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Abstract

Constrained spectral clustering is a semi-supervised
learning problem that aims at incorporating user-
defined constraints in spectral clustering. Typically,
there are two kinds of constraints: (i) must-link,
and (ii) cannot-link. These constraints represent
prior knowledge indicating whether two data objects
should be in the same cluster or not; thereby aiding
in clustering. In this paper, we propose a novel ap-
proach that uses convex subproblems to incorporate
constraints in spectral clustering and co-clustering.
In comparison to the prior state-of-art approaches,
our approach presents a more natural way to incor-
porate constraints in the spectral methods and allows
us to make a trade off between the number of satis-
fied constraints and the quality of partitions on the
original graph. We use an L1 regularizer analogous
to LASSO, often used in literature to induce spar-
sity, in order to control the number of constraints
satisfied. Our approach can handle both must-link
and cannot-link constraints, unlike a large number of
previous approaches that mainly work on the former.
Further, our formulation is based on the reduction
to a convex subproblem which is relatively easy to
solve using existing solvers. We test our proposed
approach on real world datasets and show its effec-
tiveness for both spectral clustering and co-clustering
over the prior state-of-art.

1 Introduction

Constrained spectral clustering is an area of active
research within the broad domain of constrained clus-
tering that aims at spectral partitioning of the graph
of objects by incorporating user defined constraints
in the partitioning process. A user can specify two
kinds of constraints: must-link and cannot-link (see
[1, 2] for a general discussion) between the entities.
In this paper, we present a general framework to han-
dle constraints in both spectral clustering and co-
clustering. Incorporating constraints in spectral clus-
tering has been explored previously by various works
[3, 4, 5, 6, 7], however not much research work has
been done towards incorporating these constraints in
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spectral co-clustering setting - apart from the notable
exception of [8].

Constrained spectral clustering approaches [3, 4,
5] and similar in spirit constrained co-clustering ap-
proaches [8] handle only must-link constraints. These
approaches overlay the constraint graph on the origi-
nal graph and modify the graph Laplacian according
to the specified must-link constraints. The clusters
are then computed based on the minimization of the
normalized cut [9] of the modified graph Laplacian.
There are two main issues with this approach. Firstly,
by treating the constraints just like another graph,
it becomes harder to ensure that they are satisfied
while maintaining a reasonable partition quality on
the original graph. In contrast, it would be more
desirable to be able to trade the number of satisfied
constraints against the quality of the partition on the
original graph because in many real applications the
constraints can be poorly defined and sometimes even
inconsistent. Secondly, it is not clear how to extend
the method to handle cannot-link constraints.

Alternatively, other approaches to handle con-
straints in spectral clustering operate by restricting
the feasible solution space instead of directly manip-
ulating the graph Laplacian. Wang et al. [6] pro-
posed an approach for constrained clustering that
handled both must-link and cannot-link constraints.
Further, their approach could also handle real valued
constraints and allowed to control the satisfaction of
constraints. They showed performance improvements
over existing methods of constrained spectral cluster-
ing. However, the approach relies on a quadratically
constrained quadratic optimization with an objective
function which is not necessarily convex (a quadratic
form could be indefinite). By having a quadratic con-
straint to a quadratic minimization criterion, a large
weight on the constraint term would make the effect
of the quadratic graph-Laplacian term almost neg-
ligible. The solution of their problem involves the
computation of all the eigenvalues, and then all the
eigenvectors corresponding to the positive eigenval-
ues. For a large graph, this operation can be quite
expensive. The number of eigenvectors could be as
large as O(vertices), and the collection of eigenvec-
tors will most certainly be dense. In contrast, we use
a 1-norm constraint which makes it easier to enforce



a large number of constraints while limiting effect of
the rest. By using a L1-norm on the penalty term, we
can induce sparsity in the penalty part without using
a weight so large as to completely bury the effect of
the original graph.

We present a novel approach that uses convex
sub-problems to handle must-link and cannot-link
constraints in spectral clustering and co-clustering.
To the best of our knowledge this is the first work that
handles both the types of constraints in a spectral co-
clustering setting. Our proposed approach handles
the constraints in a principled manner using a L1

regularizer modeled after LASSO [10]. The L1

regularizer has been popularly used in literature as a
shrinkage method to drive some of the coefficients of
the feature weight vector in regression to zero. We use
a generalization of the LASSO idea as a method to
satisfy constraints while minimizing the normalized
cut of the graph Laplacian. This allows us to make a
trade off between the number of satisfied constraints
and the quality of the partitions on the original graph.
Additionally, we cast our non-convex problem into
a sequence of convex sub-problems which are easy
to solve. Empirical evaluation over different real
datasets shows the effectiveness of our approach.

2 Related Work

Constrained clustering is a class of semi-supervised
learning algorithms. It allows users to specify con-
straints in order to influence the clustering process.
There are primarily two kinds of constraints between
pairs of objects that are clustered: must-link and
cannot-link [1]. The must-link constraint indicates
that the two objects should lie in the same cluster,
whereas cannot-link constraint indicate that the two
objects should not be in the same cluster. Previous
experience indicates that incorporating prior knowl-
edge as constraints in clustering can improve clus-
tering performance [1, 11, 5]. The seminal work by
Wagstaff et al. [1] incorporated the constraints in the
KMeans clustering algorithm.

There are two kinds of methods to incorporate
constraints in spectral clustering: (a) methods that
directly manipulate the graph Laplacian, and (b)
methods that restrict the feasible solution space.
Kamvar et al. [3] included constraints by modifying
the affinity matrix A by assigning Aij = 1 for each
pair of must-link between objects i and j and by as-
signing Aij = 0 for each pair of cannot-link between
objects i and j. Ji et al. [5] incorporated constraints
by adding to the normalized cut [9] objective function
a L2 penalty term which measures the number of con-
straints that are not satisfied by a partition. Xu et al.
[4] proposed a modification of [3] to handle local prox-

imity structure in the graph. Lu at al. [7] proposed
a method to propagate the constraints in the affin-
ity matrix using an interpretation of a Gaussian pro-
cess. Wang et al. [12] propose a method to combine k-
means clustering on attribute information and spec-
tral clustering on relational information. The second
set of methods involves restricting the feasible solu-
tion space using the pair-wise constraints. De Bie et
al. [13] restricted the eigenspace on which the cluster
assignment is projected with the help of constraints.
Coleman at al. [14] presented a framework to include
inconsistent advice in spectral clustering. Wang et al.
[6] proposed a degree of belief concept to incorporate
real valued constraints and create a constrained op-
timization problem to solve spectral clustering with
constraints. Shi et al. [8] proposed a modification
to spectral co-clustering to handle must-link but not
cannot-link constraints in the data.

3 Background and Preliminaries

In this section, we give a brief overview of spectral
clustering and the existing methods for constrained
spectral clustering as a background for our approach.

3.1 Spectral Clustering Spectral clustering is an
extensively used graph partitioning algorithm. The
most widely used objective function to evaluate the
graph partitions in spectral clustering is normalized
cut [9]. Let G = {V,E,W} be an undirected graph
where V be the set of vertices in the graph and
wuv ∈W be the affinity of the edge euv ∈ E between
vertex u ∈ V and v ∈ V . Let Si and Sj be two
cluster partitions, and then the affinity between the
two clusters can be defined as follows:

(3.1) W (Si, Sj) =
∑

u∈Si,v∈Sj

wuv

The “normalized cut” aims at minimizing the affinity
between the partitions S1, . . . , SK relative to the size
of each partition. It is defined as the following
minimization in the case that we measure the size
of each partition in terms of edges:

(3.2) NCedge = min
S1,...,SK

{
K∑

k=1

W (Sk, S̄k)

W (Sk, V )

}

where S̄k indicate the vertices in V that are not in
Sk. We can also define the cut relative to the number
of nodes in each partition as follows:

(3.3) NCnode = min
S1,...,SK

{
K∑

k=1

W (Sk, S̄k)

|Sk|

}

The numerators in (3.2) and (3.3) represent the affin-
ity between cluster Sk and all other clusters, whereas



the denominators represent the balance between the
partitions in terms of number of edges and vertices,
respectively. Suppose xk is an indicator vector over
the vertices showing their membership in cluster k,
where xuk = 1 if vertex u is in cluster k, else xuk = 0.
The degree matrix D = (duv) is the diagonal matrix
with diagonal entries duu =

∑n
t=1 wut, where n = |V |

is the total number of vertices. It can be shown [9, 15]
that the normalized cuts can be written in terms of
the generalized Rayleigh quotients:

(3.4) NCedge = min
x1,...,xK

{
K∑

k=1

xT
k Lxk

xT
kDxk

}

(3.5) NCnode = min
x1,...,xK

{
K∑

k=1

xT
k Lxk

xT
k xk

}

(both subject to xuk ∈ {0, 1}). The quantity L =
D −W is called the unnormalized graph Laplacian.
Minimizing the cut objective functions is known to be
NP hard, so it is usually solved by treating a relaxed
problem where xk can be a vector of any real values,
so that (3.4) and (3.5) becomes a generalized and an
ordinary eigen problem, respectively.

3.2 Constrained Spectral Clustering In the
case of separating into K = 2 clusters, one of
the main set of approaches to handle constraints in
spectral clustering is via overlaying a constraint graph
on the original graph and minimizing the normalized
cut of the resulting graph Laplacian. The must-link
graph consists of the same vertices as the original
graph, but the set of edges consist of the must-link
constraints. If LC is the unnormalized Laplacian for
the must-link graph, then the problem to solve in [8]
is to minimize the weighted sum of the cut and the
number of constraint violations:

(3.6) minxTLx+ δxT (LC)x s.t. xT 1 = 0,xTx = 1.

This approach has been developed only for must-link
constraints.

Alternatively, [6] present an approach to handle
spectral clustering as a constraint satisfaction prob-
lem, forming a matrix Q defined by

Qij =

 +1 if nodes i, j must be linked
−1 if nodes i, j must not be linked
0 otherwise.

They propose to find a solution that minimizes the
following equation:
(3.7)

minxTLx s.t. xTQx ≥ α,xTx = Vol(G),x 6= 1,

where Vol(G) is the volume of original graph (sum of
all edge affinities). In order to solve the non-convex
problem (3.7), the authors propose to compute an
almost complete generalized eigen-decomposition in-
volving the matrices L,Q.

4 Algorithm

Instead of treating the must-link constraints as just
another graph, our approach is to impose them as
a set of linear constraints, and design an objective
function so that the violations of the must-link con-
straints are as “sparse” as possible. This approach
makes it easy to incorporate cannot-link constraints,
while still leading to a sequence of convex optimiza-
tion problems which is easy to solve. We develop the
method for the 2-cluster case.

4.1 Unconstrained Optimization Problem As
noted above, the usual spectral clustering method
finds the eigenvector corresponding to the smallest
non-zero eigenvalue of L (for minimizing the node
cut NCnode) or the smallest generalized eigenvalue
of Lx = λDx (for minimizing edge cut NCedge).
The latter is equivalent to solving the following
optimization problem

(4.8)
minx

1
2x

TLx
s.t. dTx = 0

xTDx = 1,

where D,d can be replaced by I,1, respectively, to
minimize the node cut. Because of the last constraint,
this is not a convex problem, but is easily solved as
a [generalized] eigenvalue problem.

4.2 Adding Must-Link and Cannot-Link
Constraints We wish to add a constraint to the
above problem of the form Cx = 0, where C encodes
must-link or cannot-link constraints. Each must-link
constraint and cannot-link constraint are encoded in
rows of C of the form

(0, . . . , 0,−1, 0, . . . , 0,+1, 0, . . . , 0) (must-link)
(0, . . . , 0,+1, 0, . . . , 0,+1, 0, . . . , 0) (cannot-link).

C can be thought of as the incidence matrix
(edges by vertices matrix) for the graph of must-
link constraints, plus similar non-negative rows
for the cannot-link constraints. C represent the
Nconstraints×|V | incidence matrix capturing the con-
straints in the graph.

In principle, if the constraints are all enforced
completely, then we have to solve the problem

minx
1
2x

TLx
s.t. dTx = 0

Cx = 0
xTDx = 1.



This could be solved as a generalized eigenvalue prob-
lem (as in [13]), but at considerable expense if the
graph or number of constraints are large. However,
we wish to handle the case where many of the con-
straints are somewhat uncertain or speculative due
to noise or other factors, or where all the constraints
together would overly distort the clustering. So we
wish for a problem setup which would minimize the
number of violated constraints while minimizing the
usual relaxed normalized cut. This would lead to the
following ideal optimization problem, where we have
added a penalty term in the objective function to pe-
nalize violations of the constraints:

(4.9)

minx,z
1
2x

TLx + λ‖z‖p
s.t. dTx = 0

Cx = z
xTDx = 1,

with p = 0 representing the “0-norm”, the number of
non-zero elements (a count). Instead, we relax this
to a more tractable problem by using p = 1. Unlike
[6], we choose p = 1 as opposed to p = 2 as a way to
encourage sparsity in the penalty vector z. Here λ is
a user-selected weighting parameter. The parameter
λ controls the degree to which the constraints are to
be satisfied.

4.3 Convex Subproblem The optimization
problem (4.9) is not convex, but we can formulate
a convex subproblem that yields an approximate
solution that can be improved by iterating the
subproblem. Convex optimization is relatively easy
to solve. There are a number of off-the-shelf convex
optimization toolboxes available for such problems.
We use the convex optimization toolbox CVX [16],
which sufficed for our purposes. The subproblem is
obtained by replacing the last (quadratic) constraint
above with a linear local approximation and adding
a penalty against large deviations:

(4.10)

minx̂,ẑ
1
2 x̂

TLx̂ + µ‖x̂− x‖2D + λ‖ẑ‖1
s.t. dT x̂ = 0

Cx̂− ẑ = 0
xTDx̂ = 1,

where x is the starting point for the subproblem, and
µ is a damping factor, discouraging large movement
away from the starting vector x. Here ‖x‖2D = xTDx
is a weighted 2-norm.

The claim is that solving the subproblem (4.10)
yields a descent step for (4.9), even after re-
normalizing the resulting x̂min to satisfy the original
quadratic constraint xTDx = 1. The resulting itera-
tion is given as Algorithm 1.
Theorem. Each pass through steps 2–5 of Algorithm
1 is a descent step for optimization (4.9).

Algorithm 1 Constrained Clustering

Require: The graph Laplacian L, constraint incidence
matrix C, scalars λ, µ.
Let x denote the indicator vector containing the cluster
assignment.

Start with an initial x[0]

1. For k = 0, 1, 2, . . . until convergence

2. Solve (4.10) for x̂min, ẑmin, starting with x = x[k]

3. Set γ = ‖x̂T
min‖D

4. Set x[k+1] = x̂min/γ

5. Set z[k+1] = ẑmin/γ

Return: x[final]

Proof.

I. As a solution to a minimization problem, we have

1
2 x̂

T
minLx̂min + µ‖x̂min − x‖2D + λ‖ẑmin‖1
≤ 1

2x
TLx + µ‖x− x‖2D + λ‖z‖1,

since x is feasible for (4.10). Hence (unless
x̂min = x)

1
2 x̂

T
minLx̂min + λ‖ẑmin‖1 ≤ 1

2x
TLx

+ λ‖z‖1 − µ‖x̂min − x‖2D < 1
2x

TLx + λ‖z‖1.

Hence step 2 reduces the objective value.

II. We show γ > 1 (unless x̂min = x). We have that
(x̂min − x)TDx = x̂T

minDx − xTDx = 0, since
both x̂min,x satisfy the last constraint of (4.10).
Hence ‖x̂‖2D = ‖x̂− x‖2D + ‖x‖2D > ‖x‖2D = 1.

III. The objective value with x[k+1], z[k+1] is
then 1

2 (x[k+1])TLx[k+1] + λ‖z[k+1]‖1 =
1
2 x̂

T
minLx̂min/γ

2 + λ‖ẑmin‖1/γ which is
less than the starting objective value
1
2 (x[k])TLx[k] + λ‖z[k]‖1 by point I.

4.4 Setting the parameters µ and λ The pa-
rameter λ controls the number of constraints satis-
fied. The problem of finding the right value of λ is
the same in any of the regularization algorithms. In
many cases the problem is solved with a variety of
λs. As λ is increased, the constraints get tighter and
tighter until a desired level of sparsity is reached. To
simplify the selection in our cases, we selected λ from
the range [0.1, 10] to give the desired performance in
terms of the constraints satisfied. The parameter µ
controls the convergence and determines the number
of iterations of the convex subproblem that are re-
quired. The larger the µ value, the more robust is the
iteration at a cost of slower convergence. The opti-
mal value should be in a range where the µ term does
not dominate nor is dominated by the other terms.



Data No of instances No of attributes

Wine 119 13
Glass 146 9

Ionosphere 351 32
Hepatitis 155 19
WDBC 569 30

Diabetes 768 8

Table 1: UCI dataset.

In our experiments we found µ = 1 worked well for
all the data sets we tried, yielding convergence in 6-8
inner iterations at most.

5 Results

We considered two widely used measure of cluster
evaluation, namely, cluster purity [17] and normalized
mutual information (NMI) [18]. Cluster purity is
measured by first assigning the dominant class label
as the label for a cluster, so that purity is defined as:

(5.11) Purity(x̂,y) =
∑
k

maxj

{
|ck ∩ lj |
|ck|

}
where x̂ = {c1, c2, . . . , cK} is the set of cluster
assignments and y = {l1, l2, . . . , lJ} is the set of
true labels. One disadvantage of cluster purity is
that it increases with the increase in the number
of clusters, but this does not apply here since the
number of clusters is fixed at 2. We also used another
popularly used measure to evaluate cluster quality
i.e. Normalized Mutual Information (NMI). NMI is
defined as the mutual information between the cluster
assignments (x̂) and the labeling of the dataset (y)
normalized by the arithmetic mean of the maximum
possible entropies of the empirical marginals.

(5.12) NMI(x̂,y) =
2 · I(x̂,y)

H(x̂) +H(y)

An advantage of NMI is that it does not necessarily
increase when the number of clusters increase. Both
measures lie in the range [0, 1] such that the higher
the value, the better is the clustering quality.

5.1 UCI dataset We tested the model perfor-
mance of our algorithm using six datasets from the
UCI Repository [19], namely wine, glass, ionosphere,
hepatitis, breast cancer and diabetes. The details of
these datasets is shown in the Table 1. These datasets
contain labels for the appropriate classes which the
samples belong in. We first constructed a graph from
these datasets by treating the nodes in the graph to
be the sample points in the dataset and the edge
weight to be the similarity between the features of
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Figure 1: Graph created from six UCI datasets:
Wine, Glass, Ionosphere, Hepatitis, WDBC, and
Diabetes

the different samples. Edge weights were determined
via the RBF kernel with σ2 set to the variance present
in the respective dataset:

(5.13) A(i, j) = exp

(
−||xi − xj ||

2

2σ2

)
Fig. 1 shows the graph affinity structure for the six
datasets.

5.1.1 Model Performance For each of the UCI
dataset, we compare our model with state of the art
prior work [6]. We selected this method as it is the
only method that can handle cannot-link constraints
and hence is a natural predecessor to our work.

To compare the model performance, we ran-
domly constructed the must-link and cannot-link
constraints using a varying percentage of the given
label information. In each case, we ran the algo-
rithm 100 times and computed the mean performance
of the models by measuring the cluster purity and
NMI values. Fig. 3 shows the purity and NMI val-
ues for the different runs of the models using the
UCI dataset. Both cluster purity and NMI effectively
measure the satisfaction of constraints in the given
datasets. When the number of known labels is in-



Dataset α (baseline) α (baseline) α (baseline) α (baseline)

0.6 ≤ nmi < 0.7 0.7 ≤ nmi < 0.8 0.8 ≤ nmi < 0.9 nmi ≥ 0.9

Wine - 56.56 88447 2.1624e+05
Glass - - - -

Ionosphere 0.62 0.82 0.9294 1.0325
Hepatitis 6.19e+07 5.36e+09 6.42e+09 6.424e+09
WDBC - 1.99e+03 6.77e+14 6.16e+23

Diabetes 217 485.50 2.12e+03 2.28e+03

Table 2: Parameter value for the baseline method for a fixed NMI. The λ of our model lie in the range
[0.1, 10] to achieve the same performance as baseline.. The blanks indicate that the required NMI value was
not reached.

Dataset α (baseline) α (baseline) α (baseline) α (baseline)

%known = 20 %known = 40 %known = 60 %known = 80

Wine 1.85e+02 1.33e+03 8.85e+04 3.03e+05
Glass 3.27e+06 3.27e+06 3.29e+06 4.34e+34

Ionosphere 0.20 0.41 0.61 0.82
Hepatitis 6.19e+07 1.20e+05 6.36e+09 6.424e+09
WDBC 6.77e+14 1.53e+14 6.16e+23 6.16e+23

Diabetes 279 346 2.12e+03 2.28e+03

Table 3: Parameter value for the baseline method for a fixed % of known labels. The λ of our model lie in
the range [0.1, 10] to achieve the same performance as baseline.

creased the performance of both the models increase.
From the results, we see that our approach consis-
tently matches the performance of the prior state-
of-art model. In the case of Glass dataset, it beats
the baseline approach. Overall the result indicates
that our model is consistent with the prior state-of-
art model.

For some datasets, we see that the NMI is poor
only when a few constraints are imposed. This is
because the natural clustering of the data set leads to
a poor partitioning. We see this trend in the following
datasets: (1) glass, (2) ionosphere, (3) hepatitis,
and (4) diabetes. In this cases, the only way to
get a correspondence to the labels is by applying
supervision in the form of constraints, and in some
cases, a large fraction of these constraints are needed.
When the NMI value is relatively high even with the
application of a few constraints (like in wine and
wdbc dataset), then the natural clustering in the
graph is well correlated with the underlying labels.
As we can see from the Fig. 1, the wine dataset has
a relatively well defined 2-class cluster structure as
compared to the other datasets. Hence, as expected,
both the algorithms give very good performance on
the Wine dataset. In the glass dataset, there is a poor
correspondence between the natural clusterings and
the labels and some of the sample points do not show
a high similarity with any other points. Our method

was able to take advantage of the prior knowledge
in the form of constraints especially when enough of
them are provided, whereas the baseline failed in these
case.

5.1.2 Parameter Value Here, we investigate the
quality of the partitions proposed by the two ap-
proaches. To do this, we compare the parameter val-
ues of the two methods. The λ parameter in our ap-
proach and the α parameter in the baseline method
(Eq. 3.7) controls the trade-off between the normal-
ized cut partition on the original graph and the sat-
isfaction of constraints. In the baseline method, the
value of α is set to the largest eigenvalue of the nor-
malized matrix Q.

Fixed NMI. In order to compare the two val-
ues, we first fixed the NMI and varied the percentage
of known labels. Then we measure the parameter
values that are required to achieve the fixed NMI.
The λ of our method, was found to be in the range
[0.1, 10] for all the datasets and for all NMI values.
The value of α for the baseline method is shown in
Table 2. We observe here that λ is much smaller than
α in all cases. The value of α goes as high as 1023.
A high value of α means that the baseline method
was focused more on satisfying the constraints rather
than maintaining the quality of the partitions. Only
in the case of the Ionosphere dataset, the value of
α is close to λ. This is because the graph from the
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Figure 2: Effect of adding 10% noisy constraints to
NMI on the Wine dataset. The experiment is run
100 times and graph plots average NMI for the two
methods.

Ionosphere dataset is particularly densely connected
compared to the other graphs (Fig. 1). Overall the
result indicates that our method provides a good bal-
ance between constraint satisfaction and maintaining
cluster quality, whereas the high parameter value of
baseline indicates its overfitting on the constraints.

Fixed % labels. Next, we fix the percentage of
known labels and compared the parameter values of
the two methods. Table 3 shows the value of α of
the baseline method using a fixed percentage of the
known labels. Again λ of our approach was found
to be in the range [0.1, 10]. The baseline required
very large α values to satisfy equivalent percentage
of constraints in comparison to our approach. The
higher parameter values indicate that the baseline
approach would have problems in cases when the
constraints are noisy.

Noisy Constraints. Here we see the impact
on the average NMI when we add noisy constraints
to the dataset. For every scenario, we randomly
flipped the value of 10% of the known labels to
introduce observation noise in the constraints. Fig. 2
shows that our approach is more robust to noisy
constraints as compared to the baseline method for
the Wine dataset where both the methods yield close
to perfect clustering in the non-noisy case. This
results highlights the effectiveness of our model over
the baseline method in real-world datasets where the
constraints can be noisy.

5.2 Co-cluster Dataset We further show that
our method can be extended to find clusters in con-
strained spectral co-clustering. Spectral co-clustering
is used to find clusters in a bipartite graph [20] and

Data No of documents No of edges

Medline 200 10510
Cranfield 200 10210

Total 400 20720

Table 4: Co-clustering dataset.

is shown to perform better that clustering for various
scenarios. For co-clustering, we use the Classic3

dataset provided by the SMART project at Cornell
University [21]. This dataset can be freely down-
loaded at ftp://ftp.cs.cornell.edu/pub/smart. We use
a subset of the dataset containing the two classes
Medline (200 medical abstracts) and Cranfield (200
aeronautical systems abstract) and there are 3141
unique words in the dataset. The nodes of our bipar-
tite graph consist of documents and words, respec-
tively and the edge weight represents the TF/IDF
score of the word in the document. The details of the
dataset are shown in the Table 4. Our goal is to find
co-cluster partitions of the documents and the words.

5.2.1 Model Performance In order to compare
the performance of our method, we use the con-
strained spectral co-clustering approach by Shi et
al. [8]. This is the only prior work that handles con-
straints in Spectral Co-clustering. The main idea be-
hind the approach is to overlay the constraint graph
on the original graph and minimize the normalized
cut of the resulting graph Laplacian. This approach
can only handle must-link constraints whereas we can
handle both type of constraints. We randomly set
some percentage of the known labels as constraints
just like we did in the previous section. Note that for
co-clustering, we can define constraints between the
rows or columns or both. Since we know the labels
of the documents, we define the constraints between
them. We run both our approach and the baseline
method 100 times. Fig. 4 shows the mean cluster pu-
rity and NMI values using the two approaches. From
the figure, we see that our approach performs much
better in comparison to the baseline. Overall it indi-
cates that our approach beats the prior approach for
spectral co-clustering.

6 Conclusion

In this paper, we present a novel approach to add
must-link and cannot-link constraints to spectral
clustering. Our approach proposes the objective
function that can be formulated as convex subprob-
lems and hence can be solved easily using some of
the known solvers. We use the L1 regularization to
control the number of captured constraints and show
that this allows us to effectively control the quality
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Figure 4: Model performance for constrained spectral
co-clustering.

of the partitions in the underlying graph while satis-
fying many of the constraints. We evaluate our ap-
proach using several datasets and show that we can
match the performance of the baseline method while
still having a lower value of the parameters. Further-
more, we show that our approach is robust to the
addition of noisy labels, and that our approach can
be applied to spectral co-clustering in order to find
partitions in the bipartite graph using a real world
dataset.

As part of future work, we would like to extend
our algorithm to handle more than two clusters. One
simple approach is to hierarchically run the algorithm
to generate two partitions in each of the cluster de-
tected. However, there are further research questions
like when should we stop looking for hierarchical par-
titions. Additionally, the choice of λ is domain depen-
dent, since the usefulness of any particular clustering
depends on the needs of specific applications. In fu-
ture we can adopt fast methods to track the solution
as λ varies.
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Figure 3: Comparison of model performance over the UCI datasets


