCA is far more useful than using multidimensional
scaling approach.

Feature representation schemes for amino acids usually
employ a simple categorical representation where each amino
acid is grouped together according to its pre-defined charac-
teristic. Commonly found groups are charge group, polarity
group and structure group. Each amino acid within each
group is implicitly regarded as having equidistant from ev-
ery other amino acid. Only the category of each amino acid
is used, while the specifics for each individual amino acid is
discarded. To overcome this distance bias introduced by the
grouping strategy, we elected to directly incorporate each
individual amino acid’s property, including the individual
identities. In our case, we have shown examples using the
hydrophobicity property of amino acids as an extra infor-
mation as it is one of the key properties relating to protein
binding[4]. The extra information allows for a more accurate
representation for each amino acid. Through using PCA, the
results are encouraging as only two principal components
were enough to capture the hidden pattern of the data.

With the Next-Generation Sequencing (NGS) promises of
sequencing DNA at unprecedented speed and production of
massive quantity of data, it is imperative that new technique
needs to be developed to provide quick and reliable analysis
of any sequence data. Here, we believe our approach can be
used at the upstream stage of sequence data analysis pipeline
to gain insight as to which direction should be continued on
in analyzing the available data.

4. MATERIALS AND METHODS

4.1 Data
All influenza virus nucleotide, protein, and genome se-

quences used in this study were downloaded from NCBI In-
fluenza Virus Database [1] as of February 2011. 239 H3N2
nucleotide sequences were used for the trajectory analysis
(accession numbers available upon request). H3N2 and H5N1
subtypes HA protein sequences totalling 5708 were used
in the analysis presented in section 2.2. 16,993 hemagglu-
tinin nucleotide sequences representing all subtypes of the
flu virus were used to obtain the whole view plot of the
virus. The majority of sequences were from H1 with 6632
sequences, H3 with 4071 sequences, and H5 with 3088 se-
quences. For reassortant detection, we selected human host
flu genome sequences isolated from early 1970s to 1980s for
the experiment test. This test set consists of genome se-
quences of strain Port Chalmers: A/Port Chalmers/1/1973,
Udorn: A/udorn/1972, and Memphis: A/Memphis/15/1988
(accession numbers available upon request). For the control
test, we selected
A/swine/Wisconsin/2/1970 genome from NCBI flu genome



database. Each influenza virus genome is named by its sub-
type, host, geographic location, strain number and year.
The strain name refers to the virus genome which consists
of 8 segments that codes for 10 proteins.

4.2 Binary encoding
Transforming nucleotide or protein sequence to a feature

vector that captures the mutation pattern is the key in deter-
mining the evolution trajectory of the influenza virus. Our
approach is simple and has the ability to capture the mu-
tation pattern of the virus. The feature vector is a string
of zeros and ones that represents a biological sequence di-
rectly. In addition, if protein sequences are used, our ap-
proach allows the incorporation of biophysical properties of
each amino acid into each protein sequence which further
enhances the differences between each amino acid. For nu-
cleotide sequences, we encode Adenine (A) to ”1000”, Gua-
nine (G) to ”0100”, Cytosine (C) to ”0010” and Thymine
(T) to ”0001”. Each nucleotide base is uniquely represented
by a 4 digits binary string. For example, to encode a nu-
cleotide sequence of ”AGA” and another of ”ACA”, AGA is
transformed to 0 0 0 1 0 1 0 0 0 0 0 1 and ACA is trans-
formed to 0 0 0 1 0 0 1 0 0 0 0 1. When these two se-
quences are compared, the mutation in the second position
is captured by the different between 0100 and 0010. This
encoding scheme allows for direct capture of mutation infor-
mation between sequences and facilitate direct subsequent
computational analysis. For protein sequences, we convert
each amino acid to a binary string of length twenty and
each string is different by only one bit. For example, Ala-
nine is coded as ”1 0 0 0...0 0 0” and Cysteine is coded as
”0100...000”. In addition, the biophysical properties data of
each amino acid can be directly append to the end of the
twenty bits string. For example, the hydrophobicity value of
Alanine is 1.8 and the binary string of Alanine becomes ”1 0
0 0 ... 0 0 0 1.8” which further distinguishes the differences
between each amino acid. Even though the length of the
nucleotide sequence has been increased by a factor of 4 and
protein sequence by a factor of 20, the sparsity of the rep-
resentation does not incur a high computational overhead.
In fact, we were able to analyze over five thousand protein
sequences in a time of less than 15 minutes running on a
moderately powerful (2.1 GHz with 4GB memory) desktop
computer.

4.3 Principal Component Analysis
Principal Component Analysis (PCA) is used in all forms

of analysis from bioinformatics to computer vision. It is a
simple non-parametric method of extracting relevant infor-
mation from unstructured data sets. The extraction can be
viewed as dimensional reduction where a complex high di-
mension data set is reduced to a lower dimension in order to
reveal hidden, simplified structure buried within the data.
In order to find the best lower dimension to capture the
structure of the high dimensional data, PCA proceeds by
diagonalizing the covariance matrix of the data set, consis-
tent with the goal to maximize the variance captured in the
projected data onto the lower dimensions. One restriction
is that PCA requires the directions of projection be orthog-
onal to each other and the variance associated with each
direction be maximized. The orthogonal requirement makes
PCA solvable with highly efficient linear algebra decompo-
sition techniques. Here, we briefly introduce the working

mechanism of PCA from a linear algebra perspective. Con-
sider a data matrix Xm,n with dimensions of m by n with m

being the number of strains and n being the number of sites.
Each row of X corresponds to a strain of virus and each col-
umn of X corresponds to a particular site. We first need to
center the rows of the data matrix X (i.e. replace X with
X−

1
m

ee
T
X, where e is a column vector of all ones) and then

obtain the covariance matrix C from X by C = 1
(m−1)

XX
T .

C is a square symmetric m×m matrix whose diagonal entries
are the variances of the individual strains across sites and
the off-diagonal terms are the covariances between different
strains. If one wishes to reduce the row dimensions, one can
simply apply this entire computation to the transpose of the
data matrix. The goal of PCA is to find a set of orthonor-
mal axes that diagonalizes matrix C. The diagonalization
of C is computed by finding its eigenvectors. Since C is
symmetric and square, its eigenvectors are the orthonormal
principal directions, and its eigenvalues correspond to the
variances of the data along those principal directions. The
eigenvectors of C are now the new basis for the data X. The
projection of the data matrix X onto this new basis gives the
alternative ”PCA view”of the data with mean zero and vari-
ance maximized along each principal component direction.
A quick decomposition technique to obtain the orthonormal
basis is using the Singular Value Decomposition (SVD) [6].
One can center the matrix, calculate the C matrix, and then
applying SVD to C. SVD of C gives C = UΣV

T where the
matrix V contains the orthonormal basis we sought. We
can then project the data to these orthonormal basis with
X ∗ V ; The matrix Σ is a diagonal matrix that contains the
eigenvalues of C which are the variances of the orthonormal
basis/principal components.

For the H3N2 evolution trajectory analysis, the H3N2 HA
nucleotide sequences of the same length were converted to bi-
nary strings which yielded a data matrix that can be directly
used with PCA algorithm. The first two principal compo-
nents corresponding to the two largest eigenvalues were then
plotted to obtain the trajectory. In section 2.2, H3 and H5
HA protein sequences of the same length were used and con-
verted to binary strings. In section 2.3, all HA nucleotide
sequences with the same length were used and converted to
binary strings. For both sections 2.2 and 2.3, PCA were
then directly applied to the converted binary strings and
the first two principal components were selected for plot-
ting and visualization purposes. In section 2.4, influenza
genome (consisted of 10 protein sequences) was converted
to binary strings with H-value incorporated. PCA algorithm
was then used to find the first two principal components for
the training data set (the FV1 dataset, human flu virus se-
quences, and A/Swine/Wisconsin/72). The projection of
testing dataset (RV, and A/Swine/CO/77 set) onto the two
principal components were done as outlined above. We per-
form all the computation using Matlab 7.6 version software.
The PCA results were generated by the princomp function
from Matlab’s Stats toolbox.
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