
Training Support Vector Machine using Adaptive Clustering

Daniel Boley∗ Dongwei Cao†

Abstract

Training support vector machines involves a huge optimiza-

tion problem and many specially designed algorithms have

been proposed. In this paper, we proposed an algorithm

called ClusterSVM that accelerates the training process by

exploiting the distributional properties of the training data,

that is, the natural clustering of the training data and the

overall layout of these clusters relative to the decision bound-

ary of support vector machines. The proposed algorithm

first partitions the training data into several pair-wise dis-

joint clusters. Then, the representatives of these clusters

are used to train an initial support vector machine, based

on which we can approximately identify the support vectors

and non-support vectors. After replacing the cluster con-

taining only non-support vectors with its representative, the

number of training data can be significantly reduced, thereby

speeding up the training process. The proposed ClusterSVM

has been tested against the popular training algorithm SMO

on both the artificial data and the real data, and a signifi-

cant speedup was observed. The complexity of ClusterSVM

scales with the square of the number of support vectors and,

after a further improvement, it is expected that it will scale

with square of the number of non-boundary support vectors.

Keywords: support vector machine, PDDP, clustering,
optimization.

1 Introduction

Support vector machines (SVM) (Vapnik [32]) have
been successfully applied in a variety of domains, in-
cluding handwritten digit recognition [4], text document
classification [15] and microarray data analysis [5]. In
training a support vector machine, one needs to maxi-
mize a convex objective function subjecting to box con-
straints. This kind of optimization problem has been
extensively studied and many software packages have
been developed. However, the off-the-shelf packages
typically require the entire Gram matrix be stored in
the main memory and, knowing the fact that the size of

∗Department of Computer Science and Engineering, University

of Minnesota, Minneapolis, MN 55455. Email: boley@cs.umn.edu
†Department of Computer Science and Engineering, University

of Minnesota, Minneapolis, MN 55455. Email: dcao@cs.umn.edu

the Gram matrix scales with the square of the number of
training data, the memory requirement of these pack-
ages quickly makes them impractical even for a mod-
erate problem [7]. Thus, many specially tailored opti-
mization algorithms have been proposed. The first class
of such algorithms tries to solve the entire optimization
problem by solving a series of small problems. The basic
techniques include chunking and decomposition, which
were discussed by Boser et al. [4], Osuna et al. [25],
Kaufman et al. [17] and Joachims [16]. Especially note-
worthy is the SMO (Sequential Minimal Optimization)
algorithm by Platt [27] that sequentially optimizes over
a subset of size two, for which we can perform the op-
timization analytically. The success of these algorithms
depends on an appropriate criterion for the active set
selection and an efficient strategy to cache the Gram
matrix. A second class of algorithms tries to approxi-
mate the Gram matrix by a smaller matrix either using
the low-rank representation (Fine et al. [10]) or by sam-
pling (Williams et al. [33], Achlioptas et al. [1]), thereby
reducing the size of the optimization problem and speed-
ing up the training process. Using the fact that it is the
support vectors that determine the optimal solution, a
third class of algorithms tries to identify the support
vectors efficiently, and this is the approach taken in this
paper. Shin et al. [30] proposed a fast training algo-
rithm based on quick identification of support vectors,
however, their algorithm appears to have some difficul-
ties in dealing with linearly separable training data set.
In addition, Keerthi et al. [18] proposed an algorithm
based on observations about the geometrical properties
of support vector machines.

Mangasarian and his colleagues proposed several
variations of standard support vector machines by mod-
ifying the objective function, together with several very
efficient training algorithms ([22], [24], [20], [13], [23],
[11], [14] and [12]). Since the optimization problems
given by these modifications are different from that of
standard support vector machines, we will not address
them in this paper.

In this paper, we proposed a fast training algorithm
called ClusterSVM whose idea is to speed up the
training process by reducing the number of training
data. This is accomplished by partitioning the training
data into pair-wise disjoint clusters, each of which

2 To appear in 2004 SIAM International Conference on Data Mining, April 22 - April 24, Orlando, FL, USA

consists of either only support vectors or only non-
support vectors, and replacing the cluster containing
only non-support vectors by a representative. In order
to identify the cluster that contains only non-support
vectors, the training data is first partitioned into several
pair-wise disjoint clusters and an initial support vector
machine is trained using the representatives of these
clusters. Based on this initial SVM, we can judge
whether a cluster contains only non-support vectors
or not. For the cluster that contains both support
vectors and non-support vectors, based on the decision
boundary of the initial SVM, we can split it into two
subclusters such that, approximately, one contains only
non-support vectors and the other contains only support
vectors. This process is then repeated if one of the
subclusters contains both support vectors and non-
support vectors. The training time of this strategy
scales with the square of the number of support vectors
and, as shown by experiments, an approximate solution
can be found even faster. Further, based on the theory
underlying ClusterSVM, it is expected that the training
time will scale with the number of boundary support
vectors after some straightforward extensions to the
current work.

Enhancing the SVM training process with cluster-
ing or similar techniques has been examined with several
variations in [34], [26] and [29]. Based on a hierarchi-
cal micro-clustering algorithm, Yu et al. [34] proposed
a scalable algorithm to train support vector machines
with a linear kernel. However, their algorithm currently
works for the linear kernel only and uses the fact that
the original space and the feature space are the same un-
der a linear kernel. It is not immediately obvious how
to generalize their algorithm to more popular nonlinear
kernels. In [29], Shih et al proposed a technique called
text bundling, where the training data are partitioned
into clusters based on a Rocchio score, and data within
a cluster are replaced by their mean. Pavlov et al. [26]
proposed a strategy to speed up the training process by
squashing. Both [29] and [26] used only linear kernels in
their experiments. In this paper, we will demonstrate
both theoretically and experimentally that the proposed
method is applicable to both the linear kernel and non-
linear kernels.

The rest of the paper is organized as follows. Sec-
tion 2 briefly introduces the optimization problem in-
volved in training SVM, followed by the theoretical re-
sults underlying ClusterSVM. In Section 3, the experi-
mental results were reported on both the artificial data
and the real data. Finally, Section 4 concludes the paper
with further research topics.

2 ClusterSVM

2.1 Support Vector Machines In a two-class clas-
sification problem, we are given a training data set D of
size n

(2.1) D =
{

(xi, yi) | xi ∈ RN , yi ∈ {1,−1}
}

,

where yi indicates the class membership of the object
i represented by vector xi, and i = 1, 2, · · · , n. The
support vector classifier f(x) is defined as [32]

(2.2) f(x) = sign (d(x)) =

{

1 : d(x) ≥ 0
−1 : d(x) < 0

,

where d(·) is called the functional margin,

(2.3) d(x) = 〈w, Φ(x)〉H + b.

Here, Φ(·) is a mapping from RN to a (usually) higher
dimension Hilbert space H, and 〈·, ·〉H denotes the dot
product in H. Generally, the mapping Φ(·) is specified
implicitly by using a kernel K(·, ·) that calculates the
dot product 〈·, ·〉H, that is,

(2.4) K(xi,xj) = 〈Φ(xi), Φ(xj)〉H .

To guarantee the existence of Φ(·), the kernel K(·, ·)
must satisfy certain conditions [32]. The optimal pa-
rameters w∗ and b∗ corresponding to the optimal clas-
sifier f∗(x) can be obtained by solving the following
optimization problem [32]

Minimize : g(w, ξ) =
1

2
||w||2H + C

n
∑

i=1

ξi(2.5a)

Subject to : yi(〈w, Φ(xi)〉H + b) ≥ 1− ξi(2.5b)

ξi ≥ 0.

With the help of Lagrange multipliers, the Wolfe dual
form of the above minimization problem is [32]

Maximize : W (α) = α
T 1− 1

2
α

T Hα(2.6a)

Subject to : 0 ≤ αi ≤ C, ∀i = 1, 2, ..., n(2.6b)

α
T y = 0,

where α is a vector with components αi that are the
Lagrange multipliers, 1 is a vector of ones, and H is
the Gram matrix with component Hij = yiyjK(xi,xj).
The necessary and sufficient conditions for a weight vec-
tor w and Lagrange multipliers α to be optimal are the
KKT conditions [32], which consist of primal and dual
feasibility constraints plus the following complementar-
ity conditions

αi (yi (〈w, Φ(xi)〉H + b)− 1 + ξi) = 0(2.7a)

ξi (αi − C) = 0.(2.7b)

To appear in 2004 SIAM International Conference on Data Mining, April 22 - April 24, Orlando, FL, USA 3

Based on the optimal solution α, the functional margin
d(·) can also be written as

(2.8) d(x) =
∑

xi∈DSV

αiyiK(xi,x) + b,

where DSV is the set of support vectors, which are the
subset of training data that have nonzero α’s, that is,
0 < αi ≤ C. It is the set of support vectors that
determines the decision boundary and all the other
training data, that is, non-support vectors, can be
removed without influencing the decision boundary.

2.2 Review of Available Training Algorithms

In this subsection, we will informally review the meth-
ods based on chunking and decomposition, and their
relationships to the method proposed in this paper.

Chunking [4] is based on the observation that it
is set of support vectors that determine the classifier
(c.f. equation (2.8)). It works as follows: First, train
a support vector machine using a subset of the training
data and discard the non-support vectors; Second, train
next support vector machine using the support vectors
and some of the unused training data. These two steps
are repeated until all training data are used and they
all satisfy the KKT conditions. Training each support
vector machine is accomplished using an off-the-shelf
optimization package. This method will suffer if the
number of support vectors is very large.

Another class of training algorithms is based on the
idea of decomposition ([25], [17] and [16]). In these
algorithms, a fixed number of training data are selected
as active set for each iteration, and we optimize W (·)
with respect to the α’s corresponding to active set, while
keeping the α’s of all the other training data frozen.
The algorithm terminates when the KKT conditions are
satisfied for all training data. This kind of algorithm can
be used in many different formulations of support vector
machines, and their success depends on the effectiveness
of the criterion used in active set selection.

Sequential Minimum Optimization (SMO) [27] is an
extreme case of decomposition-based methods. In SMO,
the size of the active set is 2. Assuming α1 and α2

correspond to the training data in the active set and
the α’s corresponding to the other training data are
frozen, the optimization problem in equation (2.6) can
be written as

Maximize : W (αa) =

(

α
T
a
1a −

1

2
α

T
a
Haaαa

)

+ F1 −α
T
a
Hacαc(2.9a)

Subject to : 0 ≤ α1 ≤ C

0 ≤ α2 ≤ C

α1y1 + α2y2 = F2,(2.9b)

x
2

x
1

D
pos, 2

Decision boundary

d
(x) = -1

: Negative class
: Positive class

d
(x) = 1

M

a

r
g

i
n

b

a
n

d

M

a

r
g

i
n

b

a
n

d

D
pos, 1

D
neg, 1

D
neg, 2

D
neg, 3

d
(x) < -1

d
(x) > 1

-1< d
(x)<1

Figure 1: A toy example. The representative of a
cluster is labeled with a solid square/circle. The
decision boundary of the initial SVM trained using the
representatives of 5 initial clusters is shown.

where subscript a = [1 2]T denotes the data within the
active set, subscript c = [3 4 · · · N]T denotes the data
outside the active set, and F1 and F2 depend only on
the data outside the active set and are constant while
solving (2.9). After expressing α1 as a function of α2

using the equality constraint in (2.9b) and substituting
the resulting formula into (2.9a), we can obtain an
explicit formula for the α2 that maximizes W (·). After
applying the inequality constraints in (2.9b), we will
have the updated α1 and α2. The active set is selected
using two heuristics whose goal is to maximize the
growth of the objective function W (·) at each iteration.

All these methods have the common property that
they do a local search in the space of α’s, and this can
often be very inefficient. In the proposed ClusterSVM,
we first partition the training data into disjoint clusters,
then train an initial SVM using representatives of these
clusters. This initial SVM gives us a global picture of
the solution, such as the position and shape of decision
boundary, the relative position between each datum and
the decision boundary. Based on this information, we
can approximately identify the support vectors and non-
support vectors, and the training process is accelerated
by replacing non-support vectors with few data.

2.3 ClusterSVM Figure 1 shows the training data
of a two-dimensional two-class classification problem.
The training data in the positive class are partitioned
into two disjoint clusters and those in the negative class
are partitioned into three disjoint clusters. The motiva-

4 To appear in 2004 SIAM International Conference on Data Mining, April 22 - April 24, Orlando, FL, USA

tion of ClusterSVM is to reduce the number of training
data by replacing a cluster with an appropriately de-
fined representative. However, not all clusters can be
replaced with a representative while yielding the same
the SVM as the SVM that would be obtained using
the original training data set D. It follows from the
following Proposition 2.1 that there are two kinds of
clusters that can be replaced without influencing the
solution, including the cluster that contains only non-
support vectors (α = 0) and the cluster that contains
only boundary support vectors (α = C).

Since each training datum corresponds to one row
and column in the Gram matrix H, replacing data in
a cluster with a representative corresponds to replacing
the rows and columns associated with these data with
a single row and column. Let D denote the training
data set consisting of two disjoint sets D1 and D2 and,
without losing generality, assume D1 is a subset of the
training data in class 1. Let α1 and α2 be the Lagrange
multipliers of the data in D1 and D2, respectively, then
the optimization problem (2.6) is equivalent to

Maximize : W (α) =

(

α
T
1 11 −

1

2
α

T
1 H11α1

)

+

(

α
T
2 12 −

1

2
α

T
2 H22α2

)

−α
T
1 H12α2(2.10a)

Subject to : 0 ≤ α1,i ≤ C, ∀i = 1, 2, ..., n1

0 ≤ α2,j ≤ C, ∀j = 1, 2, ..., n2

α
T
1 y1 + α

T
2 y2 = 0,(2.10b)

where α = [αT
1 α

T
2]T . Let the index to the row

and column that will replace the rows and columns
associated with D1 be 0 and the label y0 = 1, we have
the following optimization problem

Maximize : W (α) =

(

α0 −
1

2
α0H00α0

)

+

(

α
T
2 12 −

1

2
α

T
2 H22α2

)

− α0H02α2(2.11a)

Subject to : 0 ≤ α0 ≤ n1C

0 ≤ α2,j ≤ C, ∀j = 1, 2, ..., n2

α0 + α
T
2 y2 = 0,(2.11b)

where α0 is the Lagrange multiplier corresponding to
the representing row/column. Here, H00 is defined as

(2.12) H00 =
1

n2
1

n1
∑

i=1

n1
∑

j=1

Hij ,

and H02 is a row vector of length n2 with entries defined
as

(2.13) H0j =
1

n1

n1
∑

i=1

Hij ,

where j = 1, 2, · · · , n2. Then, we have the following
proposition.

Proposition 2.1. The optimization problem defined
by equations (2.11), (2.12) and (2.13) is equivalent to
the one obtained by adding a constraint to (2.6) that
requires all Lagrange multipliers corresponding to the
data in D1 be equal.

Proof. Using equation (2.12), we have

α0H00α0 = α0α0

1

n2
1

n1
∑

i=1

n1
∑

j=1

Hij

=

n1
∑

i=1

n1
∑

j=1

α0

n1

α0

n1

Hij .(2.14)

Let α
∗
1 be a vector of length n1 with all components

being equal to α0/n1, equation (2.14) can be written as

α0H00α0 =

n1
∑

i=1

n1
∑

j=1

α∗
1,iα

∗
1,jHij

= α
∗T
1 H11α

∗
1.(2.15)

Using the similar arguments, α0H02α2 can be written
as

(2.16) α0H02α2 = α
∗T
1 H12α2.

After substituting equations (2.15) and (2.16) into equa-
tion (2.11) and using the fact that

∑n1

i=1
α∗

1,i = α0, we
arrive the following optimization problem

Maximize : W (α∗
1, α2) =

(

α
∗T
1 1∗

1 −
1

2
α

∗T
1 H11α

∗
1

)

+

(

α
T
2 12 −

1

2
α

T
2 H22α2

)

−α
∗T
1 H12α2(2.17a)

Subject to : 0 ≤ α2,j ≤ C, ∀j = 1, 2, ..., n2

0 ≤ α∗
1,1 ≤ C

α
∗T
1 y1 + α

T
2 y2 = 0.

α∗
1,1 = α∗

1,i, ∀i = 2, ..., n1,(2.17b)

where 0 ≤ α∗
1,i ≤ C (i = 1, 2, ..., n1) follows from the

fact that 0 ≤ α0 ≤ n1C. The proposition follows by
comparing equation (2.10) and equation (2.17). �

The idea of Proposition 2.1 is illustrated in Figure 2
for a toy problem that has two points in class 1 with La-
grange multipliers α1 and α2, and one point in class −1
with Lagrange multiplier α3. The cube pqst− ovwu is
the feasible region of the original optimization problem
(2.10). After replacing two data in class 1 by a represen-
tative, the feasible region of the resulting optimization

To appear in 2004 SIAM International Conference on Data Mining, April 22 - April 24, Orlando, FL, USA 5

Figure 2: Illustration of Proposition 2.1.

problem (c.f. (2.17)) is the rectangle opsw. Thus, the
feasible region of the problem (2.17) is a subset of that
of the problem (2.10) and, by replacing clusters of train-
ing data with their representatives, the solution of the
resulting optimization problem is an approximation to
the solution of the original optimization problem. Fur-
ther, it is not hard to show that the optimal solution
of (2.17) is exactly the optimal solution of (2.10) if D1

satisfies either of the following conditions. As in Propo-
sition 2.1, D1 is a subset of the data in class 1 to be
replaced by a representative.

• Condition 1 All data in D1 are non-support
vectors, which means the corresponding Lagrange
multiplier α1 = α2 = 0. With reference to Figure 2,
this means the feasible region of the problem (2.10)
and that of the problem (2.17) coincides at line op.

• Condition 2 All data in D1 are boundary sup-
port vectors, which means the corresponding La-
grange multipliers α1 = α2 = C. With reference
to Figure 2, this means that the feasible region of
the problem (2.10) and that of the problem (2.17)
coincides at line ws.

Thus, we can safely replace clusters of above two
types with a representative without influencing the
solution and such replacement will reduce the size of
the optimization problem. In addition, for the cluster
Di satisfying the above Condition 1, we can replace
the corresponding rows and columns with the row and
column associated with the pseudocenter of this cluster
because the Lagrange multiplier of a non-support vector
is zero, where the pseudocenter xp(Di) of the cluster Di

is defined as

(2.18) xp(Di) = argmin
x∈Di

∥

∥

∥

∥

∥

x− 1

ni

ni
∑

k=1

xk

∥

∥

∥

∥

∥

2

,

where ‖ · ‖2 means 2-norm and ni is the number of data
in Di. Ties are broken arbitrarily in (2.18). As a pilot
study, only the cluster satisfying the Condition 1 is
replaced by its representative in the current algorithm.

The next issue is to identify clusters that contain
only non-support vectors. However, there is a cycle here
because the set of support vectors is unknown before
training is finished. The solution is to first partition the
training data into pair-wise disjoint clusters, then train
an initial SVM using the representatives of these clus-
ters. Based on this initial SVM, we can approximately
tell the position of each cluster relative to the decision
boundary, thereby approximately identifying the clus-
ters containing only non-support vectors. A cluster is
estimated to contain non-support vectors if it contains
data with functional margin d(·) larger than 1. A clus-
ter is estimated to contain support vectors if it contains
data with functional margin d(·) less than 1. Clusters
that are estimated to contain both support vectors and
non-support vectors are split into two subclusters, one
of which is expected to contain only support vectors
and the other is expected to contain only non-support
vectors. This idea is illustrated in Figure 1 and 3. Fig-
ure 1 shows the training data of a two-class classification
problem and they are partitioned into 5 pair-wise dis-
joint clusters (Dpos,1, Dpos,2, Dneg,1, Dneg,2 and Dneg,3).
The representatives (that is, pseudocenters defined in
equation 2.18) of these clusters are labeled with solid
squares and solid cycles. An initial SVM was trained
using these representatives, and its decision boundary
(d(x) = 0) and supporting hyper-planes (d(x) = ±1)
were shown in Figure 1. For the cluster belonging to
the positive class, it is believed to contain only non-
support vectors if the functional margin (d(x)) of its
data are all larger than 1 (e.g. Dpos,2) and, hence, it
can be replaced by its pseudocenter without being split.
However, a cluster belonging to the positive class is be-
lieved to contain both support vectors and non-support
vectors if it contains some data with functional margin
d(x) ≤ 1, which are likely to be support vectors, and
some data with functional margin d(x) > 1, which are
believed to be non-support vectors. This kind of clus-
ter is partitioned into two subclusters and it is believed
that the subcluster having data with d(x) > 1 contains
only non-support vectors and can be replaced with its
pseudocenter, while the other subcluster (dx ≤ 1) is be-
lieved to contain only support vectors. An example of
such cluster is Dpos,1 in Figure 1, which is partitioned
into two subclusters along d(x) = 1. Similar arguments

6 To appear in 2004 SIAM International Conference on Data Mining, April 22 - April 24, Orlando, FL, USA

x
2

x
1

: Negative class
: Positive class

Figure 3: The reduced training data set Dreduced after
splitting some clusters and replacing clusters and sub-
clusters containing only non-support vectors with their
representatives. The representatives are labeled with
solid squares and solid cycles. For clarity purpose, the
decision boundary shown in Figure 1 is kept here.

apply to the cluster belonging to the negative class. A
cluster is believed to contain only non-support vectors
if its data all satisfy d(x) < −1, and a cluster is be-
lieved to contain both non-support vectors and support
vectors if some of its data satisfy d(x) < −1 and the
other data satisfy d(x) ≥ −1. Using this criterion, clus-
ter Dneg,3 needs not to be split, while clusters Dneg,1

and Dneg,2 need to be split into two subclusters. After
splitting some clusters and replacing the clusters and
subclusters containing only non-support vectors with a
representative, the resulting training data set Dreduced

is shown in Figure 3, from which we can see a significant
reduction on the number of training data.

The proposed training algorithm ClusterSVM is de-
tailed in Algorithm 1 and its properties are summarized
in Proposition 2.2.

Proposition 2.2. With reference to Algorithm 1
(ClusterSVM, see next page) and setting NPmax =∞,
we have

1. Algorithm 1 will converge after a finite number of
passes through the WHILE loop (line 5 through 18).

2. The SV Mnew obtained using only Dreduced is the
same as the SVM that would be obtained using D
when Algorithm 1 terminates, that is, when the
following condition is satisfied

(2.19) yd(x) > 1, ∀x ∈ Dunused,

where Dunused contains data that are in D but not
in Dreduced.

Proof. From line 13 and 14 in Algorithm 1, we can see
that the size of the reduced training data set Dreduced is
strictly increasing after each pass through the WHILE
loop. Since there is a finite number of training data in
D, Dreduced will be the same as D after a finite number
of passes through the WHILE loop, which means that
Algorithm 1 will converge after a finite number of
passes.

For the second part of the proposition, we need only
to show that, for the weight vector w of SV Mnew, the
KKT conditions are satisfied for all training data in
Dunused, that is, the Lagrange multiplier is zero. For
a given xi ∈ Dunused, we have

(2.20) yid(xi) > 1 =⇒ yi (〈w, Φ(x)〉H + b) > 1.

Knowing the fact that ξi ≥ 0, this means that the
constraint specified by equation (2.5b) will not be
active, thus αi = 0. �

It should be noted that the second conclusion of
Proposition 2.2 does not depend on how to partition
D into Dreduced and Dunused. As long as the condition
specified in equation (2.19) is satisfied for all data in
Dunused, the SVM obtained using Dreduced is the same
as that would be obtained using D.

3 Experiments

3.1 Implementations Due to its popularity, the
underlying training algorithm A we use in Algorithm 1
is Platt’s SMO [27], and the ClusterSVM is compared
with SMO. An implementation of SMO using C++ by
Chang et al. [6] and its Matlab r© [31] “mex” wrapper
by Ma et al. [21] were used in this paper. However,
it should be pointed out that, as a meta-algorithm,
ClusterSVM could accelerate any training algorithm.
The clustering algorithm C used here is the PDDP
(Principal Direction Divisive Partition) by Boley [3]
because it is one the most efficient clustering algorithms.
The PDDP and all the other codes were implemented
using Matlab r©. All experiments were run on a PC
running Windows 2000 Server with one Pentium 4 2.8
GHz processor and 1GB RAM.

The number of initial clusters k+ (k−) can be any
number between one and the number of training data
n+ (n−) in D+ (D−). However, knowing the fact that
the initial SVM will be trained using the representatives
of the initial clusters and all subsequent partitions will
depend on the initial SVM, the number of initial clusters
should be large enough so that the initial SVM can
approximate the true SVM reasonably well. At the same

To appear in 2004 SIAM International Conference on Data Mining, April 22 - April 24, Orlando, FL, USA 7

Algorithm 1 ClusterSVM: Two class SVM

Require: An underlying SVM training algorithm A;
A clustering algorithm C; Training data set D =
D+ ∪D−, where D+ (D−) is the set of the training
data in class 1 (−1); The number of initial clusters
k+ (k−) into which D+ (D−) is partitioned; The
maximum number of passes NPmax through the
WHILE loop.

1: Call the clustering algorithm C to partition D+

(D−) into k+ (k−) clusters, that is

D+ =

k+

⋃

i=1

D+

i and D− =

k−

⋃

i=1

D−
i

2: Define the set G of clusters as

G ← {D+

1 , · · · ,D+

k+ ,D−
1 , · · · ,D−

k−
}

3: Define the reduced training data set Dreduced as (c.f.
(2.18))

Dreduced ← {xp(D′),D′ ∈ G}

4: F lag ← 1, NP ← 0
5: while F lag = 1 and NP < NPmax do

6: F lag ← 0, NP ← NP + 1
7: Train SV Mnew using Dreduced and the training

algorithm A

8: Gold ← G and G ← ∅
9: for all D′ ∈ Gold do

10: if ∃x ∈ D′ such that yd(x) ≤ 1 according to
SV Mnew, where y is the label of x then

11: F lag ← 1
12: Split D′ into D′

sv and D′
nsv

D′
sv ← {x|x ∈ D′ and yd(x) ≤ 1}

D′
nsv ← {x|x ∈ D′ and yd(x) > 1}

13: Remove xp(D′) from Dreduced

14: Dreduced ← Dreduced ∪ D′
sv ∪ {xp(D′

nsv)}
15: G ← G ∪ {D′

nsv}
16: end if

17: end for

18: end while

19: Return the SV Mnew.

time, it should not be too large since letting k+ = n+

and k− = n− would make Dreduced = D, and there
would be no speedup. Another reason for preferring
small k+ (k−) is that both clustering the training data
D and training the initial SVM needs to be performed
very quickly. In this paper, the following square root

heuristic is suggested

(3.21) k+ = round(
√

n+) and k− = round(
√

n−).

There are primarily two motivations for this heuristic.
First, knowing the fact that the time for clustering
typically scales linearly with the number of data [9],
the square root heuristic can make the total time to
obtain the initial SVM scale linearly with the number
of training data. The second reason is that this
heuristic has been suggested in the study of clustering
algorithms (e.g. [8]). The effectiveness of this heuristic
is demonstrated experimentally in Section 3.3. Since
the initial SVM can approximate the true SVM quite
well and each pass through the outer WHILE loop (line
5 to 18 in Algorithm 1) involves training a SVM, the
next issue is how many times the WHILE loop should
be performed. Based on the experiments, it is enough
to carry out the WHILE loop once.

The last implementation issue is the strategy for
the multi-class classification problem. There are many
strategies for multi-class classification problem and, in
this paper, the “one versus the rest” strategy is used. In
this strategy, assuming there are m classes, m classifiers
are trained and each of them discriminates one class
from all the other classes. A test data is classified to
the class that has the maximum functional margin d(·).
In order to avoid repeated clusterings, the clustering
algorithm is applied to the data of each class before
any classifier is trained. Then, to train the classifier
that discriminates the class i from the remaining m− 1
classes, the clusters corresponding to class i are used
as the partition of the data in class i, and the clusters
corresponding to the remaining m − 1 classes are put
together and used as the partition for the data in those
m− 1 classes.

3.2 Data sets There are three data sets examined
in this paper. The kernel K(·, ·) and the regularization
coefficient C used for each data set are chosen based on
some experiments and experiences from the literatures
if any.

• Artificial data set As shown in Figure 4, this is
a three-class classification problem and each class
consists of data drawn from a 2D normal distri-
bution with covariance matrix being the identity
matrix. The centers of three classes are (0,

√
3),

(−1, 0) and (1, 0). The same number of training
data are drawn for each class and the size of the
training data D varies from 300 to 6000. The test
data set is of the same size as the training data
set and is constructed in the same way. The kernel
K(·, ·) and the regularization coefficient C used in

8 To appear in 2004 SIAM International Conference on Data Mining, April 22 - April 24, Orlando, FL, USA

Figure 4: Artificial data set.

all 3 classifiers are

(3.22) K(xi,xj) = xT
i xj and C = 10000.

• USPS data set This is the US Postal Service
(USPS) handwritten zip code recognition data set
and there are 7291 training data and 2007 test data,
all of which were collected from mail envelopes in
Buffalo [19]. Each digit is represented as a 16× 16
matrix whose entry ranges from −1 to 1. As
suggested by [28], a smoothing operation using a
Gaussian kernel with width 0.75 was applied to the
image as a preprocessing step. With reference to
[28] and after some initial experiments, the kernel
K(·, ·) and the regularization coefficient C used in
all 10 classifiers are

(3.23) K(xi,xj) =

(

xT
i xj

256

)3

and C = 10.

• Isolet data set This data set was downloaded
from UCI machine learning repository [2] and the
goal is to recognize 26 spoken letters. There are
6238 training data and 1559 test data. Each da-
tum has 617 attributes and each attribute is a real
number between −1 and 1. After some initial ex-
periments, the kernel K(·, ·) and the regularization
coefficient C used in all 26 classifiers are

(3.24) K(xi,xj) = xT
i xj and C = 0.02.

3.3 Experimental results The effect of the number
of initial clusters k was studied through the artificial
data set. There 2000 training data in each class (6000
total) and the number of initial clusters k varies from
1 to 81 with an interval of 2. For each value of k,
10 randomly generated training data set were tried.

1 10 20 30 45 60 70 81
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of initial clusters k

R
el

at
iv

e
di

ffe
re

nc
e

Average over 10 runs
Average plus/minus one standard devidation

Figure 5: The performance of the initial SVM compared
to that of true SVM as a function of the number of initial
clusters k. There are 2000 training data in each class
(6000 in total) and the square root heuristic corresponds
to k = 45. The seemingly good performance of k = 1
comes from the symmetry of this problem and it has no
general implications.

Figure 5 compares the relative difference between the
error rate of the initial SVM with that of the true SVM
for different values of k. The relative difference RD is
defined as

(3.25) RD =
|ERinitial −ERtrue|

ERtrue
,

where ERinitial and ERtrue are the error rate of the
initial SVM and the true SVM on the same test data
set. Figure 6 shows the time to obtain the initial SVM
TInitial SVM as a function of k. TInitial SVM consists
of time for clustering and the time for training the initial
SVM. From Figure 5 and Figure 6, we can see that the
square root heuristic, corresponding to k = 45 in this
experiment, gives a reasonable good trade-off between
the accuracy and the complexity, although it is a rather
gross heuristic.

With the number of initial clusters being specified
by the square root heuristic, the effect of the number
of passes NP through the WHILE loop (line 5 to 18 in
Algorithm 1) is shown in Table 1 for the artificial data
set with 6000 training data. The SVM trained after 3
passes is the true SVM, which would be obtained using
the original training data set, thus the corresponding
error rate can be taken as the reference. From Table 1,
it can be seen that one pass through the WHILE loop
is enough to give a good performance. Thus, the
maximum number of passes NPmax in Algorithm 1 is
set to 1. In addition, it can be seen from Table 1 that,
with NP = 0, the initial SVM also gives pretty good
result.

To appear in 2004 SIAM International Conference on Data Mining, April 22 - April 24, Orlando, FL, USA 9

1 10 20 30 45 60 70 81
0

10

20

30

40

50

60

70

80

90

100

Number of initial clusters k

T
In

iti
al

 S
V

M
 (

se
co

nd
s)

Average over 10 runs
Average plus/minus one standard devidation

Figure 6: Time to obtain the initial SVM as a function
of the number of initial clusters k. There are 2000
training data in each class (6000 in total) and the square
root heuristic corresponds to k = 45.

Table 1: Effects of NP on the artificial data set (6000
training data). NP is the number of passes through the
WHILE loop in Algorithm 1.

NP 0 1 2 3
Error rate (%) 25.87 25.43 25.48 25.47

Table 2 through 4 compares the performance of
ClusterSVM with that of SMO, where the number of
initial clusters is specified by the square root heuris-
tic and the maximum number of passes through the
WHILE loop NPmax = 1. In these tables, the speed
up is defined as

(3.26) Speedup =
TSMO

TClusterSV M

,

where TSMO is the training time of SMO and
TClusterSV M is the training time of ClusterSVM. The
clustering time is the time used for the clustering all
training data. Based on these tables, we have the fol-
lowing observations.

• Ntrain,i (i = 1, 2, · · · , m) is the actual number of
training data used to train the i-th classifier. For
SMO, this number is the number of training data
of all classes and it is independent of which clas-
sifier is being trained. For ClusterSVM, Ntrain,i is
the number of training data after replacing every
cluster containing only non-support vectors with
its representative. For the artificial data set shown
in Table 2, Ntrain,i is almost the same for all three
classifiers when ClusterSVM is used. This is within
our expectations because of the symmetry of the
artificial data set. However, for the USPS data set

Table 2: Artificial data set. Ntrain,i is the actual
number of training data to train the i-th classifier.

SMO ClusterSVM
Ntrain,1 6000 3260
Ntrain,2 6000 3026
Ntrain,3 6000 3022

Ntrain 6000 3103
Training time (sec.) 8344 2588

Clustering time (sec.) NA 3
Speedup 3.2

Error rate (%) 25.47 25.43

shown in Table 3, Ntrain,i varies from one classi-
fier to another when ClusterSVM is used. This
is reasonable because all ten classifiers are inher-
ently different. For example, discriminating digit 1
from the other digits is different from discriminat-
ing digit 0 from the other digits. Similarly, for the
Isolet data set shown in Table 3, different classifier
has different number of training data when Clus-
terSVM is used. Thus, the ClusterSVM reduces
the number of training data in a task dependent
way.

• Ntrain is the average number of training data over
all k classifiers and, comparing ClusterSVM with
SMO, it can be seen that ClusterSVM reduce the
number of training data significantly. It is this
data reduction that helps accelerating the training
process.

• The speed up of ClusterSVM over SMO is 3.2 for
the artificial data set, 1.5 for the USPS data set
and 1.9 for the Isolet data set.

• Comparing the error rate of SMO and that of
ClusterSVM, it can be seen that the speedup of
ClusterSVM sacrifices little performance. This nice
property is attributed to the good initial clustering
that makes the initial SVM approximate the true
SVM quite well. At the same time, as shown in
these tables, the overhead induced by clustering is
only a small faction of total training time.

Finally, the scaling performance of ClusterSVM was
shown in Figure 7 for the artificial data set, which shows
the average training time over 10 runs. It can be seen
that ClusterSVM scales better than SMO.

4 Conclusions

An efficient SVM training algorithm ClusterSVM was
proposed in this paper and a significant speedup over
SMO was observed on both the artificial data set

10 To appear in 2004 SIAM International Conference on Data Mining, April 22 - April 24, Orlando, FL, USA

Table 3: USPS data set. Ntrain,i is the actual number
of training data to train the i-th classifier.

SMO ClusterSVM
Ntrain,1 7291 788
Ntrain,2 7291 2364
Ntrain,3 7291 1975
Ntrain,4 7291 1544
Ntrain,5 7291 2259
Ntrain,6 7291 1621
Ntrain,7 7291 1206
Ntrain,8 7291 2407
Ntrain,9 7291 1560
Ntrain,10 7291 2638

Ntrain 7291 1836
Training time (sec.) 105 68

Clustering time (sec.) NA 18
Speedup 1.5

Error rate (%) 5.43 5.28

300 600 1200 1800 2400 3000 3600 4200 4800 5400 6000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of training data

T
ra

in
in

g
tim

e
(s

ec
on

ds
)

ClusterSVM
SMO

Figure 7: Comparison of the scaling performance of
ClusterSVM and that of SMO on the artificial data
set. The solid line represents SMO and the dashed line
represents ClusterSVM. The number of training data
varies from 300 to 6000 with an interval of 300. For
clarity purpose, labels on the horizontal axis only show
every 600.

and the real data set. The role of the clustering
algorithm C in the proposed method is to provide a
reasonable partition of the training data within the
same class, based on which we can approximately
identify the support vectors and nonsupport vectors.
This is different from the usual goal of a clustering
algorithm, which is to group similar data into the same
cluster while separating different data into different
clusters. Assuming we have a set of data drawn
according to some probability distribution, we do not

Table 4: Isolet data set. Ntrain,i is the actual number
of training data to train the i-th classifier.

SMO ClusterSVM
Ntrain,1 6238 1102
Ntrain,2 6238 1237
Ntrain,3 6238 840
Ntrain,4 6238 1242
Ntrain,5 6238 1123
Ntrain,6 6238 1102
Ntrain,7 6238 1016
Ntrain,8 6238 932
Ntrain,9 6238 957
Ntrain,10 6238 1039
Ntrain,11 6238 1048
Ntrain,12 6238 914
Ntrain,13 6238 945
Ntrain,14 6238 1159
Ntrain,15 6238 946
Ntrain,16 6238 1435
Ntrain,17 6238 1018
Ntrain,18 6238 883
Ntrain,19 6238 762
Ntrain,20 6238 1225
Ntrain,21 6238 980
Ntrain,22 6238 1346
Ntrain,23 6238 1258
Ntrain,24 6238 837
Ntrain,25 6238 852
Ntrain,26 6238 864

Ntrain 6238 1041
Training time (sec.) 278 144

Clustering time (sec.) NA 24
Speedup 1.9

Error rate (%) 4.55 4.55

want the algorithm C to give clusters that reflect the
“modes” of this distribution, but to give a reasonable
partition of the data. The possible extensions to
ClusterSVM are the follows.

• The second sufficient condition mentioned after the
Proposition 2.1 has not been used in ClusterSVM.
It is not hard to incorporate this condition into
ClusterSVM and this would make the training time
scale with the number of non-boundary support
vectors. Further, in the current implementation of
ClusterSVM, all Lagrange multipliers are initialized
to zeroes for SVM training within the WHILE
loop (line 5 to 18 in Algorithm 1). A better
initialization would be based on the solutions of
the initial SVM. These two improvements would

To appear in 2004 SIAM International Conference on Data Mining, April 22 - April 24, Orlando, FL, USA 11

definitely speed up the SVM training further, and
they would especially benefit problems having large
number of boundary support vectors where SMO
usually converges slowly. A two-class problem will
have a large number of boundary support vectors
if the probability distributions of two classes are
highly overlapped.

• With the help of a clustering algorithm, Clus-
terSVM effectively incorporate the distributional
property of the training data into the training pro-
cess. It is expected that the similar idea can be used
to improve other supervised learning algorithm like
neural networks.

Acknowledgements

This research was supported by NSF grant IIS-0208621.
The authors would like to thank anonymous reviewers
for their valuable comments.

References

[1] D. Achlioptas, F. McSherry, and B. Schölkopf. Sam-
pling techniques for kernel methods. In S. B. Thomas,
G. Dietterich, and Z. Ghahramani, editors, Advances
in Neural Information Processing Systems 14, 2002.

[2] C. L. Blake and C. J. Merz. UCI repository of machine
learning databases, 1998.

[3] D. L. Boley. Principal direction divisive partitioning.
Data Mining and Knowledge Discovery, 2(4):325–344,
1998.

[4] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training
algorithm for optimal margin classifiers, 1992. Fifth
Annual Workshop on Computational Learning Theory,
Pittsburgh, ACM.

[5] M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sug-
net, M. Ares, and D. Haussler. Support vector ma-
chine classification of microarray gene expression data.
Technical report, University of California, Santa Cruz,
1999.

[6] C. C. Chang and C. J. Lin. LibSVM: a library for
support vector machines, 2001. Version 2.33.

[7] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machines. Cambridge University Press,
2000.

[8] D. Cutting, D. Karger, J. Pedersen, and J. Tukey.
Scatter/gather: a cluster-based approach to browsing
large document collections. In 15th Ann Int ACM SI-
GIR Conference on Research and Development in In-
formation Retrieval (SIGIR’92), pages 318–329, 1992.

[9] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. Wiley-Interscience, 2nd edition, 2000.

[10] S. Fine and K. Scheinberg. Efficient SVM training
using low-rank kernel representations. Journal of
Machine Learning Research, 2:243–264, 2001.

[11] G. M. Fung and O. L. Mangasarian. Proximal sup-
port vector machine classifiers. In KDD 2001: The
Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2001.

[12] G. M. Fung and O. L. Mangasarian. A feature
selection Newton method for support vector machine
classification. Technical Report 02-03, University of
Wisconsin, Data Mining Institute, 2002.

[13] G. M. Fung and O. L. Mangasarian. Finite Newton
method for Lagrangian support vector machine clas-
sification. Technical Report 02-01, University of Wis-
consin, Data Mining Institute, 2002.

[14] G. M. Fung, O. L. Mangasarian, and A. J. Smola. Min-
imal kernel classifiers. Journal of Machine Learning
Research, 3:303–321, 2002.

[15] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
Proceedings of the European Conference on Machine
Learning. Springer, 1998.

[16] T. Joachims. Making large-scale support vector ma-
chine learning practical. In B. Schölkopf, C. J. C.
Burges, and A. J. Smola, editors, Advances in Kernel
Methods: Support Vector Learning. MIT Press, 1999.

[17] L. Kaufman. Solving the quadratic programming
problem arising in support vector classification. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods: Support Vector Learning.
MIT Press, 1999.

[18] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and
K. R. K. Murthy. A fast iterative nearest point al-
gorithm for support vector machine classifier design.
IEEE Transactions on Neural Networks, 11(1), Jan-
uary 2000.

[19] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. J. Jackel. Backprop-
agation applied to handwritten zip code recognition.
Neural Computation, 1:541–551, 1989.

[20] Y.-J. Lee and O. L. Mangasarian. SSVM: A smooth
support vector machine for classification. Computa-
tional Optimization and Applications, pages 5–22, Oc-
tober 2001.

[21] J. Ma, Y. Zhao, and S. Ahalt. OSU SVM classifier
Matlab toolbox 3.00.

[22] O. L. Mangasarian and D. Musicant. Lagrangian
support vector machines. Journal of Machine Learning
Research, 1:161–177, March 2001.

[23] O. L. Mangasarian and D. R. Musicant. Active support
vector machine classification. In T. K. Lee, T. G.
Dietterich, and V. Tresp, editors, Advances in Neural
Information Processing Systems, pages 577–583, 2000.

[24] O. L. Mangasarian and D. R. Musicant. RSVM: Re-
duced support vector machines. In SIAM International
Conference on Data Mining, 2001.

[25] E. Osuna, R. Freund, and F. Girosi. An improved
training algorithm for support vector machines. In
A. Island, editor, IEEE NNSP, 1997.

[26] D. Pavlov, D. Chudova, and P. Smyth. Towards
scalable support vector machines using squashing. In

12 To appear in 2004 SIAM International Conference on Data Mining, April 22 - April 24, Orlando, FL, USA

Knowledge Discovery and Data Mining, pages 295–299,
2000.

[27] J. C. Platt. Fast training of support vector ma-
chines using sequential minimal optimization. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods: Support Vector Learning.
MIT Press, 1999.

[28] B. Schölkopf, C. Burges, and V. Vapnik. Extracting
support data for a given task. In U. M. Fayyad and
R. Uthurusamy, editors, First International Confer-
ence on Knowledge Discovery and Data Mining. AAAI
Press, 1995.

[29] L. Shih, J. D. M. Rennie, Y.-H. Chang, and D. R.
Karger. Text bundling: Statistics-based data reduc-
tion. In Twentieth International Conference on Ma-
chine Learning, 2003.

[30] H. Shin and S. Cho. Fast pattern selection for support
vector classifiers. In K.-Y. Whang, J. Jeon, K. Shim,
and J. Srivastava, editors, PAKDD, volume 2637 of
Lecture Notes in Computer Science, pages 376–387.
Springer, 2003.

[31] The Mathworks Inc. Matlab 6.1.
http://www.mathworks.com.

[32] V. Vapnik. Statistical Learning Theory. Wiley, NY,
1998.

[33] C. K. I. Williams and M. Seeger. Using the nystrom
method to speed up kernel machines. In T. K. Leen,
T. G. Diettrich, and V. Tresp, editors, Advances in
Neural Information Processing Systems 13. MIT Press,
2001.

[34] H. Yu, J. Yang, and J. Han. Classifying large data sets
using SVM with hierarchical clusters. In Ninth ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2003.

