Vandermonde Factorization of a Hankel Matrix*

Daniel L. Boley!, Franklin T. Luk?, David Vandevoorde?

! University of Minnesota, Minneapolis MN 55455, USA
2 Rensselaer Polytechnic Institute, Troy NY 12180, USA

Abstract. We show that an arbitrary Hankel matrix of a finite rank
admits a Vandermonde decomposition: H = VT DV where V is a con-
fluent Vandermonde matrix and D is a block diagonal matrix. This result
was first derived by Vandevoorde; our contribution here is a presentation
that uses only linear algebra, specifically, the Jordan canonical form. We
discuss the choices for computing this decomposition in only O(n?) op-
erations, and we illustrate how to employ the decomposition as a fast
way to analyze a noisy signal.

1 Introduction

Let {hy}72; denote a complex-valued signal, and let H represent the associated
infinite Hankel matrix whose (i, j)-element is defined by H;; = hjyj_1:

hi hy hs hy
ha hs hsy hs .-

H=1|hs hi hy hg .- (1)
ha hs he hy .-

This matrix is symmetric (not Hermitian if complex): H” = H. Throughout
this paper, the notation M7 denotes the transpose of M and not the conjugate
transpose. Suppose that the underlying signal is a sum of r exponentials, i.e.,
fork=1,2,...,

hy =Y Ad;, (2)
i=1

where the \;’s are distinct complex numbers. Then the Hankel matrix H will
have rank r. In this case, the Hankel matrix admits the factorization:

H=vTDv,
where D is diagonal and V' is Vandermonde:
D £ diag(dy, do, . .., d,)
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We stress that a diagonal decomposition is possible only if the A;’s are distinct.
In this paper, we consider the general case where the A;’s are multiple. The
factorization must be generalized so that the matrix D becomes block diagonal
and the matrix V takes on a confluent Vandermonde structure. The theory was
first developed in Vandevoorde’s Ph.D. thesis [11]. The next section is devoted
to a derivation of this generalized Vandermonde decomposition based entirely on
concepts from linear algebra. In Section 3 we sketch how the decomposition can
be computed quickly, viz., using O(n?) operations and O(n) space. We conclude
in Section 4 with an example illustrating to use the method to analyze a noisy
signal.

2 Derivation via Jordan Canonical Form

Assume that the matrix H of (1) has rank r. By a theorem of Gantmacher [5,
vol. 2, p. 207], the signal satisfies a recurrence relation of length r:

hy =ar_1hy_1 +ar_shy_s + -+ aghp_,, (3)
which generates the entire signal once the r initial values {hy, ha,..., h,.} are
fixed. The recurrence (3) is a difference equation which can be used to solve for
the a;’s after the next r values {h,41,hy42,...,ha.} become known.

Let C denote the companion matrix corresponding to the polynomial:

P EN —a, AT~ —a A — ag; (4)
that is,
0 1
0 1
C= (5)
0 1
ag ap Qaz -+ Qp_2 QGr_1

We show that the first  rows of H can be regarded as a Krylov sequence gen-
erated by C. Let
hy,

h
no2| 7 (6)

hk+r71



denote the first r entries in the k-th column of H. The first r rows of H can be
written as

Hiypio =(hy hy hy ---)=(h; Ch C’hy ). (7)

Suppose A1, Aa, ..., As denote the roots of the polynomial p(\) with respective
multiplicities my, ms, ..., my so that

m;+mo+---+mg =T

Denote a Jordan canonical decomposition of C' by

C=PJP !,
with J in the canonical form:
Jml (>‘1)
Jm2 (AZ)
J = ,
Jms (/\S) rXT
where
Ao 1
A1
I (A) = : (8)
Ao 1
Ai my; Xm;
fori =1,2,...,s. The companion matrix C is guaranteed to be nonderogatory,

i.e., it has one Jordan block per distinct eigenvalue. The transformation P is not
unique, but having fixed the order for the eigenvalues, any alternative transfor-
mation P also yielding the same Jordan canonical form must be related to P
by

where

Qms rXT

with each @,,, as an m; x m; nonsingular and upper triangular matrix whose
diagonal entries are all the same. This is because the columns of any P are
Jordan chains, and there are only limited kinds of transformations to the Jordan
chains that will yield the same Jordan form [5, vol. 1, p. 172]. Note that @ is
block diagonal with blocks conforming to the Jordan blocks.



For the purposes of computation, or for fixing ideas, it is often convenient to
choose a specific P. One such choice is that of a confluent Vandermonde matrix
[6, p. 188]:

pTT
p'J
p= : : (10)
pTJrfl s
where
p’ = (™ T eIt elmlTy
so p is partitioned conformally with the Jordan canonical form J and each
partition e; represents a first unit-coordinate vector:
;T
™= (1 0 ... 0) -
It is easy to verify (for any choice of a starting vector p) that
p'J p'J
pTJZ pTJZ
CP = : = : =PJ,
pTJrfl pTJrfl
pl - (ar 1" 4+ arJ + agl) plJ"
where we have used the the characteristic equation for .J:
p(J) =J" — ariljril — - —ayJ —agl =0.
Hence C = PJP ™!, supporting our choice of the special form of P in (10).
Now, define a generalized Vandermonde matrix V' by
VE(v Jv Jv o),
where
vZE P 'h.
The relation (7) can be written as
Hl:r,l:oo = PV. (11)

Let V,. denote the first r columns of V. We will express the Jordan decomposition
of C in terms of V.. Forming the product V,C” columnwise, we get

V,CT'=(v Jv - J72%v Jlv) o7
=(Jv J*’v - J7'W (ag+aJ++a, 1 J)V) 19
=(Jv J*v - J v J'v) (12)
=JV,.

Since the first r columns of (11) are independent by assumption, the matrix V.
must be nonsingular. So we obtain the decomposition:

ct=v-1v,,



or equivalently,
c=vljtvr".

We will use this result to express the transformation P in terms of V.. Define
the block diagonal “flip” matrix as follows:

Fo,
Fy
Fz ’ : (13)
Fms rXr
where
1
0 1
F 2
1 0
]' Mg Xm;

fori =1,2,...,s, partitioned conformally with the Jordan block J,,,(A;). This
matrix is involutory (F? = I) and symmetric (F” = F). When applied to the
Jordan matrix .J, the matrix F' has the effect of transposing it:

FJF =JT.
We can thereby write the Jordan decomposition of C as
c=vrjtv T =vIrjrv, T (14)

Setting
P=V!'FQ

for some matrix @ of the form (9), we get the decomposition of the leading r x r
part of the Hankel matrix as

H, = PV, = V'FQV,.
Given that H is symmetric and V, is nonsingular, we obtain
VIFQV, =H =H" =V, (FQ)"V,.
Hence the matrix D, defined by
D 2 FQ,

must, be symmetric; furthermore, it is block diagonal with blocks conforming to
the Jordan blocks. Since each diagonal block of () is upper triangular, we derive
the following form for D:

D,
D,

rXTr



where

x % *x  x d;
x % *x d;
D; = * * )
d; mi Xm;
for i = 1,2,...,s; each block D; is symmetric and upper anti-triangular, with

a constant value along the main antidiagonal. Combining these formulas, we
obtain both a relation between P and V.

P=V!D,
and a symmetric decomposition for the leading r x r Hankel matrix:
H,=PV,=VIDV,=pPD'PT. (16)
From (12) we get
V=V, JV. J"V, --)=(V, V.(CT) Vv, (CT)> ...).
Since CH, = HTCT, we obtain
I,

CT
H=| o |-H,- (1L, (CT) (€T -..)=VTDV, (17)

i.e., a factorization for the entire infinite Hankel matrix.

A further analysis of the structure of the matrices in (16) yields the fact that
the diagonal blocks of D~! and D have Hankel structure. For D!, we start
with the identity

(PJP 'Y PD 'P"Y=CH = HC" = (PD'P")(P " J"P"),

which simplifies to JD~! = D~'JT. The matrix D~! is block diagonal with
blocks conforming to those of J. So the i-th block of this last relation is

T M) Dt = Dy T, (M),
for ¢+ =1,...,s. Subtracting \;I from both sides yields
Z;D;' =Dz,
where Z has the form of an upshift matrix of appropriate size:

01
0 1

Zi = Jm;(Ni) = Nl = - (18)

mi; Xm;



Hence D;l must have a Hankel structure. For D, we carry out a similar argument
using V, F instead of P and D instead of D', and apply the factorization (14)
to get a Hankel structure for the diagonal blocks D;.

We now show how we may modify the Vandermonde matrix V. so that its
first column consists of all ones. Suppose that no component of v is zero. Define
a new diagonal matrix D, by

D, = diag(vi, va, ..., vp),

and a new generalized Vandermonde matrix W, by
W, = D;V,.

Then

D'v=e2(1 1 ... 1",

and we can re-write (16) as
H, =W (D,DD,)W,,

where the product D,DD, is a block diagonal matrix with blocks conforming
to J. The matrix W, has the following structure:

W,=(e D,'JD,e D 'J’D,e --- D 'J"'D,e)
_ 7T, T2 Tr—1 (19)
—(e Je Je --- J" e),
with R
J=D;JD,.

We observe that the matrix J possesses a sort of generalized Jordan structure.

We conclude this section with three notes.

First, consider the special case that all the eigenvalues of C' are simple. In
this case, the Jordan matrix J = J is diagonal, F' is the identity, D = @ is
“scalar” diagonal, and

P=V!D.

The decomposition (16) simplifies to
H,=V'(D)V, =W!"(DD)W,, (20)

where the parts enclosed in parentheses are diagonal matrices. The last expres-
sion on the right applies if v has no zero component, which is guaranteed in this
case by the nonsingularity of V,.. In fact, the matrix W, of (19) for this case has
the usual Vandermonde structure. The above holds for any choice of P, but if
we fix P as given in (10), we see that P = W,

Second, the factorization (16) can be used to factor any nonsingular r x r
Hankel matrix H,. This matrix is filled by the entries hi, hs, ..., ho._1; hence
to fix the polynomial (4) and carry out the rest of the development above, we
must, choose some value for ho,.. With such a choice, the rest of the development
above goes through unchanged.



Third, we address the issue of factoring a singular n x n Hankel matrix H,,.
One way to do this is to embed this n X n matrix inside an infinite Hankel matrix
H, of a finite rank r by extending it with infinitely many zeros. We could use
a different choice for the extension to avoid a nilpotent C, and one open issue is
how to choose the extension to minimize the resulting rank. Factor the infinite
Hankel matrix as

H, =VTDV,

where D is r x r and V is r X oo, and extract the first n rows and columns of
this decomposition to get
H,=VIDV,,

where V), is the r x n matrix consisting of the first n columns of V. Note that it
could be that » < n or r > n. The former case occurs, for example, if the rank
of H, is r < n and the leading r x r part of H,, happens to be nonsingular.

3 Algorithms (Generic case)

We briefly discuss choices of algorithms that can be used to compute the Van-

dermonde decomposition. Many of the individual pieces to the algorithms are

off-the-shelf methods; some are quite experimental and some have received very

little attention in the literature. The methods we present are based on the use

of the Lanczos algorithm or its derivatives. Most details can be found in [11].
We begin with an outline of the basic steps:

[4

1. Compute the “modes” generating the Hankel matrix, viz., the roots of the
polynomial p(A) of (4).
2. Compute the “diagonal” matrix D:

D=v TV

where V is the Vandermonde matrix generated by the eigenvalues in step 1.
The diagonal structure of D follows from the theory developed in the previ-
ous section.

3. Optionally scale the columns of V' to unit norm, scaling the entries in D
appropriately.

For each of these steps there are choices for the algorithm to use. For step 1, we
could solve for the coefficients in the recurrence (3) by simply plugging the values
for h; (i = 1,...,2n — 1), yielding a special set of n equations in n unknowns
originally proposed by Prony [10] and popularized by Yule [14] and Walker [12].
Then we must find all the roots of the polynomial p(}).

Vandevoorde [11] proposed an alternative for step 1. We use a variant of a
nonsymmetric Lanczos process to generate a tridiagonal matrix T' whose eigen-
values match those of C. Then we compute the eigenvalues of T'. It turns out that
both these steps (generating 7' and computing its eigenvalues) can be performed
very efficiently. Space does not permit a full description of the process, but we
can give a hint on the basic ideas used. We have already seen that the n x n



Hankel matrix H,, can be thought of as a Krylov sequence generated by C' and
h; (cf. (7)). If we let Hy, be the 2n x 2n Hankel matrix obtained by extending
the “signal” {h;} with all zeros, then H,,, can similarly be thought of as the
Krylov sequence generated by the 2n x 2n upshift matrix Z of the form (18).

The nonsymmetric Lanczos process in [11] is equivalent to a procedure that
bi-orthogonalizes the Krylov sequence we just mentioned against another se-
quence (called the “left” Krylov sequence). If the coefficients computed by the
enforcement of the bi-orthogonalization conditions involve only the first n en-
tries of each vector, the Lanczos coefficients generated by C' and by Hs, will
be identical. This can happen, for example, by making the left Krylov sequence
upper triangular, so that the right Krylov sequence will be bi-orthogonalized
to lower triangular. This can be arranged by starting the left Krylov sequence
with the coordinate unit vector e;. As a result, each new vector is generated
by shifting up the previous vector and then orthogonalizing it against the two
previous vectors. This takes linear time and linear space, and there are at most,
O(n) steps so that the total time is O(n?). The resulting algorithm is described
in detail in [2]. There is also a symmetric variant originally proposed in [9] that
can generate a symmetrized tridiagonal matrix directly from this non-symmetric
recursion. This symmetric variant has similar costs.

Once the tridiagonal matrix has been generated, the task is to find its eigen-
values. There are two variants of the QR-type algorithm that can be applied
here. One is the complex symmetric QR algorithm proposed in [4], for which
the matrix 7" must be symmetrized. Even when T is real, if the signs of the
corresponding superdiagonal and subdiagonal entries of T" are opposite, then the
symmetrized matrix will be complex. The resulting QR algorithm is a direct
analog of the ordinary Hermitian QR method, but it uses complex orthogonal
rotations and complex symmetric matrices instead of unitary rotations and Her-
mitian matrices, respectively. Another option is to use the LR algorithm [13],
which is based on the LU factorization without pivoting to preserve the tridi-
agonal structure. The LR algorithm can break down, but if a random shift is
applied when zero pivot occurs during the LU factorization, the process can still
exhibit very rapid convergence. If T is real, an implicit double-shift LR algorithm
can in principle be carried out in real arithmetic [13]. Both algorithms require
linear time for each iteration in a manner very similar to the Hermitian analog,
and the number of iterations is generally O(n) in a manner very similar to the
QR algorithm usually employed. The relative merits between these alternative
algorithms have not been studied in detail.

The other major task is finding the diagonal matrix D in step 2. Because of
the structure of V', the diagonal entries of D appear in the first column of the
product DV. But DV =V ~TH. Hence this first column is the solution d to the
Vandermonde system:

VTd = hy,

where h; is the first column of H. This can be solved with a fast O(n) Van-
dermonde solver [1], where to maintain stability Higham [7, p. 438] recommends
arranging the eigenvalues with a so-called Leja ordering.



4 Analysis of a Signal

Consider a signal {h} which suffers from the presence of noise. How can we
recover the principal modes that generate the signal? A popular method by
Kung [8] based on the singular value decomposition (SVD) is known to be an
effective method for this purpose, but it suffers from the need to carry out both
an SVD and a matrix eigensolution, each costing O(n?) operations. A second
popular approach is to form the Hankel matrix generated by the signal, and then
proceed to find a nearby Hankel matrix of a lower rank [3]. The Vandermonde
decomposition of this nearby low-rank Hankel matrix yields the parameters in
(2). The method of [3] iterates until it converges to a nearby Hankel matrix.
Unfortunately, this method requires the repeated use of the SVD and hence
costs up to O(n?) operations per iteration.

We indicated in Section 3 how the Vandermonde decomposition can be com-
puted quickly. An obvious way to obtain a nearby Hankel matrix of a lower rank
is to set to zero all the diagonal entries in D that are smaller than a certain
tolerance. Although this crude method does not always yield the best approxi-
mation, a judicious combination of this approach with other criteria can yield a
good result. We conclude this paper with an illustration of one such approach
in the next paragraph.

Start with a signal generated by five modes, shown by circles on the complex
plane in Figure 1, to which has been added white noise with a signal-to-noise
ratio of 3.55dB. Form the 128 x 128 Hankel matrix H and compute its Vander-
monde decomposition H = VT DV. Figure 2 shows the absolute values of the
diagonal entries of D in descending order. It turns out that selecting the modes
corresponding to the five largest values of D does not yield satisfactory results,
but we can almost recover the correct modes by the following simple procedure.
Choose the modes corresponding to the largest entries in D (also called weights),
specifically those that are within 10% of the largest entry (in absolute value); in
this case fourteen modes remained. Then choose a subset of these fourteen using
a second criterion based on the Discrete Fourier Transform (DFT) of the signal.
The DFT of the original signal is shown by the dotted line in Figure 3. As most
of the modes lie relatively close to the unit circle, their argument (angle on the
complex plane) maps to the horizontal axis of Figure 3. In fact, we have marked
the angles corresponding to the five original “unknown” modes by means of cir-
cles along the xz-axis. This leads to our second criterion, viz., select those modes
for which the DFT is larger than a certain threshold (in this case 30%) of the
largest value in the DFT (in absolute value). This selection criterion is applied
only to those modes that survived the first selection process. In this example, out
of the fourteen modes only seven survived the second selection process. These
final seven modes are marked by #’s in Figure 1, and the resulting DFT using
these seven modes is shown by the solid line in Figure 3. We remark that one can
still distinguish the two close peaks in this DFT corresponding to the two very
close original modes. We should emphasize that the choice of criteria requires
further study. Indeed, a more sophisticated selection criterion is presented in
[11].



Computed Vandermonde Modes (eigenvalues)
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Fig. 1. Original modes (o) and those computed from the tridiagonal matrix discussed
in in Section 3 (* & x).
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diagonal weights in Vandermonde decomposition
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FFTs: .. = original; — = Vandermonde: 7 modes selected
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Fig. 3. Discrete Fourier Transform (DFT) of the original signal (dotted) and the re-
constructed reduced-order signal (solid). Small circles mark the angles corresponding
the original modes.



