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Abstract

Consider an underlying signal which is a sum of r ex-
ponentials plus noise. We present a novel combination
of fast techniques which enables us to determine all
the underlying modes in only O(r?) operations, while
filtering out most of the noise. Almost all previously
known methods applied to noisy signals require at least
O(r?) operations.

1 Introduction

Let {hy}2, denote a complex-valued signal, and let H
represent the associated infinite Hankel matrix whose
(i,7)-element is defined by H;; = hiyj_1:

hi hy hs hy
hy hs hs hs .-

H=|hs hi hs hg .- (1)
hs hs hg hy -

This matrix is symmetric (not Hermitian if complex):
HT = H.

Throughout this paper, the notation M7T denotes the
transpose of M, as distinct from the more usual con-
jugate transpose denoted by M. Suppose that the
underlying signal is a sum of r exponentials, i.e., for
k=1,2,...,

hy =Y Md;, (2)
i=1

where the A;’s are distinct complex numbers. Then
the Hankel matrix H will have rank r; in general, the
value of r is not known. The matrix H admits the
factorization:

H=V"DV,

where D is diagonal and V' is Vandermonde:

D = diag(dy, do, ..., d,)
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We stress that a diagonal decomposition is possible
only if the A;’s are distinct. Vandevoorde [15] discusses
the general case when the modes are not distinct. If this
decomposition can be computed quickly, then this can
be used to compute a fast decomposition of a noisy sig-
nal with the view of extracting the important “signal”
modes. The purpose of this work is to indicate how a
fast computation may be accomplished.

The paper is organized as follows. Section 2 describes
a Krylov method that reduces the given Hankel matrix
to a tridiagonal form. In Section 3 we explain how
the overall computation can be performed very quickly,
using only O(r?) operations. Finally, an example is
presented in Section 4 to illustrate the details of our
approach.

2 Krylov Sequence

The key idea behind our method is to note that the
columns of H can be thought of the Krylov sequence
generated by the so-called “shift-up” matrix.

Assume that the matrix H of (1) has rank r. By a
theorem of Gantmacher [7, vol. 2, p. 207], the signal
satisfies a recurrence relation of length r:

hy = ar 1hg 1 +a, shg >+ +aghgr, (4)

which generates the entire signal once the r initial val-
ues {hy,ha,..., h,} are fixed. The recurrence (4) is a
difference equation which can be used to solve for the
vector:

a = ((107 ar, -, ar,l)T

after the next r values {h,y1,h,y2,...,ho,} have be-
come known.

Let C denote the companion matrix corresponding to
the polynomial:

PN EN —a, N T —ag X — ag; (5)



that is,

0 1
0 1
C= ) (6)
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We show that the first » rows of H can be regarded as
a Krylov sequence generated by C. Let

hy

h
no2| (7)

hk+r71
denote the first r entries in the k-th column of H; e.g.,

ha
ho

1>

h; :
hy
The first 7 rows of H can be written as
Hiviioo=(hy hy hgy ---);

SO
Hl:r,l:oo = (hl Ch, 02h1 ) . (8)

Since every row is a linear combination of the first r
rows, we have that (8) implies

Hl:oo71:oo = (hgoo) Zhgoo) Z2h§oo) - ) 5 (9)

where h§°°) denotes the first column of the infinite Han-

kel matrix H, and

01
0 1

1>

is the “shift-up” matrix. The consequence of (9) is
that the (r + 1)-dimensional Krylov space generated by
expanding (8) by r steps can be computed by using (9)
and shifting in the entries.

Our algorithms will be based on the application of the
Lanczos algorithm to the companion matrix C' and the
initial vector h;, yielding the expansion:

{C’X =XT

c’y =VYT, (10)

where the matrices T and T are tridiagonal and the
matrix Y7 X is diagonal. The first column of X is
exactly h; and the first column of Y is chosen to be

€] é (170:"':0)T‘

The subsequent columns x;, of X are generated by the
recurrence, for k =1,2,--

bkl - Xkp1 = OXp — b g - X — teg—1 - Xp—1, (11)

where tj, and t; ;1 are scalars computed to enforce
the biorthogonality conditions :

T
Yi Xk+1 =0

T —
Yi—1Xk+1 = 07

and ty 41 is an arbitrary scaling factor, usually set so
that the resulting vector x;; has unit length. These
scalars are assembled into the tridiagonal matrix 7.
The columns y; of ¥ are generated by an analogous
recurrence using C7 and generating the entries of T.
Implementation details for this standard Lanczos algo-
rithm can be found in [8, §9.4.3].

Notice that the two relations (8) and (9) generate iden-
tical vectors, when limited to the first r entries of the
first (r + 1) vectors. Hence we can obtain the identical
Lanczos expansion using Z with starting vector hgoo),
where only the first (2r — 1) entries of this latter vector
are known. The unknown entries beyond the (2r—1)-st
are shifted in, but do not affect the coefficients T' or T
until the (r+1)-st step, which is beyond the step where
we wish to terminate the algorithm. Hence we can re-
place the C in (11) with Z. The equivalence between
this algorithm and the Berlekamp-Massey algorithm,
as well as a symmetrized version [13] of this algorithm,
are discussed in [2]. From this equivalence, it is shown
that the complexity of this algorithm is O(r) flops per
step, a total of O(r?) flops for the r steps we require.

This Lanczos method will be used to determine the
eigenvalues of C. Suppose A, Xo,..., A, denote the
roots of the polynomial p(A) of (5), which we will as-
sume for the purpose of this paper to be simple. The
general case has been treated in [15, 3]. If the expan-
sion (10) is carried out until the size of T' becomes r X r,
then the eigenvalues of C' match those of T'. The result
will be mathematically equivalent to Prony’s method
[14], which consists of solving for the coefficients of the
polynomial (5) using the Yule-Walker equations

(hi hy h.)a=h,,

and then finding the roots of the polynomial (5) de-
termined by the solution a. However, it is well known
that the roots of a polynomial can be very sensitive to
the coefficients of the polynomial, especially when they
are not well separated; by using the Lanczos method
we are able to find those roots without forming the
polynomial at all.



3 Fast Vandermonde Decomposition

We sketch our algorithm to compute the Vandermonde
decomposition fast. Many of the individual pieces to
the algorithms are “off-the-shelf” methods, some are
more experimental, and some have received very little
discussion. Most details can be found in [15].

We begin with an outline of the basic steps:

1. Use a Lanczos algorithm to generate the tridiag-
onal matrix T'.

2. Compute the “modes” generating the signal,
i.e., the eigenvalues of T'.

3. Compute the diagonal matrix D:
D=vTHpv !,

where V' is the Vandermonde matrix (3) gener-
ated by the eigenvalues in step 2. The diagonal
structure of D follows from the theory developed
in the previous section.

4. Select the most “important” rows of V and en-
tries of D.

We fill in the main details for these steps. For step 1,
we use a variant of the Lanczos algorithm discussed in
the previous section. However, for a signal corrupted
by noise, we must take a sample much longer than the
noise-free rank of the signal (the number of modes gen-
erating the underlying noise-free signal). In this case,
we can carry out the Lanczos algorithm to as many
steps as desired (up to the length of the signal sample
we have).

The Lanczos algorithm can suffer a breakdown situ-
ation if some column xj is orthogonal to the corre-
sponding column yg. In this situation, a “look-head”
variety of the Lanczos has been developed in [6], where
the biorthogonality conditions are relaxed to some ex-
tent, but the result is that the matrices T and T are
no longer tridiagonal. In the context of the analysis of
signals corrupted by noise, this is a rare event, but if
it should happen, one possible solution is to apply the
nonsymmetric Lanczos process to T itself to generate a
new “I"” starting with a random starting vector. The
cost will still be O(r?).

Once the tridiagonal matrix has been generated, the
task is to find its eigenvalues in step 2. The QR-type
algorithm is a standard algorithm for the general non-
Hermitian eigenproblem. It is based on the iteration:

{ QR =70 5]

Trew _ o = RQ (12)

where @, R are respectively unitary and upper trian-
gular and s is a shift to accelerate convergence. Most
implementations include many extras for efficiency and
robustness which space does not permit us to discuss
here. However, this “standard” algorithm does not pre-
serve any tridiagonal structure present in the iterate
T°9 unless T°9 is Hermitian.

There are two variants of the QR-type algorithm that
can be applied here that can preserve the tridiagonal
structure even for non-Hermitian matrices. One possi-
bility is the complex symmetric QR algorithm proposed
in [5], for which the matrix T must be symmetrized
(unless we use the symmetrized Lanczos algorithm in
step 1). Even when T is real, if the signs of the cor-
responding superdiagonal and subdiagonal entries of T
are opposite, then the symmetrized matrix will be com-
plex. The resulting QR algorithm is a direct analog of
the ordinary Hermitian QR method, but using complex
orthogonal rotations and complex symmetric matrices
instead of unitary rotations and Hermitian matrices,
respectively. The resulting @ in (12) is “complex or-
thogonal,” meaning

QTQ =1,
as opposed to “unitary,” meaning
Q"Q =1

It follows that the symmetry and the tridiagonal struc-
ture of T°'9 are preserved.

The other option is to use the LR algorithm [16], which
is based on the LU factorization without pivoting to
preserve the tridiagonal structure. In this algorithm
the @ in (12) is replaced by a lower triangular L com-
puted using Gaussian elimination without pivoting.
The LR algorithm can break down because of a zero
pivot during the Gaussian elimination, but if a random
shift is applied when this occurs, the process can still
exhibit very rapid convergence. If T is real, an implicit
double-shift LR algorithm can in principle be carried
out in real arithmetic [16]. Both algorithms require
linear time for each iteration in a manner very similar
to the Hermitian analog, and the number of iterations
is generally O(r) in a manner very similar to the QR
algorithm usually employed. So the total cost will be
O(r?) for both methods. The relative merits between
these alternative algorithms have not been studied in
detail.

In step 3, we must find the diagonal matrix D. Because
of the structure of V', the diagonal entries of D appear
in the first column of the matrix DV:

DV =V"TH.

This first column is the solution d to the Vandermonde
system:
vTd =h,.



This can be solved with a fast Vandermonde solver
[1], where Higham [9, p. 438] recommends ordering the
eigenvalues with the Leja ordering to achieve numeri-
cal stability in the algorithm in spite of the possible ill-
conditioned nature of V. A simple derivation of the fast
algorithm can be found in [8, §4.6.2]. It is based on the
fact that an implicit “UL” decomposition of the matrix
V can be computed in O(r?) time using divided differ-
ences [10, ch. 6]. A more recent O(rlog”r) algorithm
has been proposed in [12], and all these algorithms in-
cluding this last one have been extended to the case of
confluent Vandermonde matrices (arising when several
Ai’s coincide).

4 Analysis of a Signal

Counsider a signal {h;} which suffers from the presence
of noise. How can we recover the principal modes that
generate the signal?

A popular method by Kung [11] based on the singular
value decomposition (SVD) is known to be an effec-
tive method for finding modes, but it suffers from the
need to carry out both an SVD and a matrix eigensolu-
tion, each costing O(r?) operations. A second popular
approach is to form the Hankel matrix generated by
the signal, and then proceed to find a nearby Hankel
matrix of a lower rank [4]. The Vandermonde decom-
position of this nearby low-rank Hankel matrix yields
the parameters in (2). The method of [4] iterates until
it converges to a nearby Hankel matrix. Unfortunately,
this method requires the repeated use of the SVD and
hence costs up to O(r?) operations per iteration.

We indicated in Section 3 how the Vandermonde de-
composition can be computed quickly. An obvious way
to obtain a nearby Hankel matrix of a lower rank is
to set to zero all the diagonal entries in D that are
smaller than a certain tolerance. Although this crude
method does not always yield the best approximation,
a judicious combination of this approach with other cri-
teria can yield a good result. The biggest advantage of
this technique is its low total cost of O(r?) operations,
instead of the O(r?) operations per step of any SVD-
based iterative approach as described in the previous
paragraph.

We illustrate our fast approach here. Start with a sig-
nal generated by five modes, shown by circles on the
complex plane in Figure 1, to which has been added
white noise with a signal-to-noise ratio of 5.4dB. We
then form the 128 x 128 Hankel matrix H and com-
pute its Vandermonde decomposition:

H=VvTDV.

Figure 2 shows the absolute values of the diagonal en-
tries of D in descending order. It turns out that select-
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Figure 1: Original noise-free modes (o) and those com-
puted from the noisy tridiagonal matrix dis-
cussed in Section 3 (* & x).
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Figure 2: Diagonal entries from Vandermonde decompo-
sition
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Figure 3: Discrete Fourier Transform (DFT) of the
original signal (dotted) and the reconstructed
reduced-order signal (solid). Small circles mark
the angles corresponding the original modes.

ing the modes corresponding to the five largest values
of D does not yield satisfactory results, but we can al-
most recover the correct modes by the following simple
procedure. We select the modes corresponding to the
largest entries in D (also called weights), specifically
those that are within 10% of the largest entry (in abso-
lute value); in this case ten modes were selected. Then
we choose a subset of these ten using a second criterion
based on the Discrete Fourier Transform (DFT) of the
signal. The DFT of the original signal is shown by the
dotted line in Figure 3. As most of the modes lie rela-
tively close to the unit circle, their argument (angle on
the complex plane) maps to the horizontal axis of Fig-
ure 3. In fact, we have marked the angles correspond-
ing to the five original “unknown” modes by means of
circles along the z-axis. This leads to our second cri-
terion, viz., select those modes for which the DFT is
larger than a certain threshold (in this case 30%) of
the largest value in the DFT (in absolute value). This
selection criterion is applied only to those modes that
survived the first selection process. In this example,
out of the ten modes only six survived the second se-
lection process. These final six modes are marked by
*’s in Figure 1, and the resulting DFT using these six
modes is shown by the solid line in Figure 3. We re-
mark that one can still distinguish the two close peaks
in this DFT corresponding to the two very close orig-
inal modes. Although our fast method has worked so
well on this example, we should emphasize that the
choice of criteria requires further study. Indeed, sev-
eral more sophisticated selection criteria are presented
and analyzed in [15].
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