
Vandermonde Factorization of a Hankel Matrix?Daniel L. Boley1, Franklin T. Luk2, David Vandevoorde21 University of Minnesota, Minneapolis MN 55455, USA2 Rensselaer Polytechnic Institute, Troy NY 12180, USAAbstract. We show that an arbitrary Hankel matrix of a �nite rankadmits a Vandermonde decomposition: H = V TDV , where V is a con-
uent Vandermonde matrix and D is a block diagonal matrix. This resultwas �rst derived by Vandevoorde; our contribution here is a presentationthat uses only linear algebra, speci�cally, the Jordan canonical form. Wediscuss the choices for computing this decomposition in only O(n2) op-erations, and we illustrate how to employ the decomposition as a fastway to analyze a noisy signal.1 IntroductionLet fhkg1k=1 denote a complex-valued signal, and let H represent the associatedin�nite Hankel matrix whose (i; j)-element is de�ned by Hij = hi+j�1:H = 0BBB@ h1 h2 h3 h4 . . .h2 h3 h4 h5 . . .h3 h4 h5 h6 . . .h4 h5 h6 h7 . . .. . . . . . . . . . . . . . .1CCCA (1)This matrix is symmetric (not Hermitian if complex): HT = H . Throughoutthis paper, the notation MT denotes the transpose of M and not the conjugatetranspose. Suppose that the underlying signal is a sum of r exponentials, i.e.,for k = 1; 2; : : :, hk = rXi=1 �ki di; (2)where the �i's are distinct complex numbers. Then the Hankel matrix H willhave rank r. In this case, the Hankel matrix admits the factorization:H = V TDV;where D is diagonal and V is Vandermonde:D 4= diag(d1; d2; : : : ; dr)? This research was partially supported by NSF Grant CCR-9405380



and V 4= 0BBBB@ 1 �1 �21 �31 � � �1 �2 �22 �32 � � �1 �3 �23 �33 � � �... ... ... ... . . .1 �r �2r �3r � � �1CCCCA :We stress that a diagonal decomposition is possible only if the �j 's are distinct.In this paper, we consider the general case where the �j 's are multiple. Thefactorization must be generalized so that the matrix D becomes block diagonaland the matrix V takes on a con
uent Vandermonde structure. The theory was�rst developed in Vandevoorde's Ph.D. thesis [11]. The next section is devotedto a derivation of this generalized Vandermonde decomposition based entirely onconcepts from linear algebra. In Section 3 we sketch how the decomposition canbe computed quickly, viz., using O(n2) operations and O(n) space. We concludein Section 4 with an example illustrating to use the method to analyze a noisysignal.2 Derivation via Jordan Canonical FormAssume that the matrix H of (1) has rank r. By a theorem of Gantmacher [5,vol. 2, p. 207], the signal satis�es a recurrence relation of length r:hk = ar�1hk�1 + ar�2hk�2 + � � �+ a0hk�r; (3)which generates the entire signal once the r initial values fh1; h2; : : : ; hrg are�xed. The recurrence (3) is a di�erence equation which can be used to solve forthe ai's after the next r values fhr+1; hr+2; : : : ; h2rg become known.Let C denote the companion matrix corresponding to the polynomial:p(�) 4= �r � ar�1�r�1 � � � � � a1�� a0; (4)that is, C 4= 0BBBBBBB@ 0 10 1. . . . . .. . . . . .0 1a0 a1 a2 � � � ar�2 ar�1
1CCCCCCCA : (5)We show that the �rst r rows of H can be regarded as a Krylov sequence gen-erated by C. Let hk 4= 0BB@ hkhk+1...hk+r�11CCA (6)



denote the �rst r entries in the k-th column of H . The �rst r rows of H can bewritten asH1:r;1:1 = (h1 h2 h3 � � � ) = (h1 Ch1 C2h1 � � � ) : (7)Suppose �1; �2; : : : ; �s denote the roots of the polynomial p(�) with respectivemultiplicities m1;m2; : : : ;ms so thatm1 +m2 + � � �+ms = r:Denote a Jordan canonical decomposition of C byC = PJP�1;with J in the canonical form:J = 0BB@Jm1(�1) Jm2(�2) . . . Jms(�s)1CCAr�r ;where Jmi(�) = 0BBBB@�i 1�i 1. . . . . .�i 1�i
1CCCCAmi�mi ; (8)for i = 1; 2; : : : ; s. The companion matrix C is guaranteed to be nonderogatory,i.e., it has one Jordan block per distinct eigenvalue. The transformation P is notunique, but having �xed the order for the eigenvalues, any alternative transfor-mation eP also yielding the same Jordan canonical form must be related to Pby ePQ = P;where Q = 0BB@Qm1 Qm2 . . . Qms 1CCAr�r ; (9)with each Qmi as an mi �mi nonsingular and upper triangular matrix whosediagonal entries are all the same. This is because the columns of any eP areJordan chains, and there are only limited kinds of transformations to the Jordanchains that will yield the same Jordan form [5, vol. 1, p. 172]. Note that Q isblock diagonal with blocks conforming to the Jordan blocks.



For the purposes of computation, or for �xing ideas, it is often convenient tochoose a speci�c P . One such choice is that of a con
uent Vandermonde matrix[6, p. 188]: P 4= 0BB@ pTpTJ...pTJr�11CCAr�r ; (10)where pT = � e[m1]T1 e[m2]T1 : : : e[ms]T1 �1�r ;so p is partitioned conformally with the Jordan canonical form J and eachpartition e[mi]T1 represents a �rst unit-coordinate vector:e[mi]T1 = ( 1 0 : : : 0 )1�mi :It is easy to verify (for any choice of a starting vector p) thatCP = 0BBBB@ pT JpTJ2...pT Jr�1pT � (ar�1Jr�1 + � � �+ a1J + a0I)
1CCCCA = 0BBBB@ pT JpTJ2...pTJr�1pTJr 1CCCCA = PJ;where we have used the the characteristic equation for J :p(J) = Jr � ar�1Jr�1 � � � � � a1J � a0I = 0:Hence C = PJP�1, supporting our choice of the special form of P in (10).Now, de�ne a generalized Vandermonde matrix V byV 4= (v Jv J2v � � � ) ;where v 4= P�1h1:The relation (7) can be written asH1:r;1:1 = PV: (11)Let Vr denote the �rst r columns of V . We will express the Jordan decompositionof C in terms of Vr. Forming the product VrCT columnwise, we getVrCT = ( v Jv � � � Jr�2v Jr�1v ) CT= ( Jv J2v � � � Jr�1v (a0 + a1J + � � �+ ar�1Jr�1)v )= ( Jv J2v � � � Jr�1v Jrv )= JVr: (12)Since the �rst r columns of (11) are independent by assumption, the matrix Vrmust be nonsingular. So we obtain the decomposition:CT = V �1r JVr;



or equivalently, C = V Tr JTV �Tr :We will use this result to express the transformation P in terms of Vr. De�nethe block diagonal \
ip" matrix as follows:F 4= 0BB@Fm1 Fm2 . . . Fms 1CCAr�r ; (13)where Fmi 4= 0BBB@ 10 1. . .1 01 1CCCAmi�mi ;for i = 1; 2; : : : ; s, partitioned conformally with the Jordan block Jmi(�i). Thismatrix is involutory (F 2 = I) and symmetric (F T = F ). When applied to theJordan matrix J , the matrix F has the e�ect of transposing it:FJF = JT :We can thereby write the Jordan decomposition of C asC = V Tr JTV �Tr = V Tr FJFV �Tr : (14)Setting P = V Tr FQfor some matrix Q of the form (9), we get the decomposition of the leading r� rpart of the Hankel matrix asHr = PVr = V Tr FQVr:Given that H is symmetric and Vr is nonsingular, we obtainV Tr FQVr = H = HT = V Tr (FQ)TVr:Hence the matrix D, de�ned by D 4= FQ;must be symmetric; furthermore, it is block diagonal with blocks conforming tothe Jordan blocks. Since each diagonal block of Q is upper triangular, we derivethe following form for D:D = 0BB@D1 D2 . . . Ds1CCAr�r ; (15)



where Di = 0BBB@ � � � � di� � � di� � . . .� di 0di 1CCCAmi�mi ;for i = 1; 2; : : : ; s; each block Di is symmetric and upper anti-triangular, witha constant value along the main antidiagonal. Combining these formulas, weobtain both a relation between P and Vr :P = V Tr D;and a symmetric decomposition for the leading r � r Hankel matrix:Hr = PVr = V Tr DVr = PD�1P T : (16)From (12) we getV = (Vr JrVr J2rVr � � � ) = (Vr Vr(CT )r Vr(CT )2r � � � ) :Since CHr = HrCT , we obtainH = 0BB@ IrCrC2r... 1CCA �Hr � ( Ir (CT )r (CT )2r � � � ) = V TDV; (17)i.e., a factorization for the entire in�nite Hankel matrix.A further analysis of the structure of the matrices in (16) yields the fact thatthe diagonal blocks of D�1 and D have Hankel structure. For D�1, we startwith the identity(PJP�1)(PD�1P T ) = CH = HCT = (PD�1P T )(P�T JTP T );which simpli�es to JD�1 = D�1JT . The matrix D�1 is block diagonal withblocks conforming to those of J . So the i-th block of this last relation isJmi(�i)D�1i = D�1i JTmi(�i);for i = 1; : : : ; s. Subtracting �iI from both sides yieldsZiD�1i = D�1i ZTi ;where Z has the form of an upshift matrix of appropriate size:Zi = Jmi(�i)� �iI = 0BBBB@ 0 10 1. . . . . .0 101CCCCAmi�mi : (18)



HenceD�1i must have a Hankel structure. ForD, we carry out a similar argumentusing V Tr F instead of P and D instead of D�1, and apply the factorization (14)to get a Hankel structure for the diagonal blocks Di.We now show how we may modify the Vandermonde matrix Vr so that its�rst column consists of all ones. Suppose that no component of v is zero. De�nea new diagonal matrix Dv byDv 4= diag(v1; v2; : : : ; vr);and a new generalized Vandermonde matrix Wr byWr 4= D�1v Vr:Then D�1v v = e 4= ( 1 1 : : : 1 )T ;and we can re-write (16) as Hr =W Tr (DvDDv)Wr ;where the product DvDDv is a block diagonal matrix with blocks conformingto J . The matrix Wr has the following structure:Wr = ( e D�1v JDve D�1v J2Dve � � � D�1v Jr�1Dve )= � e bJe bJ2e � � � bJr�1e � ; (19)with bJ 4= D�1v JDv:We observe that the matrix bJ possesses a sort of generalized Jordan structure.We conclude this section with three notes.First, consider the special case that all the eigenvalues of C are simple. Inthis case, the Jordan matrix J = bJ is diagonal, F is the identity, D = Q is\scalar" diagonal, and P = V Tr D:The decomposition (16) simpli�es toHr = V Tr (D)Vr =W Tr (DD2v)Wr ; (20)where the parts enclosed in parentheses are diagonal matrices. The last expres-sion on the right applies if v has no zero component, which is guaranteed in thiscase by the nonsingularity of Vr. In fact, the matrix Wr of (19) for this case hasthe usual Vandermonde structure. The above holds for any choice of P , but ifwe �x P as given in (10), we see that P =W Tr .Second, the factorization (16) can be used to factor any nonsingular r � rHankel matrix Hr. This matrix is �lled by the entries h1; h2; : : : ; h2r�1; henceto �x the polynomial (4) and carry out the rest of the development above, wemust choose some value for h2r. With such a choice, the rest of the developmentabove goes through unchanged.



Third, we address the issue of factoring a singular n� n Hankel matrix Hn.One way to do this is to embed this n�n matrix inside an in�nite Hankel matrixH1 of a �nite rank r by extending it with in�nitely many zeros. We could usea di�erent choice for the extension to avoid a nilpotent C, and one open issue ishow to choose the extension to minimize the resulting rank. Factor the in�niteHankel matrix as H1 = V TDV;where D is r � r and V is r �1, and extract the �rst n rows and columns ofthis decomposition to get Hn = V Tn DVn;where Vn is the r�n matrix consisting of the �rst n columns of V . Note that itcould be that r < n or r > n. The former case occurs, for example, if the rankof Hn is r < n and the leading r � r part of Hn happens to be nonsingular.3 Algorithms (Generic case)We brie
y discuss choices of algorithms that can be used to compute the Van-dermonde decomposition. Many of the individual pieces to the algorithms areo�-the-shelf methods; some are quite experimental and some have received verylittle attention in the literature. The methods we present are based on the useof the Lanczos algorithm or its derivatives. Most details can be found in [11].We begin with an outline of the basic steps:1. Compute the \modes" generating the Hankel matrix, viz., the roots of thepolynomial p(�) of (4).2. Compute the \diagonal" matrix D:D = V �THV �1;where V is the Vandermonde matrix generated by the eigenvalues in step 1.The diagonal structure of D follows from the theory developed in the previ-ous section.3. Optionally scale the columns of V to unit norm, scaling the entries in Dappropriately.For each of these steps there are choices for the algorithm to use. For step 1, wecould solve for the coe�cients in the recurrence (3) by simply plugging the valuesfor hi (i = 1; : : : ; 2n � 1), yielding a special set of n equations in n unknownsoriginally proposed by Prony [10] and popularized by Yule [14] and Walker [12].Then we must �nd all the roots of the polynomial p(�).Vandevoorde [11] proposed an alternative for step 1. We use a variant of anonsymmetric Lanczos process to generate a tridiagonal matrix T whose eigen-values match those of C. Then we compute the eigenvalues of T . It turns out thatboth these steps (generating T and computing its eigenvalues) can be performedvery e�ciently. Space does not permit a full description of the process, but wecan give a hint on the basic ideas used. We have already seen that the n � n



Hankel matrix Hn can be thought of as a Krylov sequence generated by C andh1 (cf. (7)). If we let H2n be the 2n� 2n Hankel matrix obtained by extendingthe \signal" fhkg with all zeros, then H2n can similarly be thought of as theKrylov sequence generated by the 2n� 2n upshift matrix Z of the form (18).The nonsymmetric Lanczos process in [11] is equivalent to a procedure thatbi-orthogonalizes the Krylov sequence we just mentioned against another se-quence (called the \left" Krylov sequence). If the coe�cients computed by theenforcement of the bi-orthogonalization conditions involve only the �rst n en-tries of each vector, the Lanczos coe�cients generated by C and by H2n willbe identical. This can happen, for example, by making the left Krylov sequenceupper triangular, so that the right Krylov sequence will be bi-orthogonalizedto lower triangular. This can be arranged by starting the left Krylov sequencewith the coordinate unit vector e1. As a result, each new vector is generatedby shifting up the previous vector and then orthogonalizing it against the twoprevious vectors. This takes linear time and linear space, and there are at mostO(n) steps so that the total time is O(n2). The resulting algorithm is describedin detail in [2]. There is also a symmetric variant originally proposed in [9] thatcan generate a symmetrized tridiagonal matrix directly from this non-symmetricrecursion. This symmetric variant has similar costs.Once the tridiagonal matrix has been generated, the task is to �nd its eigen-values. There are two variants of the QR-type algorithm that can be appliedhere. One is the complex symmetric QR algorithm proposed in [4], for whichthe matrix T must be symmetrized. Even when T is real, if the signs of thecorresponding superdiagonal and subdiagonal entries of T are opposite, then thesymmetrized matrix will be complex. The resulting QR algorithm is a directanalog of the ordinary Hermitian QR method, but it uses complex orthogonalrotations and complex symmetric matrices instead of unitary rotations and Her-mitian matrices, respectively. Another option is to use the LR algorithm [13],which is based on the LU factorization without pivoting to preserve the tridi-agonal structure. The LR algorithm can break down, but if a random shift isapplied when zero pivot occurs during the LU factorization, the process can stillexhibit very rapid convergence. If T is real, an implicit double-shift LR algorithmcan in principle be carried out in real arithmetic [13]. Both algorithms requirelinear time for each iteration in a manner very similar to the Hermitian analog,and the number of iterations is generally O(n) in a manner very similar to theQR algorithm usually employed. The relative merits between these alternativealgorithms have not been studied in detail.The other major task is �nding the diagonal matrix D in step 2. Because ofthe structure of V , the diagonal entries of D appear in the �rst column of theproduct DV . But DV = V �TH . Hence this �rst column is the solution d to theVandermonde system: V Td = h1;where h1 is the �rst column of H . This can be solved with a fast O(n) Van-dermonde solver [1], where to maintain stability Higham [7, p. 438] recommendsarranging the eigenvalues with a so-called Leja ordering.



4 Analysis of a SignalConsider a signal fhkg which su�ers from the presence of noise. How can werecover the principal modes that generate the signal? A popular method byKung [8] based on the singular value decomposition (SVD) is known to be ane�ective method for this purpose, but it su�ers from the need to carry out bothan SVD and a matrix eigensolution, each costing O(n3) operations. A secondpopular approach is to form the Hankel matrix generated by the signal, and thenproceed to �nd a nearby Hankel matrix of a lower rank [3]. The Vandermondedecomposition of this nearby low-rank Hankel matrix yields the parameters in(2). The method of [3] iterates until it converges to a nearby Hankel matrix.Unfortunately, this method requires the repeated use of the SVD and hencecosts up to O(n3) operations per iteration.We indicated in Section 3 how the Vandermonde decomposition can be com-puted quickly. An obvious way to obtain a nearby Hankel matrix of a lower rankis to set to zero all the diagonal entries in D that are smaller than a certaintolerance. Although this crude method does not always yield the best approxi-mation, a judicious combination of this approach with other criteria can yield agood result. We conclude this paper with an illustration of one such approachin the next paragraph.Start with a signal generated by �ve modes, shown by circles on the complexplane in Figure 1, to which has been added white noise with a signal-to-noiseratio of 3.55dB. Form the 128� 128 Hankel matrix H and compute its Vander-monde decomposition H = V TDV . Figure 2 shows the absolute values of thediagonal entries of D in descending order. It turns out that selecting the modescorresponding to the �ve largest values of D does not yield satisfactory results,but we can almost recover the correct modes by the following simple procedure.Choose the modes corresponding to the largest entries in D (also called weights),speci�cally those that are within 10% of the largest entry (in absolute value); inthis case fourteen modes remained. Then choose a subset of these fourteen usinga second criterion based on the Discrete Fourier Transform (DFT) of the signal.The DFT of the original signal is shown by the dotted line in Figure 3. As mostof the modes lie relatively close to the unit circle, their argument (angle on thecomplex plane) maps to the horizontal axis of Figure 3. In fact, we have markedthe angles corresponding to the �ve original \unknown" modes by means of cir-cles along the x-axis. This leads to our second criterion, viz., select those modesfor which the DFT is larger than a certain threshold (in this case 30%) of thelargest value in the DFT (in absolute value). This selection criterion is appliedonly to those modes that survived the �rst selection process. In this example, outof the fourteen modes only seven survived the second selection process. These�nal seven modes are marked by *'s in Figure 1, and the resulting DFT usingthese seven modes is shown by the solid line in Figure 3. We remark that one canstill distinguish the two close peaks in this DFT corresponding to the two veryclose original modes. We should emphasize that the choice of criteria requiresfurther study. Indeed, a more sophisticated selection criterion is presented in[11].
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Fig. 3. Discrete Fourier Transform (DFT) of the original signal (dotted) and the re-constructed reduced-order signal (solid). Small circles mark the angles correspondingthe original modes.


