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Abstract. Multi-robot systems are frequently used for tasks involv-
ing searching, so it is important to be able to estimate the searching
time. Yet, simulation approaches and real-world experiments to deter-
mine searching time can be cumbersome and even impractical. In this
work, we propose a correlated-random-walk based model to efficiently
approximate hitting time distributions of multi-robot systems in large
arenas. We verified the computational results by using ARGoS, a physics-
based simulator. We found that the Gamma distribution can provide a
good fit to the hitting time distributions of random walkers.
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1 Introduction

Operators can release multiple robots to search for a target within a predefined
area. We denote this process as “searching” because robots don’t know the tar-
get location. Robot searching has many real-world applications (e.g. foraging,
rescuing, providing supplies, etc.) [14, 19]. In this paper, we define the searching
time as the time required by at least one of the robots to first reach the target.
For many tasks, especially the time-sensitive ones, an estimate of searching time
is often necessary. Furthermore, having an estimated searching time can help
in the design of multi-robot systems that are more efficient at searching. Ex-
perimental investigation involving real robots (see [10] for an example) is often
costly and can be even impractical; simulation (e.g. ARGoS [26]) can also be
time-consuming, especially when the searched region is large. In this work, we
aim to develop a computation model that can rapidly approximate the searching
time.

Hitting time (HT) or first-passage time is the average time to first visit a node
while doing a random walk (RW) from another node in a given network [21, 22].
Many results for HT exist. In particular, the average time to reach a given node
can be computed based on the fundamental matrix associated with the proba-
bility transition matrix of the network [13], by treating the target node as an
absorbing state. Boley et al. [5] showed how to obtain average HTs from any node
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to any node in a directed graph at once using the assymetric graph Laplacian,
and later showed one way to obtain this rapidly using sparse matrix methods
[4]. In the HT literature, there are also papers about HT higher moments [17,
9], upper bounds [6], and distributions [20]. In addition, there are studies on the
speed up of random walker search when there are multiple searchers [1, 11, 25]
and random walker collisions [2, 12].

To the best of our knowledge, none of the methods cited above has been
applied directly to multi-robot systems or swarm robots. Thus, we aim to lever-
age some of these results to develop a computation model that can rapidly and
accurately approximate the HT in the multi-robot searching process. Due to the
forward persistence of robot motion, Jeong et al. [16] used correlated random
walk (CRW, i.e. RW where the state transition depends on both the location
and orientation of the walker [24]) to approximate robot movements in their
network-based model. This is the approach used here.

Our work makes three main contributions to the field of multi-robot systems
and stochastic process. First, our work is a pioneer attempt to apply HT results
to analyze multi-robot searching processes. Second, we developed a computa-
tion model that can efficiently approximate the HT distributions for multi-robot
searching processes, and we verified the computation results with the ARGoS
simulator. Third, we found that the Gamma distribution can provide a good fit
to CRW HT distributions.

The rest of the paper is organized as the follows. Section 2 describes the
problem setting. Section 3 provides the Correlated Random Walk (CRW) com-
putation results. Section 4 compares the computation results with the ARGoS
robot simulation results. Section 5 provides a discussion and concludes the paper.

Fig. 1. Problem settings. Arena shape is a parallelogram with sides of equal length.
Target location is the center. Left: a multi-robot searching example. Middle: the cor-
responding representation in our computation model (discretization by equilateral tri-
angles). Right: six orientations of the robot.

2 Problem Settings

The problem settings are shown in Fig. 1 with details in the caption. We used
parallelogram for arena shape because it simplifies the construction of the prob-
ability transition matrix. We discretized the arena using equilateral triangles
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Fig. 2. CRW state transition details. Left: six possible situations a robot could en-
counter in an arena (from R1 to R6). Right: state transitions (green arrows) associated
with robot R1 from the left. Table 1 lists the transition probabilities.

Table 1. Transition probabilities for different situations encountered by robots.

instead of squares because the former approach leads to six possible orientations
for robots and thus increases flexibility, while keeping all link lengths the same.
When a robot is within a certain distance from the target (sensing range), it
can sense the target and pick it up. We model the robot motion as a correlated
random walk (CRW), implemented as an ordinary random walk with states en-
coding both robot position and orientation from the previous state. The nodes in
the network are the states (position, orientation). The edges are state transitions,
each weighted by the transition probability. At each position of the discretized
arena, a robot has six possible orientations (Fig 1 right).

Fig 2 (right side) provides an example of the state transitions in CRW asso-
ciated with the robot R1 on the left. Currently, R1 is in state (H, 0◦) (circled
in red). R1 can move forward to reach position I with orientation 0◦. Hence the
new state of R1 would be (I, 0◦). R1 can also make a small turn (60◦) to reach
D (if turning left) or M (if turning right). The new states would be (D, 60◦)
or (M, 300◦) respectively. The robot can also make a big turn (120◦, right or
left) or go backward. If near the wall, the robot might also reflect. Since the
robot tends to move forward and resists making large turns, the state transition
probabilities are set to heavily favor forward motion, as listed in Table 1. Note
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that each robot could encounter six situations: interior within the arena (R1),
move along an obtuse corner (R2), move along a sharp corner (R3), collide into
an obtuse corner (R4), move parallel to a wall (R5), or collide into a wall (R6).

Transition probabilities associated with these situations are shown in Table
1, which contains examples for each situation. In the column “Example,” “R1
(0◦) H → I” denotes the state transition of R1 from position H with orientation
0◦ to location I (Fig 2). The remaining examples follow the same convention.
Note that we used a transition probability setting known to reduce HT, but
other probability settings can also be used. After specifying the probabilities,
we constructed a probability transition matrix P that can be easily scaled for
arenas of any size. Note that we use bold symbols to denote vectors or matrices
in this paper. An N × N arena leads to 6(N + 1)2 states, and the associated
adjacency matrix will be 6(N + 1)2 × 6(N + 1)2.

Fig. 3. Robot sensing ranges (e.g. 1-hop, 2-hop and 3-hop).

Our modelling approach of robot sensing ranges is shown in Fig 3. When
robots sense the target, they will reach the target following the shortest path.
To model this behavior, we add an extra absorbing node, and we adjust the net-
work so that whenever the robot/random walker hits the sensing range boundary
(shaded region), it will be absorbed by the extra absorbing node with a proba-
bility of 1. The connectivity shown in Fig 3 corresponds to the case with 1-hop
sensing range. This method will always be valid if the robot starts outside the
sensing range.

3 Correlated Random Walk Computations

Computation of HT mean and variance. Using the transition matrix P
associated with this network, the HT mean HTµ and variance HTσ2 from states
outside the sensing range to the absorbing state can be determined. Following
[13], we partition P to get Q, the probability transition matrix corresponding
to the non-absorbing states, via:

P =

[
Q R
0 I

]
(1)
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Fig. 4. Computed HT mean & standard deviation for a single robot starting from
various initial positions. Blue numbers are µ(σ), on a 10×10 arena (left) and a 30×30
arena (right).

R is associated with the absorbing state(s) and I is the identity matrix. The
fundamental matrix N of P is [13]:

N = (I−Q)−1 (2)

HTµ can be determined by:
HTu = Nc (3)

where c is a vector of all 1s. After rearranging, we get:

(I−Q)HTµ = c (4)

HTµ can be efficiently solved for by iterative methods such as Restarted GMRES
[4, 23], even if I−Q is extremely large (e.g. 100, 000 × 100, 000). HTσ2 can be
calculated by [17]:

HTσ2 = (2N− I)HTµ −HT2
µ, (5)

where HT2
µ means elementwise squaring. After rearranging, we get:

(I−Q)HTσ2 = 2HTµ − (I−Q)HTµ − (I−Q)HT2
µ (6)

HTσ2 can be computed similarly as before, and subsequently the HT standard
deviation HTσ can be obtained.

Some computation results are shown in Fig 4. All computations were done
in Python using the sparse matrix format.

Single robot HT distribution. We used CRW simulations to determine HT
distributions. Specifically, we started a random walker on the constructed net-
work and let it move (i.e. state transition) with the probabilities specified in P.
We recorded HTs in 300 random trials to get a distribution.

The CRW simulation allows us to obtain the HT distribution. However, it is
still time-consuming. We observed that all the obtained CRW HT distributions
resemble the shape of a Gamma probability density function (PDF) F (x):

F (x) =
βu

Γ (α)
xα−1e−βx with α =

(mean(x))2

var(x)
, β =

var(x)

mean(x)
, (7)
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Fig. 5. Single robot HT distributions obtained by CRW simulation and Gamma distri-
bution. (a) to (g) correspond to the initial robot states of (A, 0◦), (A, 180◦), (B, 0◦),
(C, 0◦), (E, 0◦), (D, 0◦), and (E, 60◦) shown in Fig 4, respectively.

where x is the random variable (HT − HTmin in this case), and α, β are the
shape and rate parameters written in terms of the mean and variance of x.
The hitting time cannot be less than the shortest path length HTmin, hence we
shift the Gamma distribution by this amount. Thus, based on Eq. 7, we can get
single robot HT distributions using HTσ2 (or HTσ) and HTµ by leveraging the
Gamma distribution. Note that the Gamma PDF assigns positive probabilities
to HTs smaller than the minimum HT (HTmin) required for the robot to reach
the target. To address this issue, we subtract HTmin from HTµ to get HTµ∗ ,
and we fit the gamma PDF by HTµ∗ and HTσ. Last, we shift the entire Gamma
distribution to the right by HTmin.

In Fig 5, we show the single robot HT distributions obtained by CRW simu-
lation and Gamma distribution corresponding to 7 initial robot states in Fig 4.
All settings (e.g. arena size and robot locations) are shown in Fig 4. The Gamma
distribution parameters were determined from the mean and variance using Eq.
7 obtained using Eq. 4 and Eq. 6. Note that the HT distributions from CRW
simulation are discrete, yet the Gamma distribution is continuous. To enable the
comparison of distributions, the discrete distribution is converted to its contin-
uous counterpart by summing discrete probabilities in small intervals, and then
dividing the sums by the interval size. The same change is applied in the sequel
to discrete distributions from CRW or ARGoS simulations. Clearly, a Gamma
distribution can closely approximate HT distributions for a single robot/random
walker in the computation model.

Multi-robot HT distribution. Next, we determined the multi-robot HT dis-
tributions using the computation model. First, we obtained the cumulative
probability density function (CDF) C (HT1 robot) corresponding to the PDF
F (HT1 robot) obtained with the Gamma distribution. Then, based on each value
of C (HT1 robot) (we denote a single value as Ċ (HT1 robot)), we can determine
the cumulative probability for at least one robot out of n robots to reach the
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Fig. 6. Multi-robot HT CDF distributions determined by CRW simulation and com-
putation. Arena 30× 30, sensing range 3-hop, starting location of the robots circled in
red in Fig 4 with initial orientation 0◦.

Fig. 7. Examples of ARGoS settings. (a) Small arena, sensing range 1, robot position
point A (Fig 4) (b) Big arena, sensing range 3, robot position point C (Fig 4) (c)
Sensing range 3. (d) 30 robots in the upper left corner.

target within certain HT Ċ (HTn robots) by:

Ċ (HTn robots) = 1−
(

1− Ċ (HT1 robot)
)n

(8)

Note that this equation relies on the assumption that the robots/random walkers
are independent. This holds in our computation model. Strictly speaking, Eq. 8
also requires that all robots/random walkers have the same initial state. However,
Eq. 8 is still a good approximation when different initial robot states are similar
and lead to similar HT distributions. Note that Eq. 8 can be easily extended
to the case when different robots start with different states. At this point, the
computation model is able to approximate HT distributions for multiple robots
using the computed HTµ and HT σ for a single robot. We verified this approach
using the CRW simulation of multiple robots (Fig 6). The agreement between
the results corroborates our computation approach.

4 Verification by ARGoS

Next, we use the ARGoS simulator to verify the computation model. Example
screenshots of ARGoS simulation are in Fig 7. In ARGoS, we set the robot motion
parameters so that it takes approximately 10 and 30 time steps respectively for
the robot to travel the distances corresponding to the wall lengths of small
and big arenas. The robot has a probability of 0.5 to move forward or making
60◦ turns (0.25 for turning upward or downward). Larger turns are impractical
and not allowed. Note that we assigned very small probabilities (e.g. 0.01) for
the random walker to make larger turns in the computation model mainly to
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ensure the network connectivity. To mimic the robot sensing range, we place
the nest in the center of the arena. After the simulation starts, the time step
when at least one robot first enters the nest is recorded as the HT. To mimic
larger sensing ranges, we simply increase the nest size. The starting locations
and orientations of the robots are set to match the computation settings as well.
Note that multiple robots always start within a confined region located on the
upper-left side of the arena with orientation 0◦. These initial states are similar,
and we verified that they lead to similar single-robot HT distributions. Note that
the selection of the confined region and initial state is arbitrary as long as it is
kept similar in computation and simulation.

Comparisons between ARGoS simulation and computation results for HT
distributions of a single robot with different initial states are shown in Fig 8.
HT distributions with different sensing ranges from two methods are in Fig 9.
HT CDFs corresponding to different numbers of robots are in Fig 10.

Fig. 8. Comparisons between CRW computation and ARGoS simulation results for
single-robot HT distributions. (a) 10 × 10 arena (b) 30 × 30 arena. Robot starting
states in the legend. For example, A(0) means the initial state of position A (Fig 4)
and 0◦ orientation. Value pairs “mean (standard deviation)” from the computation
model and ARGoS are next to the curves with the same colors.

Improved computation model. As shown in Figs 8, 9 and 10, the compu-
tation model and ARGoS simulation yield similar HT distributions under all
circumstances we investigated. The computation model correctly predicts the
ranking of HTs of a single robot with different initial states (Fig 8) and the
speed up of the searching process as the robot sensing range (Fig. 9) and the
number of robots increase (Fig. 10). Yet, we noticed that the value pairs of HTµ
and HTσ obtained from ARGoS are on average 50% larger than the computed
ones (Fig. 8). This led us to propose an improved computation model.
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Fig. 9. ARGoS vs CRW: HT distribution for a single robot on a 10 × 10 arena with
various sensing ranges, starting from point A.

Fig. 10. ARGoS vs CRW: cumulative HT distributions for 30×30 arena, sensing range
3, with various number of robots.

The aforementioned discrepancy is mostly due to the extra step associated
with turning 60◦ in ARGoS simulation. In a random walk model it takes one
step to advance in the any direction, but in ARGoS it takes one step to turn
60◦ and one step to advance. If the 60◦ turn has a probability of 0.5, then on
average the number of steps in ARGoS will be higher by 50%. Hence we simply
scale up the computed HTµ and HTσ by 50%. We applied this change to the
computation model and redrew Fig 10 to obtained Fig 11.

Fig. 11. Comparisons between ARGoS and the improved computation model.
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As shown in Fig 11, the HT distributions from two approaches agree better,
especially when the robot starts far away from the target (e.g. point C and D in
Fig 4). Since our computation model works well on arenas of two different sizes,
we tested its applicability to larger arenas. In the application of our improved
computation model we aim to answer the following question: In a 150 × 150
arena, how many robots (sensing range 1, initial position near arena upper left
corner, initial orientation 0◦) are required to have a probability of 0.8 that at
least one robot will reach the target in the arena center within 500 time steps.

This problem is related to many real-world tasks (e.g. foraging, rescuing, ex-
plosive removal). To solve it, first, we constructed the network associated with
the robot movement in a 150× 150 arena. This resulted in a 136, 806× 136, 806
sparse matrix. We solved Eqs. 4 and 6 with restarted GMRES (20 restart itera-
tions)[4, 23] within 3 minutes using the CPU from Google Colab. Then, we can
get HTµ and HT σ of a single robot with almost every initial state. We are only
interested in one initial state (upper left corner, 0◦), and its associated HTµ and
HTσ are 13,356 and 12,021 respectively. We scaled up these values by 50% and
determined that the robot takes a minimum of 140 steps the target. Based on
these values, we fitted the Gamma CDF for a single robot, and then applied Eq.
8 to determine the multi-robot HT CDFs. We varied the number of robots (Fig
12), and found that 200 robots are needed to have a probability of 0.8 that at
least one robot will reach the target within 500 steps. ARGoS may take hours
or days to answer the same question, and testing with real robots will be even
more challenging.

Fig. 12. Computed HT CDFs of multi-robot systems in a 150× 150 arena.

5 Discussion and Conclusions

Searching time is often a quantity of interest, especially when tasks are time-
sensitive. In addition, being able to rapidly determine Hitting Times (HTs) can
facilitate the design of multi-robot systems. However, experiments with real
robots are often impractical, and detailed simulation is time-consuming.
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In this paper, we propose a Correlated Random Walk (CRW) computation
model that can efficiently approximate the HT distributions of multi-robot sys-
tems in large arenas. We first tessellate a large arena with equilateral triangles to
form a large network associated with robot movements. Based on the network,
the single robot HT mean and standard deviation can be efficiently computed.
We found and verified that the Gamma distribution can fit RW HT distribu-
tions. Furthermore, by leveraging a simple probability formula, we enabled the
computation of multi-robot HT distributions based on the single robot HT distri-
butions. Thus, our computation model can efficiently approximate multi-robot
HT distributions. We verified the computation results by ARGoS simulation,
which resembles real-world robot searching. We further improved the computa-
tion model by scaling up the computed mean and standard deviation of HT.

We found that the Gamma distribution can accurately approximate RW HT
distributions when given only mean and standard deviation. This result itself
is useful for stochastic processes, and can be used in fields involving stochastic
processes (e.g. transportation, web, and animal modelling) [3, 8, 7, 15, 22].

Our model can approximate the ARGoS simulation results. Thus, we could
approximate the optimal searching HT and associated parameter settings (e.g.
transition probabilities) by performing a grid-search over the entire parameter
space to determine the minimal HT. There are some sources of inaccuracy in
our model. For example, our model ignores interactions between robots (e.g.,
avoidance, collisions), assuming robots are pair-wise independent. The inter-
robot communication and issues with search area overlapping, collision, and
under-utilization of robots will be investigated in the future. In the future, we
will also consider the situation when all robots are required to reach the target.
Other future directions include adding multiple targets and obstacles to the
model, considering robot malfunctions [18], and modelling flying robots in a 3-D
arena.

In conclusion, we proposed an efficient computation model that can rapidly
approximate HT distributions of multi-robot systems. The model can be readily
applied to solve real-world problems. Meanwhile, this study opens a wide range
of research directions for future work.
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