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Abstract 
 
Parameter estimation of the spatial auto-regression model (SAR) is important because we can model the spatial 
dependency, i.e., spatial autocorrelation present in the geo-spatial data. SAR is a popular data mining technique 
used in many geo-spatial application domains such as regional economics, ecology, environmental management, 
public safety, public health, transportation, and business. However, it is computationally expensive because of the 
need to compute the logarithm of the determinant of a large matrix due to Maximum Likelihood Theory (ML). 
Current approaches are computationally expensive, memory-intensive and not scalable. In this paper, we propose a 
new ML-based approximate SAR model solution based on the Gauss-Lanczos algorithm and compare the proposed 
solution with two other ML-based approximate SAR model solutions, namely Taylor's series, and Chebyshev 
polynomials. We also algebraically ranked these methods. Experiments showed that the proposed algorithm gives 
better results than the related approaches when the data is strongly correlated and problem size is large. 
 
Keywords: Spatial Auto-Regression Model, Spatial Dependency Modeling, Spatial Autocorrelation, Maximum 
Likelihood Theory, Gauss-Lanczos Method.  
 
1. Introduction 
Extracting useful and interesting patterns from massive geo-spatial datasets is important for many application 
domains, including regional economics, ecology, environmental management, public safety, public health, 
transportation, and business [3, 15, 17]. Many classical data mining algorithms, such as linear regression, assume 
that the learning samples are independently and identically distributed (i.i.d.). This assumption is violated in the case 
of spatial data due to spatial autocorrelation [15] and in such cases classical linear regression yields a weak model 
with not only low prediction accuracy [17] but also residual error exhibiting spatial dependence. Modeling spatial 
dependencies improves overall classification and prediction accuracies. The Spatial auto-regression (SAR) model is 
a generalization of linear regression to handle these concerns. 
 
However, estimation of the SAR model parameters is computationally very expensive because of the need to 
compute the logarithm of the determinant (log-det) of a large matrix. For example, it can take an hour of 
computation for a spatial dataset with 10K observation points on a single IBM Regatta processor using a 1.3GHz 
pSeries 690 Power4 architecture with 3.2 GB memory. This has limited the use of SAR to small problem sizes, 
despite its promise to improve classification and prediction accuracy. 
 
ML-based SAR model solutions [1, 5]can be classified into exact [6, 8, 11-13] and approximate solutions [7, 10, 
16], based on how they compute certain compute-intensive terms (log-det term) in the SAR solution procedure. 
Exact solutions suffer from high computational complexities and memory requirements due to the computation of all 
the eigenvalues of a large matrix. Approximate SAR model solutions try to approach the computationally complex 
term of the SAR model by reducing the computation time and providing computationally feasible and scalable SAR 
model solutions. This study covers only ML-based approximate SAR model solutions. However, we will also 
include exact solution in our experiments for comparison purposes.  
 
In this paper, we propose a new ML-based approximate SAR solution, and compare and algebraically rank 
approximate ML-based SAR model solutions. In contrast to the related approximate SAR model solutions, our 
algorithm provides better approximation when the data is strongly correlated (i.e., spatial dependency is high) and 
problem size gets high. The key idea of the proposed algorithm is to find only the some of the eigenvalues of a large 
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matrix, instead of finding all the eigenvalues, by reducing the size of large matrix dramatically using Gauss-Lanczos 
(GL) algorithm [2]. Because of this property of GL algorithm, we can save huge computation costs, especially when 
the matrix size is quite large.  
 
The paper compares the proposed algorithm with two related approximate approaches and the exact solution 
procedure. Then, we algebraically rank them to determine which method gives better approximations in what 
conditions. Experimental results show that the proposed algorithm saves computation time for the large problem 
sizes. Experiments also showed that it gives better results when the dataset is strongly correlated (i.e., spatial 
dependency is high).  
 
2. Problem Statement 
In this study, we rank the algebraic errors of three ML-based approximate SAR model solutions [7, 10, 16]. Given a 
spatial framework, observations on a dependent variable, a set of explanatory variables, and neighborhood 
relationship among the spatial data, SAR parameter estimation based on Maximum Likelihood theory [1, 5] aims to 
find the optimum SAR model parameters by minimizing the likelihood function of the SAR model solution. The 
problem is formally defined as follows. 
 
Given:  

• A spatial framework S consisting of sites {s1, …, sn}for the underlying spatial graph G. 
• A collection of explanatory functions : S R

kxf k, k =1,….,K. Rk is the range of possible values for 
explanatory functions. 

• A dependent function fy : R Ry 
• A family F (i.e., y=ρWy+xβ+ε) of learning model functions mapping R1 × …..× RK Ry . 
• A neighborhood relationship R on the spatial framework 

Find: 
• The SAR model parameters ρ and the regression coefficient β. 

Objective: 
• Algebraic error ranking of approximate SAR model solutions. 

Constraints: 
• S is a multi-dimensional Euclidean Space,  
• The values of the explanatory variables x and the dependent function (observed variable) y may not be 

independent with respect to those of nearby spatial sites, i.e., spatial autocorrelation exists. 
• The domain of x and y are real numbers. 
• The SAR parameter ρ varies in the range [0,1),  
• The error is normally distributed with unit standard deviation and zero mean, i.e., ε ~N(0,σ2I) IID  
• The neighborhood matrix W exhibits sparsity. 

 
2.1. Basic Concepts 
The SAR model, also known in the literature as the spatial lag model or mixed regressive model [1, 4, 5], is an 
extension of the linear regression model (equation (1)). 
 

εβρ ++= xWyy       (1) 
 
 y ρ W xy εβ
 

++=
 
 
 
 
 n-by-n n-by-1 n-by-k k-by-1 n-by-1 n-by-1 1-by-1 
 
Figure 1. Data structures of the SAR model equation 
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The data structures of the SAR model can be seen in Figure 1. Here ρ is the spatial autocorrelation parameter, y is an 
n-by-1 vector of observations on the dependent variable, x is an n-by-k matrix of observations on the explanatory 
variable, W is the n-by-n neighborhood matrix that accounts for the spatial relationships (dependencies) among the 
spatial data, β is a k-by-1 vector of regression coefficients, and ε is an n-by-1 vector of unobservable error. The 
spatial autocorrelation term ρWy is added to the linear regression model in order to model the strength of the 
spatial dependencies among the elements of the dependent variable y. Moran’s Index [5] can be used to see whether 
there is significant spatial dependency in the given dataset. 
 
The log-likelihood function (i.e., the logarithm of the ML function) to be optimized for the ρ parameter is given in 
equation 2. The function contains two parts, such as log-det term and SSE term.  
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The log-likelihood function optimized is using nonlinear optimization techniques, such as, golden section search, to 
find the best estimate for the SAR model parameters. Rather than optimizing for both SAR parameters ρ and β, it is 
faster and easier to optimize one unknown (i.e., ρ) since both parameters are dependent on each other. 
 
3. ML-based Approximate SAR Model Solutions 
The exact SAR model solutions suffer high computational complexity and memory requirements even in parallel 
form [6]. These limitations have led us to investigate approximate solutions for SAR model parameter estimation 
with the main objective of scaling the SAR model for large spatial data analysis problems. We inspected two 
approximate SAR model solutions Taylor’s series expansion and Chebyshev coefficients, and developed a new 
approximate SAR model solution based on the Gauss-Lanczos algorithm. Then we compared all the approximate 
SAR model solutions.  
 
3.1. Approximation by Taylor’s Series Expansion 
[9] suggests an approximation of the log-det of a matrix by means of the traces of the powers of the neighborhood 
matrix, W (equation 3). It basically finds the trace of the matrix logarithm, which is equal to the log-det of the 
matrix. In this approach, the Taylor's series expansion is used to approximate the ∑ =

−n

i i1
)1ln( ρλ  where λi represents 

the ith eigenvalue that lies in the interval [-1,+1] and ρ is the scalar parameter from the interval (-1,+1). The term 
 can be expanded as ∑ =
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)(ρλ  provided that |ρλi|<1, which will hold for all i if |ρ|<1. Equation 3, 
which states the approximation used for the log-det term of log-likelihood function, is obtained using the 
relationship between the eigenvalues and the trace of a matrix, i.e., )(
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The approximation comes into the picture when we sum up to a finite value, r, instead of infinity. Therefore, 
equation 3 is relatively much faster because it eliminates the need to calculate the compute-intensive eigenvalue 
estimation when computing the log-det term (Figure 2). 
 

 
Figure 2. The system diagram of the Taylor's series approximation for the SAR model solution.  
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Approximation by Chebyshev Polynomials 

This approach uses the symmetric equivalent of the neighborhood matrix W (i.e., ). The eigenvalues of the 

symmetric matrix  are the same as those of the neighborhood matrix W. The lemma 3.1 leads to a very efficient 
and accurate approximation of the log-det term of the log-likelihood function shown in equation 2. 

~
W

~
W

 
Lemma 3.1: The Chebyshev solution tries to approximate the log-det of (I-ρW) involving a symmetric 

neighborhood matrix  as in equation 4, which is the relationship of the Chebyshev polynomial to the log-det of 
(I-ρ W) matrix. The three terms are enough for approximating the log-det term with an accuracy of 0.03% [7]. 
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Proof: The proof of this equality is available in [14]. � 
 

The value of "q" is 3, which is the highest degree of the Chebyshev polynomials. Therefore, only T , T , 
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The Chebyshev polynomial coefficients cj(ρ) are given in equation 6. 
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In Figure 3, the ML function is determined by computing the maximum of the sum of the log-det of a large matrix 
and the SSE term. The SAR parameter ρ that achieves this maximum value is the desired value that makes the 
classification most accurate. The parameter "q" is the degree of the Chebyshev polynomial, which is used to 
approximate the log-det term. The pseudocode of the Chebyshev polynomial approximation is presented in Figure 3. 
Lemma 3.2 reduces the computational complexity of the Chebyshev polynomial from O(n3) to approximately O(n2). 
 

 
Figure 3. The system diagram of Chebyshev polynomial approximation for the SAR model solution 
 
Lemma 3.2: For regular grid-based nearest-neighbor symmetric neighborhood matrices, the relationship shown in 
equation 6 holds.  
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Proof: The equality property given in equation 6 follows from the symmetry property of the symmetrized 
neighborhood matrix. In other words, this is valid for all symmetric matrices. The trace operator sums the diagonal 

elements of the square of the symmetric matrix . This is the equivalent of saying that the trace operator first 
multiplies and adds the i

~
W

th column with the ith row of the symmetric matrix, where the ith column and the ith row of 

the matrix are the  entries in a symmetric matrix. � 
~

W
 
In the pseudocode of the Chebyshev approximation (Figure 4 (a)), the powers of the W matrices, whose traces are to 
be computed, go up to 2. The parameter "q" is the degree of the Chebyshev polynomial which is used to 
approximate the term ln|I-ρW|. The ML function is computed by calculating the maximum of the log-likelihood 
functions (i.e. the log-det term and the SSE term).  
 

 
(a) Pseudocode of Chebyshev Algorithm 

 
 
 
 

(b) Pseudocode of Gauss-Lanczos Algorithm 
 

Figure 4: The pseudocodes of: (a) Chebyshev and (b) Gauss-Lanczos algorithms 
 
 
3.2. A New Approximation Based on Gauss-Lanczos 
We developed a new ML-based approximate SAR model solution based on the Gauss-Lanczos algorithm (Figure 5). 
[2] suggests the GL method to approximate the eigenvalue problem of ln|I-ρW| (Figure 4(b)). First, the problem is 
transformed to quadratic form uTf(A)u (in our case A equals the symmetric positive definite matrix (ln|I-ρW|)), 
where A, u, and f represent a matrix, a vector, and a function, respectively. In our case, the function f represents the 
logarithm of a matrix. Then, the quadratic form is converted to a Riemann-Stieltjes integral problem (detailed 
information can be found in [2]).To approximate the integral, gauss-type quadrature rules are applied using the 
Lanczos procedure (equation 7). 
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In equation 7, the quadrante formula is represented by Ir, which is approximated by the GL method. The parameter 
m represents the number of runs of the GL method. To find a satisfactory estimation of the quantity of trace function 
tr, the GL algorithm is applied m times and the average of the Ir ‘s are taken. The GL algorithm (Figure 5) takes two 
inputs, a real n-by-n symmetric positive definite matrix A and a real n-by-1 vector with xTx=1. First, in the "for" 
loop (Figure 4(b)), GL computes r-by-r symmetric tri-diagonal matrix Tr until a convergence criterion (  γj=0   or    
|Ir-Ir-1|<ζ|Ir|) is satisfied, or GL computes r times, which can be specified by the user by transforming the A matrix to 
the quadrature form, where r<<n. Then, GL computes eigenvalues λk and first elements wk of eigenvectors of matrix 
Tr. Finally, Ir is calculated, as given in equation 8. 
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Figure 5. Gauss-Lanczos approximation method 
 
 
4. Error Ranking 
This section formulates the relative error ranking of the approximations to log-det and hence the effect on the 
estimation of the parameter ρ. 
 
Using the log-likelihood function )|( yθl  given in equation 2, we can write ρ as a function of the )|( yθl , such 
that ρ=f -1 )|( yθl  Thus the change (error) in the log-likelihood due to the approximation is reflected into the 
estimation of the parameter ρ as follows where the operator ∆ denotes the difference between the exact (i.e., true) 
and the approximated values: 
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The quantity ∆ρ is the error in ρ obtained from the approximate method. The quantity ∆ )|( yθl  is the error in the 
log-likelihood function from the approximate method, which we can compute algebraically. 
 
The derivation part will be the same for the different approximations since the initial ρ parameter is fixed and other 
variables are the same for each approximate solution. The error in the ρ parameter can be estimated by multiplying 
the error in the log-det by a derivative term. 
 
Since we assume that we have the same SSE term for all SAR model solutions, we do not approximate it (i.e., 
∆SSE=0). The term ∆ )|( yθl  corresponds directly to the error in the log-det approximation i.e., ∆ln|I-ρW|. 
 
5. Experimental Design and System Setup 
In the experiments synthetic datasets were generated for different problem sizes, such as n=400, 1600, 2500 and for 
different spatial auto-regression parameters. We took 4-neighbors (i.e., North, South, East, and West neighbors) 
(Appendix I) of the interested cell (location) and all experiments were run on the same platform. All the experiments 
were carried out using the same common experimental setup summarized in Table 1. 
 

Table 1. The experimental design 
Factor Name Parameter Domain 

Problem Size (n) 400, 1600, 2500 observation points 
Neighborhood Structure  2-D with 4-neighbors 
Candidates Exact Approach (Eigenvalue Computation Based) 

Taylor's Series Approximation 
Chebyshev Polynomial Approximation 
Gauss-Lanczos Approximation 

Dataset  Synthetic Dataset for ρ=0.1, 0.2, ….., 0.9 
SAR Parameter ρ [0,1) 
Programming Language Matlab 
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6. Results and Discussion 
ML-based solutions of the SAR require computing the log-det of a large matrix (I-ρW), which is computationally 
expensive. Approximate SAR model solutions try to approximate the log-det of a large matrix by reducing 
computation cost of this term. It is observed that exact SAR model solution takes approximately 2 orders of 
magnitude of more time than approximate solutions. In this study, we algebraically ranked ML-based approximate 
SAR model solutions.  
 
In the experiments we tried to identify the behavior of the candidate algorithms for different problem sizes and for 
different spatial autocorrelation values (thus different spatial dependencies). Exact and approximated results for the 
log-det term of the SAR model are given in Figure 6 and 7. The results of the GL approximation are the average of 
several runs. We generated synthetic datasets for different ρ parameters. Figure 6 shows the approximation results 
for the log-det term of the SAR model of the candidate methods. We ran the experiments for three different problem 
sizes, such as 400, 1600, and 2500. It is observed that Taylor's series approximation gives upper and lower bounds 
of the approximation log-det term of the SAR model for all problem sizes. Chebyshev approximation gives the 
optimum results when the spatial autocorrelation parameter ρ is close to zero for all problem sizes. In contrast, for 
all problem sizes, GL approximation gives better results than Chebyshev approximation when the autocorrelation is 
high such as spatial autocorrelation parameter is close to 1. This behavior of the GL approximation can be explained 
by the fact that many cancellations occur while the GL calculates the logarithms of all the eigenvalues of matrix Tr 
when the spatial autocorrelation low (ρ is close to zero). 
 
 

 
(a) 

 

 
(c) 

 
(b) 

 
 

 
 
 
Figure 6. Exact and approximate values of log-det of 
SAR model. GL gives better approximation while 
spatial autocorrelation increases. 
 
 
 
 
 

 
 
Figure 7 gives the difference in the accuracy of the results by approximation methods where the difference in the 
accuracy is defined by the absolute relative error defined in equation 10. It is observed that absolute relative error (% 
accuracy) of Taylor’s series and Chebyshev approximations increase while ρ parameter is increasing but Chebyshev 
approximation gives better results than Taylor’s series approximation. In contrast, absolute relative error of GL 
algorithm decreases while ρ parameter is increasing. We can conclude that GL algorithm gives more accurate results 
than the other methods. Therefore, GL is better than the other candidate solutions when the spatial autocorrelation is 
high (ρ is close to 1). 
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(a) 

 

 
(c) 

 

 
(b) 

 
 
 
 
Figure 7. % absolute relative errors of approximation 
methods defined in equation 10. % absolute error of 
GL decreases when spatial autocorrelation is high. 
 
 
 
 
 

 
The computational cost of the Chebyshev approximation is O(n3). Using lemma 3.2 the cost of the Chebyshev 
approximation can be reduced to approximately O(n2). In contrast, the cost of the GL approximation is 2mrO(n2), 
which includes 2mr matrix-vector multiplications of the rank-n matrix. Thus, GL is slightly more expensive than 
Chebyshev and Taylor's series approximations. In the GL procedure, m represents the number of iterations. In our 
experiments, m was fixed (i.e., m=400) for each problem size. If the problem size is large enough, the effect of m 
will be less in the computation cost. In GL, r represents the size of tri-diagonal symmetric matrix T where r<<n. 
The size of the T matrix changes during the GL procedure according to various the problem sizes and ρ parameters. 
In our experiments the value of r varies between 5 and 8 where r<<n for problem sizes 400, 1600, 2500. The effect 
of the r parameter will also be less for the larger problem sizes. Results show that GL approximation is one of the 
candidate solutions for large problem sizes, especially when the spatial autocorrelation is high, and m and r 
parameters are smaller than the problem size.  
 
It is also observed that the quality of the results of the GL algorithm depends on the number of iterations, as 
discussed before, and the initial Lanczos vector which is selected randomly. In our experiments, the initial Lanczos 
vector is selected as a discrete random vector where values of components are either -1 or 1 with the probability of 
0.5. Finally, it is also observed that increasing the number of iterations can decrease the effect of the random number 
generator. However, increasing the number of iterations may lead to the increase in the computation cost of the GL 
approximation.  
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7. Conclusion and Future Work 
In this study we algebraically compared three approximate solution procedures of the SAR model and explained 
which method is better in what conditions and proposed a new Maximum Likelihood Theory based approximate 
SAR model solution based on Gauss-Lanczos algorithm. The key idea of the proposed algorithm is to find only 
some of the eigenvalues of a large matrix, instead of finding all the eigenvalues, by reducing the size of large matrix 
dramatically using Gauss-Lanczos algorithm [2]. In the experiments, Cheyshev polynomial approximation provides 
better approximation when the spatial autocorrelation is low. Gauss-Lanczos approximation gives better 
approximation than the other methods when the problem size is large and spatial autocorrelation is high.  
 
Our future work will examine how to parallelize the Gauss-Lanczos algorithm to decrease computation cost. 
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Appendix I 
 

Formation of Neighborhood Matrix W 
 

The neighborhood matrices used by the SAR model are the neighborhood relationships on one-dimensional regular 
and irregular grid spaces with two neighbors and two-dimensional regular or irregular grid space with "s" neighbors, 
where "s" is four, eight, sixteen, twenty-four and so on neighbors. The rows of the neighborhood matrix W sum to 1, 
which means that W is row-standardized i.e., row-normalized, row-stochastic, or Markov matrix (Figure 8(b)). A 
non-zero entry in the jth column of the ith row indicates that the jth observation will be used to adjust the prediction of 
the ith row where i is not equal to j. Thus, the ML theory estimated SAR model solutions used in our study accept 
neighborhood matrices from both regular and irregular grid spaces, which is a very important feature. 
 
In Figure 8, we illustrate the formation of the neighborhood matrix on a 4-by-4 regular grid space. As noted before, 
modeling spatial dependency improves the overall classification (prediction) accuracy. Spatial dependency can be 
defined by the relationships among spatially adjacent pixels in a small neighborhood within a spatial framework that 
is a regular or irregular grid space. For the four-neighborhood case, the neighbors of the (i,j)th pixel of the regular 
grid are defined as below. 
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To form row-normalized neighborhood matrix W, a non-row-normalized neighborhood matrix C and diagonal 
matrix D are used, such that W=D-1C. is formed by putting "1"s for neighborhoods of (i,j)th pixel of the spatial 
framework and by putting zeros for the rest of the entries. Values of D matrix can be formed as  d∑ == n

i ijij cd 1 ij=0.  
In other words, W matrix is formed by dividing non-zero elements of C by corresponding diagonal element of D. 
Figure 8(a) illustrates the spatial framework and Figure 8(b) shows W matrix for the problem size 16.  
 

 
(a)     (b) 

 
Figure 8. 4-by-4 (φ-by-q) spatial framework and row-normalized neighborhood matrix W with 4-neighbors 
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