
Estimating Robot Swarm Properties by Direct
Calculations instead of Simulation

Jacob Cadavez1 and Daniel Boley1

University of Minnesota, Minneapolis MN 55455, USA boley@umn.edu

Abstract. We propose a novel way to estimate some properties of the motion of
a swarm of robots which does not require carrying out extensive simulations. We
leverage the large body of literature on graphs to compute estimates for properties
like hitting time, cover time, centrality measures of different regions of an arena,
etc. We do not aim to produce accurate physical models of robot behavior, but
rather aim to produce estimates of major properties of the robot behavior in the
presence of a swarm of robot obstacles using quick closed-form formulas. This
would allow the swarm designer to explore a variety of scenarios quickly before
advancing to the stage of expensive simulations for more accurate measurements.
In this paper, we model the correlated random walk (CRW) of a robot on a dis-
crete arena in discrete time, and then extend this simple model to include multiple
robot obstacles. We show how several critical properties for the discrete model
can be estimated rapidly using linear algebra tools from spectral graph theory.

Keywords: Robot swarms · graph theory · Markov chains · graph Laplacian

1 Introduction

In swarm robotics, a large group of simple robots cooperates implicitly to collectively
perform tasks. The robots in general have limited individual capabilities in terms of
sensing, processing power, and inter-agent communications, but the number of robots
makes up for the individual limitations.

Robot swarms can be used for many real-world tasks, such as cleaning an area [27],
demining, rescuing people, or mowing a lawn, which require complete coverage of the
space and where ideally each location should be visited only once to avoid unneces-
sary repetitions, or tasks that require maintaining surveillance over an area to detect
intruders, fires, traffic jams or enemies [14,9], or to map an unknown area [13].

A task of special interest in the swarm community, due to its real-world applications,
is “foraging”, where robots search for target objects and bring them back to a centralized
location called the nest. Multiple robots could be released to search for targets within
a predefined area. We denote this process as “searching” because robots don’t know
where the target locations are. In this paper, we model foraging by a single robot in the
presence of multiple roving robot obstacles. The foraging behavior by a swarm can in
principle be extrapolated from the estimated behavior of a single robot in the presence
of other roving robots.

In these situations, it is often necessary for engineers to build robot swarms that
will accomplish the given task within a set time constraint. An important metric that

2 J. Cadavez et al.

is used to decide the configuration for a swarm mission (such as number of robots,
movement behavior, etc.) is the expected search time or ’hitting time’ of a simulation.
This measurement can be very resource and time intensive to obtain. The most accurate
method to collect data is to run experiments involving real robots, taking a lot of time
and resources to perform. Instead, researchers typically run a large number of computer
simulations and perform data analysis on the results to obtain empirical models. How-
ever, these trials can become very taxing when scaling to larger arena sizes and may not
accurately represent how these swarms may behave in practice, even with ARGoS, the
most accepted software to run such simulations [26].

We propose an alternative approach by using mathematical models to approximate
robot swarms’ average hitting times over legacy methods. We specifically do not aim
for physical accuracy, but rather aim to quickly produce approximations using closed-
form formulas that are close enough to give a good qualitative measure of the robot
behaviors under a variety of scenarios of interest to the designer.

The mathematical computations we propose in this paper are based off a variant of
the random walk (RW) model - a movement policy that dictates how each robot moves
from step to step. Although very simplistic, the RW model is frequently used for ex-
ploration due to its scalability and modest processing requirements [24,19,6]. The RW
model is a discrete-time stochastic process where successive random steps are used.
When the number of possible states is finite or countable and the step taken at each
discrete time interval depends only on the current state (or at most a fixed sized his-
tory), the process can be described by a discrete-time Markov chain [15]. An important
property of random walks is the “first passage time,” or Hitting time (HT), which is the
average time to first visit a node while doing a random walk from another node in a
given network [17,20].

An extension of the RW model is the Correlated Random Walk (CRW) model where
the probability of each robot’s next step depends on its current orientation and location,
which is the aforementioned variant explored in this paper [22,11,10,25,24]. By mod-
eling CRW model’s movement behavior as a graph, one can observe that each state
transition is directed. For example, transitioning from a location A to a neighboring lo-
cation B and then back to A, one ends up at A with different orientation, represented by
a different state in the Markov chain. Thus the links in the Markov chain are only one-
way. Although not the most optimized search method, CRWs are commonly used to
model insect behaviors, which is the motivation behind a large fraction of the research
in swarms. As real robots are often non-holonomic or require extra steps to rotate in
place, CRWs are a better model than regular RW as they take direction into considera-
tion.

As there is previously developed work that showcases how computational models
can estimate probability distributions of a solo robot, this paper will focus on multi-
robot systems of obstacles. In this work, we develop computation models that can
rapidly compute estimates of probability distributions of a specific robot among a swarm
of other robots assuming each robot follows the same movement policy and acts inde-
pendently from other robots.

Robot Swarm Properties 3

2 Related Work

An enormous body of work exists on the analysis of random walks on graphs such as es-
timating hitting times, centrality measures, cover times, and other aggregate properties.
Space does not permit an extensive summary of existing literature on Markov chains,
graphs, random walks, etc. Many variations on robot swarm models have appeared. In
the present paper we study robots that move independently within an arena to accom-
plish a task. This is in contrast to analysis where each robot coordinates its behavior
based on its neighboring robots (e.g., [27]).

There is a long history of study of Markov chain properties that can be obtained
directly from the probability transition matrix and matrices derived therefrom, too much
to fit in this paper. Only been recently a study of the computational issues for directed
graphs or non-reversible Markov chains has been addressed (e.g., [30,5]).

Many swarm algorithms use random or correlated random walk, because of their
simplicity. Some instead synchronize the robot motions through the environment, like
[27], where robots clean a non-convex region using the dirt on the floor as the main
means of inter-robot communication and follow a strict protocol to guarantee full cov-
erage.

A recent survey of foraging algorithms [18] analyzes the state of the art in foraging,
with special attention to the foundations of swarm research as well as to applications of
robot swarms. A specific version of foraging called “Central Space Foraging,” is char-
acterized by having the collection area (goal node) in the center of the space, which is
circular. The problem has been studied systematically [1] to analyze the performance
of a few different algorithms. Specifically, the robots move randomly, or follow a de-
terministic path such as a multi-robot Archimedes spiral, or move radially from the
center. The comparisons in the paper were done experimentally, but the paper provided
theoretical upper bounds for the time needed to complete the task.

A theoretical study of emergent behaviors in systems of many simple agents with
limited memory and limited communication has yielded some theoretical guarantees for
a model problem. A typical result [4,23] involves a uniform triangular/hexagonal grid
with periodic boundary conditions. Theoretical guarantees are given that congregation
or dispersion will naturally arise depending on the setting of a presence of “food.”

3 Proposed Approach for Direct Computations

In the swarm community, the environment used for searching tasks is typically 2D,
most often with continuous space. In our approach, instead, we use a discrete space and
a correlated random walk (CRW) to model the motion of the robots in discrete time.
We generalize the grid representation with a graph, and use methods developed for
graphs to estimate the motion behavior of the robots in the swarm. Our objective is not
to design controllers for the robots, but to get quick estimates of swarm properties by
direct calculation. This allows one to explore quickly a variety of scenarios, reserving
the expensive simulations for scenarios of specific interest.

We show next how to obtain the approximate distribution of the basic property, the
hitting time (HT), by a direct calculation, thereby avoiding the expense of running simu-

4 J. Cadavez et al.

lations. Analogous properties can be obtained using the non-symmetric graph Laplacian
and other matrices derived therefrom [7,16].

In later sections, an outline of how the simulation works and how the Markov-chain
approach can yield values for important moments is given.

3.1 Computation of HT Mean and Variance

Let P denote the probability transition matrix for the Markov chain, such that pij (the
entry in row i column j) is the probability that the robot in state i will move to state j
at the next time step. We define two vectors: the mean hµ and variance hσ2 , whose i-th
entry is the mean and variance (respectively) of the Hitting Time from the i-th state to
the nest: the number of time steps needed to reach the nest from state i.

Following [8,28], we partition P to get Q, the probability transition matrix corre-
sponding to the non-absorbing states, via:

P =

[
Q r
0 1

]
. (1)

Here r is a single vector whose i-th entry is the probability of transitioning from state i
to the absorbing state in the single time step. These formulas can be easily generalized to
the case of multiple absorbing states where r is a matrix. The matrix P is row stochastic
since the matrix is non-negative and all the row sums equal 1. So Pe = e, where e is a
vector of all ones of appropriate dimension. With some algebra, This implies [28] that
r = (I−Q)e. We define the fundamental matrix N of P as [8]:

N
def
= (I−Q)−1. (2)

Then using power series expansions in Q for N, N2 and 2N3 − N2 we obtain the
following expressions for the HT mean and variance [28]:

hµ = N2r = Ne
hσ2 = 2Nhµ − hµ − h2

µ,
(3)

This gives a closed-form expression for the mean and variance of the hitting time. With
these two parameters in hand, one can fit a 2-parameter distribution to the hitting time
and use that to estimate quantities such as the probability that the nest will be reached
within a given time limit. This is done later in Section 3.3. However we first discuss the
process to compute the quantities in Eqs. (3).

3.2 Fast Solution of Linear Systems

Multiplying a vector v by the matrix N is equivalent to solving the system of lin-
ear equations of the form (I−Q)u = v for the vector u. In the next subsection we
show how the system of equations involving I−Q can be solved efficiently, taking
full advantage of the high degree of sparsity in the matrix I−Q. This system can be
efficiently solved for by iterative methods such as Restarted GMRES [12,21], even if

Robot Swarm Properties 5

I−Q is extremely large (e.g., 100, 000× 100, 000 or larger), since it is very sparse (at
most 6 entries in every row in our current setup).

Note that Q can be embedded within a larger irreducible probability transition ma-
trix for a random walk with no transient states:

P̃
def
=

[
Q r
sT t

]
, (4)

such that P̃ is row stochastic and s is not entirely zero. This modified matrix satisfies
the preconditions to guarantee convergence of an iterative method like GMRES [2].

To illustrate the computation costs, we show in Table 1 some representative times
on a linux office desktop using the scipy.sparse matrix package in python. For example,
a 150× 150 arena generates a probability transition matrix P of dimension 136, 807×
136, 807 but has only 807,864 non-zero entries (at most 6 non-zero entries per row),
or about .004% = 4 × 10−5 of all the entries. Solving a system of equations with
this matrix using restarted GMRES with an off-the-shelf preconditioner takes under
6 seconds. The time to setup the system can vary, partially because that part of the
computation was not heavily optimized.

Table 1. Computation costs for different sized arenas.

arena matrix P number setup GMRES
size dimension non-zeros time (sec) time (sec)

30× 30 5767 31223 1.5 0.05
150× 150 136807 807863 38.4 5.4
300× 300 543607 3236663 44.9 35.6

3.3 Distribution from Moments

Starting with the estimates for the first two moments (mean and variance) one can fit an
appropriate distribution for the hitting time. This can be used to extrapolate the motion
of a set of robots under different circumstances. Since the hitting time is non-negative
and has no intrinsic upper limit, we fit a Gamma Distribution whose cumulative distri-
bution function (CDF) [the probability the target will be reached in time less than or
equal to T] is:

CDF(T)
def
=

∫ T

0

βα

Γ (α)
τα−1e−βτdτ (5)

with

α =
(mean(T))2

var(T)
, β =

mean(T)

var(T)
, (6)

where T is the random variable (h− hmin in this case), and α, β are the shape and rate
parameters written in terms of the mean and variance of T . Here Γ (α) is the Gamma
function. The hitting time cannot be less than the shortest path length hmin, hence we
shift the Gamma distribution by this amount.

6 J. Cadavez et al.

4 Verification of Properties via Simulations

Fig. 1. A 31x31 arena for a single robot starting at the origin (lower left). The red nodes are in the
robot sensing range and will absorb the robot.

We illustrate a 31×31 arena in Fig. 1, though we experiment with arenas of various
sizes. The arena is discretized into equilateral triangles as it allows a robot to traverse
to six neighbors with equal length distances opposed to using squares only having four
connectors. Each state of the correlated random walk represents a combination of the
location in the arena and the orientation of the robot, where the orientation is one of the
six possible incoming directions.

4.1 Average Times to Reach Nests

Fig. 2. Sample CDF distribution for a single-robot swarm simulation over 3000 trials. The robot
started at the origin with no orientation, with no laziness, in an 11x11 arena. Underneath the
plotted points, in pink, is a fitted gamma distribution off of the data.

The CRW follows the model methodology laid out by previous papers on the same
topic [29,3]. There are six different states a robot can achieve when traversing an arena:
I (has all six connected neighbors), CW (collision against an arena wall), PW (parallel to

Robot Swarm Properties 7

the wall), ASC (against sharp corner), AOC (against obtuse corner). Our team believes
that going forward is the best methodology of traversing an unknown grid, so therefore
we configured each robot to have a higher likelihood of moving forward than turning.
At each timestep, the robot will randomly pick a state from the transition matrix to
dictate its next move.

Additionally, absorbing nodes have been set around the target node, meaning that
when a robot moves into these nodes, the probability of moving into the target node
is 1. Our team developed a simulation that follows the above rules and will provided
in a GitHub if this paper is approved. By developing our own simulator, the transition
matrices done in the computation are easier and reduces the potential human-error when
analyzing. Data was collected off of the simulator and was compared to the Markov-
chain computation approach; this methodology has been used in previous papers and
will be the baseline of analysis for other configurations in this paper.

5 Multiple Robots and Obstacles

5.1 Problem Definition
In real-life situations, the area that a robot swarm traverses can be filled with objects
and terrain that may impede movement. These are obstacles that can be identified by
two categories: static and dynamic obstacles.

Static obstacles are entities that do not move throughout a simulation; instead, they
block off different paths and states, making robots have to find alternative routes in
order to reach their goal. If these static obstacle locations are fixed ahead of time, the
transition matrix is set to have a 0% probability of moving to a state occupied by an
obstacle.

Dynamic obstacles are defined as entities that move alongside the swarm, having
a chance to interfere with a given robot’s path, impeding its movement. As each robot
in a given swarm moves independently of each other in a CRW policy, all of the other
robots can be considered dynamic obstacles.

Given that robots and obstacles cannot inhabit the same position in the arena, a
protocol is established for what should happen in these situations, and in this project two
were explored: a wait-next and find-next protocol. In a wait-next protocol, if a robot tries
to move to a position occupied by a dynamic obstacle, it will stay in its current position.
In a find-next protocol, the robot will randomly select another state to transition to
(or stay put if unable to find a feasible move after a given number of tries). When
dynamic obstacles are introduced, the Markov chain model approach used above cannot
be applied directly in this situation; the requirement for a fixed predefined transition
matrix is not met. One workaround for this issue is find a model with a property that
mimics the behavior of dynamic obstacles; we have found a "laziness" property to be a
good candidate.

5.2 Adapting Model with Laziness Property
We have defined laziness to be a property in which a robot has a set probability of not
changing state, which follows the behavior of robots with a wait-next collision pro-
tocol. Mathematically, the transition matrix is modified to incorporate the possibility

8 J. Cadavez et al.

Table 2. Combined Analysis of KS Test Results and Hitting Times for Different Robot Counts
in an 11x11 Arena. Each robot follows a wait-next protocol. The tracked robot is placed at the
origin.

#
Robots

Population
Size

Sample
Size

KS
Statistic

P
Value

Avg.
HT

HT
Std Dev.

Avg.
Wait %

5 3000 100 0.088 0.395 39.102 29.157 4.48%
6 3000 100 0.097 0.289 38.024 26.689 5.65%
7 3000 100 0.095 0.311 39.280 28.851 6.72%
8 3000 100 0.105 0.208 39.273 28.969 7.90%
9 3000 100 0.083 0.479 39.531 28.948 9.04%
10 3000 100 0.095 0.307 41.830 30.830 10.11%

Table 3. Hitting Times Analysis for a Solo Robot with Varying Laziness in an 11x11 Arena

Laziness Avg HT
Probability HT Std Dev

0.077 39.123 29.311
0.078 39.162 29.343
0.079 39.202 29.376
0.080 39.241 29.408

where a robot remains in its current state with probability pl and transitions normally
with probability 1−pl. This property allows an isolated robot in the arena to delay state
transitions, mirroring the effects of dynamic obstacles in multi-robot environments. Ad-
ditionally, another important quality is that the transition matrix is static, meaning that
methods to compute moments for mean and variance can be performed.

If a single robot model is able to mimic the behavior of a multi-robot swarm, then
it is possible to use the above approach to rapidly approximate hitting times for a robot
in terrains with dynamic obstacles. Here we chose to collect the hitting times of multi-
robot simulations for 3,000 samples for each configuration and to calculate the moments
on a single-robot swarm. Given that there is a proven way to calculate the mean and vari-
ance without having to run simulations, we found it more important to avoid margins
of error when performing these comparisons. Tables ??, 3 showcase the moments for
each configuration as well as average wait % for multi-robot swarms, used to map to
the appropriate laziness probability.

To compare the similarity in distributions between the multi-robot configuration and
a fitted gamma distribution on the population, we performed a Kolmogorov-Smirnov
(KS) test. The KS-test provides insight on the goodness-of-fit of a distribution compared
to another. The yielded KS-statistic provides insights on the magnitude of differences
between a given distribution and another distribution or a set of samples; the larger the
KS-statistic, the greater the difference is. Utilizing the KS-statistic, we ran a statistical
analysis procedure to verify whether a set of samples from the data collected on a given
configuration will match the fitted gamma distribution provided from Python’s MLE
algorithms. The null hypothesis is that the gamma is a good fit for the samples taken
from the population and do not significantly differ. This procedure was then ran on
each robot configuration with a sample size taken of 300 and results are documented in
Table 2.

Robot Swarm Properties 9

The results in Table 2 show p-values greater than 0.05, so the null hypothesis cannot
be rejected. One concludes that the fitted gamma distribution does not significantly
differ from the samples, and is indicative of a decent fit.

After identifying that the fitted gamma distribution is appropriate for a multi-robot
swarm, one can now conduct levels of fit between this distribution to the single-lazy
robot simulation. In Table 3, this is the data collected for the single-robot simulation
with laziness that matches the wait percentage for the multi-robots above.

5.3 Scaling to Larger Arenas

The trials and analysis were performed on smaller arenas to validate whether or not the
proposed approach would work. After verifying a potential correlation, our next task
was to scale this project to analyze whether it would hold up with larger arena sizes.

The same methodology above was conducted on the larger arenas, and Tables 4 6
showcase the results and data collected. For the fitted gamma distribution on each distri-
bution, the KS-test yielded low KS-statistic. This indicates that the gamma distribution
provided an appropriate fit on the number on the samples taken with no significant
difference. Although there is a small range of variance when comparing the moments
between the multi-robot simulations and the lazy single robot, this difference can be
attributed to low sampling size and the stochastic nature of the system, leading to fluc-
tuations due to randomness.

Table 4. Hitting time metrics for the robot placed at (0, 0) with an orientation of 0-degrees
in a 31x31 Arena. This was tracked over multiple setups with different robot counts. Robots
are randomly distributed except for the tracked robot, which is placed at the origin. Each robot
follows a wait-next collision protocol.

#
Robots

Population
Size

Sample
Size

KS
Statistic

P
Value

Avg.
HT

HT
Std Dev.

Avg.
Wait %

15 3230 300 0.077 0.053 393.83 331.39 1.85%
16 3000 300 0.060 0.227 411.43 353.95 1.98%
17 3000 300 0.061 0.212 419.15 367.35 2.09%
18 3000 300 0.051 0.411 408.93 361.73 2.27%
19 3000 300 0.056 0.296 412.20 342.05 2.36%

Table 5. This is a table showcasing the re-
sults for the fastest robot in a swarm of varying
sizes, 31x31 arena, filled all in one corner.

Robots Avg Timesteps Std. Dev.
15 72.181 29.584
16 70.392 28.538
17 69.398 27.753
18 67.302 26.050

Table 6. Hitting Times Analysis for a Solo
Robot with Varying Laziness in a 31x31 Arena.

Laziness Average HT
Probability HT Std Dev

0.018 409.98 352.02
0.019 410.40 352.38
0.020 410.81 352.74
0.021 411.23 353.10

10 J. Cadavez et al.

5.4 Approximating Expected First Arrival Time in a Swarm of Robots

Let p(t) be a gamma probability density function (PDF) with mean µ and variance σ2.
Define the cumulative distribution function (CDF) as:

c(t) =

∫ t

0

p(τ) dτ

This gives the probability that a single robot reaches the nest by time t. Thus,

1− c(t) = Pr(robot does not arrive by t)

If we approximate a swarm of N independent robots avoiding collisions with N random
walkers with an appropriate laziness value, then the probability no walker reaches the
nest by time t would be (1− c(t))N . So the probability at least one walker reaches the
nest is GN (t) = 1−(1−c(t))N . Differentiating gives the PDF for the first arrival time:

gN (t) = G′
N (t) = N(1− c(t))N−1p(t)

The expected first arrival time and corresponding standard deviation are

µN =

∫ ∞

0

t gN (t) dt and σN =

√∫ ∞

0

(t− µN)2 gN (t) dt

Theoretically, this algorithm can be used to approximate for multiple robots using an
approximated mean and standard deviation of a computed "lazy" solo robot. For ex-
ample, a single walker in a corner of a 31 × 31 arena with hitting time moments of
µ = 410, σ = 352 indicates that the first of N = 15 walkers will reach the nest
in µN ≈ 64 timesteps with a standard deviation of 29. This approximation yields a
qualitative reflection of the performance of multiple robots while bypassing the need to
simulate the system.

6 Conclusion

This paper has established a foundation for which Markov chains and graph algorithms
can be utilized to obtain quick estimates of different properties of robot swarms, such
as hitting times, without having to run simulations. Throughout this project, we have
explored the possibility of dynamic and static obstacles being introduced in the simu-
lation, and how the models can be adjusted to fit them. The static laziness parameter
is imperfect in matching the nuance of dynamic robots as obstacles; however, it yields
results that are consistent and similar to multi-robot swarms. After obtaining the dis-
tribution, one can then perform necessary analysis to see which configuration of robot
swarm is needed in their project.

As Markov-chains haven’t been extensively used in robot swarming, we propose
that this could be a very promising direction to explore when it comes to optimizing
robot swarm designs. Many local variations of robot movement policies are based off of
a random walk approach, meaning that the approach outlined above can generate rapid
approximations for more complex systems. Future work will outline different areas and
directions to continue this research.

Robot Swarm Properties 11

6.1 Future Work

The proposed methods have some limitations due to its simplification of how real robots
operate. Using a static laziness parameter to approximate dynamic collisions is not per-
fect, but does yield results that are qualitatively consistent. We have modeled the time
for one particulate robot to reach the goal. This work should be thought of as prelimi-
nary to a model for tracking when one of many robots reach the goal, a future direction.

Additionally, as the results for a laziness robot mapping may not be appropriate,
further analysis and research will have to be done on potential conditions on why this
difference occurs, especially with larger arena sizes. Future work will include evaluat-
ing the effects when the arena is more crowded and alternatice statistical tests such as
Kullback–Leibler divergence and Earth Mover’s Distance to compare distributions.

In this paper, we have shown that graph theory can offer a rich set of tools with
which to analyze a multi-robot system and predict its global motion behavior without
having to run expensive simulations. This suggests that further development of graph-
based models for swarm robotics would be a very promising direction to pursue.

References

1. Aggarwal, A., Gupta, D., Vining, W., Fricke, G., Moses, M.: Ignorance is not bliss: an anal-
ysis of central-place foraging algorithms. In: Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). pp. 6510–6517. IEEE, New York City, NY (2019),
doi:10.1109/IROS40897.2019.8967665

2. Boley, D.: On fast computation of directed graph laplacian pseudo-inverse. Linear Algebra
and its Applications 623, 128–148 (2021)

3. Boley, D., Gini, M., Zhang, Y.: How do robot swarms behave? what graphs can tell us. In:
Autonomous Robots and Multirobot Systems (ARMS) 2023 Workshop at AAMAS 2023
(May 2023), https://u.cs.biu.ac.il/~agmon/arms2023/program.html

4. Cannon, S., Daymude, J., Gokmen, C., Randall, D., Richa, A.: A local stochas-
tic algorithm for separation in heterogeneous self-organizing particle systems.
https://arxiv.org/abs/1805.04599 (2019)

5. Cohen, M.B., Kelner, J., Peebles, J., Peng, R., Sidford, A., Vladu, A.: Faster algorithms for
aomputing the stationary distribution, simulating random walks, and more. In: IEEE 57th
Annual Symp. on Found. Comput. Sci. (FOCS). pp. 583–592. IEEE, New York City, NY
(Oct 2016)

6. Fujisawa, R., Dobata, S.: Lévy walk enhances efficiency of group foraging in pheromone-
communicating swarm robots. In: IEEE/SICE Int’l Symposium on System Integration, SII
2013. pp. 808–813. IEEE, New York City, NY (Dec 2013)

7. Golnari, G., Zhang, Z.L., Boley, D.: Markov fundamental tensor and its applications to net-
work analysis. Linear Algebra and its Applications 564, 126–158 (2019)

8. Grinstead, C.M., Snell, J.L.: Introduction to Probability. Amer Math Soc., Boston, MA
(1997)

9. Hamann, H.: Modeling swarm systems and formal design methods. In: Swarm Robotics: A
Formal Approach, pp. 95–127. Springer, Berlin/Heidelberg, Germany (2018)

10. Harwell, J., Gini, M.: Broadening applicability of swarm-robotic foraging through constraint
relaxation. In: 2018 IEEE Int’l Conf. on Simulation, Modeling, and Programming for Au-
tonomous Robots (SIMPAR). pp. 116–122. IEEE, New York City, NY (2018)

doi: 10.1109/IROS40897.2019.8967665
https://u.cs.biu.ac.il/~agmon/arms2023/program.html

12 J. Cadavez et al.

11. Jeong, M., Harwell, J., Gini, M.: Analysis of exploration in swarm robotic systems. In: IAS-
16. pp. 445–457. Springer, Berlin/Heidelberg, Germany (2021)

12. Joubert, W.: On the convergence behavior of the restarted GMRES algorithm for solving
nonsymmetric linear systems. Num. Lin. Alg. Appl. 1(5), 427–447 (1994)

13. Kegeleirs, M., Ramos, D.G., Birattari, M.: Random walk exploration for swarm mapping. In:
Proc. Towards Autonomous Robotic Systems: 20th Annual Conference, TAROS 2019, Part
II. pp. 211–222. Springer-Verlag, Berlin, Heidelberg (2019)

14. Lancaster, J.P., Gustafson, D.A.: Predicting the behavior of robotic swarms in search and tag
tasks. Procedia Computer Science 20, 77–82 (2013). https://doi.org/https://doi.org/10.1016/j.
procs.2013.09.242, https://www.sciencedirect.com/science/article/pii/S1877050913010429,
complex Adaptive Systems

15. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times, vol. 107. American
Mathematical Soc., Providence, RI (2017)

16. Li, Y., Zhang, Z.L.: Digraph Laplacian and the degree of asymmetry. Internet Mathematics
8(4), 381–401 (2012)

17. Lovász, L.: Random walks on graphs. Combinatorics 2(1-46), 4 (1993)
18. Lu, Q., Fricke, G.M., Ericksen, J.C., Moses, M.E.: Swarm foraging review: Closing the gap

between proof and practice. Current Robotics Reports 1, 1–11 (2020)
19. Martinez, F., Jacinto, E., Acero, D.: Brownian motion as exploration strategy for autonomous

swarm robots. In: 2012 IEEE Int’l Conf. on Robotics and Biomimetics (ROBIO). pp. 2375–
2380. IEEE, New York City, NY (2012)

20. Masuda, N., Porter, M.A., Lambiotte, R.: Random walks and diffusion on networks. Physics
reports 716, 1–58 (2017)

21. Morgan, R.B.: GMRES with deflated restarting. SIAM J Sci Comput 24(1), 20–37 (2002)
22. Nain, R., Sen, K.: Transition probability matrices for correlated random walks. Journal of

Applied Probability 17(1), 253–258 (1980)
23. Oh, S., Randall, D., Richa, A.W.: Foraging in particle systems via self-induced phase

changes. https://arxiv.org/abs/2208.10720 (2022)
24. Pang, B., Song, Y., Zhang, C., Wang, H., Yang, R.: A swarm robotic exploration strategy

based on an improved random walk method. Journal of Robotics 2019(Article ID 6914212),
9 (2019)

25. Patlak, C.S.: Random Walk with Persistence and External Bias: A Mathematical Contribu-
tion to the Study of Orientation of Organisms. University of Chicago, Committee on Mathe-
matical Biology (1953)

26. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N.,
Ferrante, E., Di Caro, G., Ducatelle, F., et al.: ARGoS: a modular, multi-engine simulator for
heterogeneous swarm robotics. In: IEEE/RSJ Intel Conf Intelligent Robots and Systems. pp.
5027–5034. IEEE, New York City (2011)

27. Wagner, I., Altshuler, Y., Yanovski, V., Bruckstein, A.: Cooperative cleaners: A study in ant
robotics. The International Journal of Robotics Research (IJRR) 27(1), 127–151 (2008)

28. Zhang, Y., Boley, D., Harwell, J., Gini, M.: A correlated random walk model to rapidly ap-
proximate hitting time distributions in multi-robot systems. In: Intelligent Autonomous Sys-
tems 17, Proc. 17th Int’l Conf IAS-17. pp. 724–736. Springer, Berlin/Heidelberg, Germany
(June 2022)

29. Zhang, Y., Boley, D., Harwell, J., Gini, M.: A correlated random walk model to rapidly
approximate hitting time distributions in multi-robot systems. In: Intelligent Autonomous
Systems 17, Proc. 17th Int’l Conf (IAS-17). pp. 724–736. Springer (2022)

30. Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled data on a directed
graph. In: Proc. 22nd Int’l Conf. Machine Learning. pp. 1041–1048. ACM, New York City,
NY (2005)

https://doi.org/https://doi.org/10.1016/j.procs.2013.09.242
https://doi.org/https://doi.org/10.1016/j.procs.2013.09.242
https://doi.org/https://doi.org/10.1016/j.procs.2013.09.242
https://doi.org/https://doi.org/10.1016/j.procs.2013.09.242
https://www.sciencedirect.com/science/article/pii/S1877050913010429

	Estimating Robot Swarm Properties by Direct Calculations instead of Simulation

