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Abstract

Under a neutral evolution framework, genetic drift evolves
independently of one another and the mutation event can
be modeled as a Poisson process. We derive a Markov
model and using the assumption of a standard Poisson
process to investigate the likelihood of finding highly sim-
ilar influenza viruses separated by a long time gap. Our
Markov model is based on using Hamming distance as
the pairwise sequence comparison scheme. In order to
keep the order of the Markov chain to a manageable size,
we defined a “super state” where sequences are grouped
within a certain Hamming distance. Through this model,
we estimate the probability of observing highly similar in-
fluenza viruses over long time gap. We conclude that in a
neutral evolutionary environment the chance of observing
this is extremely low. This leads us to believe that there
exists some mechanism not currently modeled that helps
preserve virus sequences over long time periods.

Keywords: Influenza, Markov Model, Neutral evo-
lution

1 Introduction

For the past century researchers have been studying
influenza viruses (IV). Belonging to the viral fam-
ily Orthomyxoviridae, influenza viruses have eight
unique RNA segments [15] that encode 10 different
gene products (PB1 polymerase, PB2 polymerase,
PA polymerases, Hemagglutinin (HA), Nucleopro-
tein (NP), Neuraminidase (NA), Matrix M1 and M2
proteins, and Nonstructural NS1 and NS2 proteins).
The target of our study is the hemagglutinin HA
gene product. The HA protein is the major sur-
face antigen of the influenza virus. Its role is to
bind to host cell receptors promoting fusion between
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the viron envelope and the host cell [15]. Influenza
A virus HA genes have been classified into 16 sub-
types (H1-H16) according to their antigenic proper-
ties. Influenza viral HA protein is cleaved into two
peptide chains HA1 and HA2 respectively when ma-
tured [8]. The HA2 chain has been found to vary
less and is more conserved compared to HA1 chain
[5]. The HA1 chain is 329 residues long and is the
immunogenic part of HA protein. Past studies have
shown that HA1 is undergoing continual diversify-
ing change [3, 12]. In this study, we utilize a Pois-
son process coupled with a Markov model under the
assumption that genetic drift is acting in a neutral
evolutionary framework [4] and each site evolves in-
dependently of one another [10, 13, 6]. Under this as-
sumption, we show that it is highly unlikely that very
similar sequences would arise long after the original
sequence. Given the observations of several pairs of
very similar sequences separated by several decades,
we conclude that there must be some reservoir or
evolutionary mechanism that is capable of preserv-
ing old virus strains, allowing them to reappear after
extended time intervals.

2 Materials and Methods

2.1 Sequence Data

Using NCBI Influenza database available online, The

Influenza Virus Resource at the National Center for

Biotechnology Information [1], we have collected 3439
influenza virus type A protein sequences (exclud-
ing identical sequences and lab strains/NIAID FLU
project). This collection of protein sequences con-
tains isolates from around the globe and from a di-
verse range of hosts. So far 16 subtypes (H1-H16)
of influenza virus A HA genes have been classified
in the past century. We used protein sequences be-
cause they were known to give more reliable results
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than nucleotide sequences when constructing evolu-
tionary history [8]. All the sequences have been pre-
processed to eliminate gaps, and each sequence is 566
bases in length. Each of the 3439 sequences has a
unique annotation which contains the host organism,
the strain number, the year of isolation, subtype, and
protein name.

2.2 Pairwise sequence analysis

Our pairwise sequence analysis is based on the de-
gree of similarity between each virus sequence. We
first establish a distance function in order to mea-
sure the similarity between two protein sequences.
A distance between two sequences can be thought of
as the “edit” distance, which is the number of sin-
gle letter changes needed to transform one sequence
to the other. This yields a simple scoring function
assigning a zero to a matching amino acid base and
a one to a mismatch. The sum of all mismatches is
called the Hamming distance (k) or Hamming score
for the pairwise sequence comparison. For compari-
son of very similar biological sequences, this Ham-
ming distance can be used under the assumption
that the observed difference between a pair of sites
represents one mutation [2]. The present study could
also be carried out using BLAST or any alignment
algorithm, but as considerably greater expense. In
[11], Hamming distance was successfully used to find
interesting clusters of IV HA sequences and to pre-
dict vaccine strains with good results. Hamming dis-
tance as antigenic distance between viruses has also
been used effectively in modeling influenza viruses
[14] . In our study, we store the pairwise Ham-
ming distance scores of HA1 domain of HA gene in a
pairwise affinity matrix and identify virus sequence
pairs sharing high sequence similarity (at least 90
percent) but separated by a long time gap. We also
include multiple sequences that share very high se-
quence similarity with long time gap in our results
section.

2.3 Markov model

We model all mutations in the sense of single nu-
cleotide polymorphism (SNP) and use a Poisson pro-
cess to model the mutation rate and then build a
Markov model to model the mutations themselves.

Markov models have proven to be a powerful
tool for phylogenetic inference and hypothesis test-
ing when modeling transitions between amino acid
states. Modeling amino acid transitions is complex
since proteins are made of twenty amino acids. Be-
cause of this, we take a very different approach in
building our Markov model. We are trying to avoid a
Markov chain where each sequence is a state because
this would give rise to an exponentially large num-
ber of states (20n where n is the number of sites).
In our Markov model, we collect into a single state
Hk all the amino acids at given Hamming distance
k from the starting sequence s0 ∈ H0. Our Markov
model estimates the probability of an arbitrary HA
sequence s1 ∈ Hk mutating into a different HA se-
quence s2 ∈ Hl through a single point mutation,
where l must be one of k − 1, k, k + 1. We use a
simple model of limiting the mutations captured by
our Markov chain to the HA1 domain consisting of
n = 329 sites, since this region is less conserved than
the HA2 region [11, 12]. Our Markov model has only
n + 1 = 330 states instead of the 20n states it would
have if we kept each state and each possible transi-
tion separate.

Formally, consider a finite set of states labeled
{H0, H1, ..., Hn}. In order to keep the Markov chain
to a manageable size, we group all the sequences
within Hamming distance of k from a start sequence
into a single “super state” Hk. At each transition, we
assume a single point mutation occurs, and that this
mutation could occur in any site with equal proba-
bility. We denote by a the size of the alphabet of
letters, in our case 20. For a sequence s1 ∈ Hk,
there is a probability k/n that the mutation occurs
in one of the k positions where s1 differs from s0, and
if this change occurs, there is a 1/(a−1) chance that
the new amino acid in this position will match that
in the same position of s0. Hence the probability xk

of a transition from Hk to Hk−1 is xk = k
n
· 1
a−1 . Sim-

ilar reasoning yields the probability yk that a tran-
sition will remain at the same Hamming distance:
yk = k

n
· a−2

a−1 . The probability that mutation will
be in one of the n − k sites that still match s0 is
zk = 1 − k

n
, corresponding to a transition from Hk

to Hk+1. The probabilities xk, yk, zk are assembled
into a Markov transition matrix M shown in Figure
1. The entries in each row of M add up to 1.

Using this model, we can compute the probabil-
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ity qt that a virus can have at most k Hamming
distance away from its initial state after t muta-
tions. We give the general form of how to compute
the above probability. We let vt = (vt0, vt1, . . . , vtn)
be the row vector of probabilities of being in state
H0, H1, . . . , Hn, respectively, after t mutations. At
t = 0 we are in state H0 consisting of just the ini-
tial sequence. This is represented by the row vector
v0 = (1, 0, 0, ..., 0). Then the vector of probabilities
after t + 1 mutations is related to the probabilities
after t mutations by vt+1 = vt ∗ M . The probability
of being at most k distance from s0 after t muta-
tions is the sum of the first k + 1 components of vt:
qt(k) =

∑k
i=0 vti.

The above analysis counts events consisting of a
mutation. To model the probability of no mutation
taking place in a given time interval, we use a Poisson
process [7]. This assumes that the probability of
a mutation in a given time interval depends only
on the length of the interval but is independent of
the behavior outside the time interval. If λ is the
average number of mutations in a time interval of 1
year, then the probability that t mutations occur in
any time interval of length Y is given by pt(Y ) =

e−Y λ (Y λ)t

t! .
The Poisson process models when mutations oc-

cur, and the Markov model models the nature of
the mutations. Combining these two models yields
the probability Pκ(Y ) that after Y years a sequence
would appear with a Hamming distance from s0 of κ,
namely Pκ(Y ) =

∑∞
t=0 pt(Y ) · qt(κ). Thus, the prob-

ability that a sequence would appear with at most k
Hamming distance from s0 is Pk(Y ) =

∑k
κ=0 Pκ(Y ).

3 Results and Discussion

We selected viruses sharing very similar sequence
composition but with large time gap. We used the
amino acid substitution rate of r = 2× 10−3 per
site per year for H1 and H2 subtype viruses, esti-
mated using the entire region of the HA gene [8].
This yields an annual mutation rate of λ = nr =
329 · 2×10−3 = 0.658. Tables 1 and 2 show viruses
sharing very high sequence similarity but with large
time gap. Each table includes the accession num-
ber “Accession”, strain name “Strain”, the Ham-
ming distance “H” (calculated using the first strain),

expected number of mutations “EG”, the year dif-
ference “Y”, and the P-value. Taking the strains
A/swine/St-Hyacinthe/148/1990(H1N1) and A/South
Carolina/1/1918 from Table 1 as an example, the in-
terpretation of the result is that after 72 years, the
expected number of mutations is 47.3 and the prob-
ability of being within a Hamming distance of 20 of
the original source sequence is 6.35× 10−6. Figure 2
illustrates how the probability values of 3 H2 strains
in Table 2 are rapidly dropping against the expected
number of mutations from the Markov model calcu-
lation.

To check how our model matches the data, we
show the predicted distribution of Hamming distances
in Figure 3 based on a time interval of Y = 49 and
annual mutation rate of nr = 0.658 of H2 subtype.
The peak of the curve indicates that with high prob-
ability, roughly 30-40 mutation events would have
taken place. This tells us that we should expect to
see the majority of H2 sequence pairs with Ham-
ming distances in the vicinity of 40 given the length
of time interval equals 49 years base on Poisson pro-
cess assumption. We compare this to the actual dis-
tribution of Hamming distances found in the H2 sub-
type data shown in Figure 4 over the range of data
available (from 1957 through 2006 or a span of 49
years). Figure 4 shows that the majority of the H2
sequence pairs have Hamming distances around 35,
which matches the Poisson process prediction. We
have excluded the few sequences with Hamming dis-
tance over 300 (almost the length of the entire sub-
sequence we are considering) in the figure. The in-
stances of Hamming distances around 300, less than
10% of all the sequences, can be attributed to the
fact that the strains are from different hosts and dif-
ferences in the regions of the H2 pair being selected.
Some may share the same serological reaction and
hence the same potential signature epitope sites in
the HA1 region even with different sequence compo-
sition.

4 Conclusions

The extensive genetic diversity of influenza A viruses
through genetic drift and reassortment in the past
century resulting in many new strains being gen-
erated. In this study, under the neutral evolution
framework, we have illustrated the “unlikeliness” of
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Table 1: H1N1 subtype long time gap strains (Rate:
2×10−3 per site per year). H = Hamming distance,
Y = Year, EG = Expected number of mutations.

Strain H Y EG P-value
AAD17229: A/South
Carolina/1/1918 0 0 0 source

sequence

AAA91616: A/swine/St-
Hyacinthe/148/1990(H1N1) 20 72 47.3 6.3499e-06

Table 2: H2 subtype long time gap strains
Strain H Y EG P-value

AAY28987: A/Human/
Canada/720/2005(H2N2) 0 0 0 source

sequence

AAA64365: A/RI/5+/
1957(H2N2) 6 48 31.5 7.807e-09

AAA64363: A/RI/5-/
1957(H2N2) 3 48 31.5 1.206e-11

AAA64366: A/Singapore
/1/1957(H2N2) 5 48 31.5 1.155e-09

AAA43185:A/Human/
Japan/305/1957(H2N2) 5 48 31.5 1.155e-09

finding highly similar influenza virus sequences after
a long time gap using a Markov model with Ham-
ming distance metric under the assumption of a stan-
dard Poisson process. Judging by the extremely low
probability values obtained of finding highly similar
influenza viruses over long periods, we conclude that
reservoir of viruses capable of preserving them over
long period of time exist. Our model is able to cap-
ture the dynamic of the data being studied, and is
sufficient to show that some underlying mechanism
exists that preserves viruses even in the sequence
region most subject to active mutation, even if the
mechanism cannot be identified. The model can be
readily applied to study the internal and external
proteins of influenza virus across different subtypes.
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Figure 1: Markov
transition matrix

Figure 2: H2 subtype
probability plot
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