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Abstract

Sparse models have proven to be extremely successful
in image processing and computer vision, and most efforts
have been focused on sparse representation of vectors. The
success of sparse modeling and the popularity of region co-
variances have inspired the development of sparse coding
approaches for positive definite matrices. While in earlier
work [1], the dictionary was pre-determined, it is clearly
advantageous to learn a concise dictionary adaptively from
the data at hand. In this paper, we propose a novel approach
for dictionary learning over positive definite matrices. The
dictionary is learned by alternating minimization between
the sparse coding and dictionary update stages, and two
different atom update methods are described. The online
versions of the dictionary update techniques are also out-
lined. Experimental results demonstrate that the proposed
learning methods yield better dictionaries for positive def-
inite sparse coding. The learned dictionaries are applied
to texture and face data, leading to improved classification
accuracy and strong detection performance, respectively.

1. Introduction
Sparse models have proven to be extremely successful in

image processing, computer vision, and machine learning.
However, a majority of the effort has been focused on the
sparse representation of vectors and low-rank models for
general matrices. The success of sparse modeling, along
with the growing popularity of region covariances for many
vision problems, has inspired the development of sparse
coding approaches for these positive definite descriptors, ei-
ther by vectorizing them [2] or keeping them in their orig-
inal form [1]. While the dictionary was previously formed
from some or all of the training set, it is advantageous to
learn a concise dictionary representation from the available
data.

In this paper, we present a novel approach for dictionary
learning over positive definite matrices, while maintaining
their structure, i.e., without vectorization. The method was
inspired by the K-SVD algorithm of Aharon et al. [3]. The

dictionary is learned by alternating minimization, oscillat-
ing between the sparse coding and dictionary update stages.
In the dictionary update stage, we update one atom at a time,
sequentially, while retaining the sparsity structure of the co-
efficients. The corresponding sparse coefficients are also
updated. We present two approaches to the atom update
step - one based on gradient descent and another alternative
method where the atom update has a closed-form solution.

Experimental results demonstrate that the dictionary
learning approach reduces the reconstruction error for pos-
itive definite sparse coding. In classification applications
using region covariances, where the class-wise residual er-
ror is used as a feature, the dictionary learning improves the
classification accuracy. In a classification setting, where the
class-wise residual error is used as a decision variable for
label assignment, the dictionary learning yields a substan-
tial gain in accuracy over dictionaries formed by sampling
the training set. In an object detection framework, a single
concise dictionary learned from training data demonstrates
very strong detection capabilities.

The rest of this paper is organized as follows: In Sec-
tion 1.1, we give a brief overview of related work on re-
gion covariances, and discuss other vector dictionary learn-
ing techniques. Section 1.2 covers some basic notation used
throughout the paper. An overview of the positive defi-
nite sparse coding formulation from [1] is presented in Sec-
tion 1.3. In Section 2, we propose our dictionary learning
formulation, with a gradient descent-based approach in Sec-
tion 2.1 and an alternative approach in Section 2.2, which is
solvable in closed-form. Online versions of the two update
methods are presented in Section 2.4. Experiments, both
synthetic and real, are presented in Section 3, and Section 4
wraps up with the conclusions, outlining the future work.

1.1. Related Work

Region covariances were introduced by Tuzel et al. [4]
as a novel region descriptor for object detection and tex-
ture classification, along with the ability for fast construc-
tion of covariances over arbitrary-sized windows in constant
time, using integral images [5]. Region covariances belong



to the space of positive definite matrices S++
n , forming a

connected Riemannian manifold. These descriptors have
been used for texture segmentation and classification [4, 6],
detection of pedestrians [7], and other objects [8]. Re-
gion covariances have also been used extensively for object
tracking [9, 10] and for image retrieval and recognition in a
surveillance setting [11, 12]. [13, 14] use Gabor-based re-
gion covariances for face recognition, and in [2, 15] Guo et
al. use derivatives of optical flow for action recognition.

While covariance descriptors have risen in popularity,
the methods used in most applications remain confined to k-
nearest-neighbors or kernel SVMs, using the geodesic dis-
tance measure [16]. Very recently, there have been new at-
tempts on sparse coding for region covariances. In Guo et
al. [2], the positive definite matrices are taken to the tan-
gent space of the Riemannian manifold, by taking the ma-
trix logarithm. This is the space of symmetric matrices Sn,
where the data points can be easily vectorized and sparse-
coded. Note that this is not truly a sparse linear represen-
tation of the positive definite matrices, but a non-linear one
due to the matrix log operation. In Sivalingam et al. [1], the
positive definite nature of the matrices is preserved, and a
completely different sparse coding objective is formulated
to deal with the data points in S++

n itself.
In the sparse representation of vectors, the most popu-

lar dictionary learning algorithm is the K-SVD algorithm
of Aharon et al. [3]. The positive definite dictionary learn-
ing approach presented here is inspired by the K-SVD al-
gorithm, and shares certain similarities in the approach. In
Mairal et al. [17], the authors extended the dictionary learn-
ing formulation to incorporate a discriminative term be-
tween dictionaries of different classes. Ramirez et al. [18]
modify the learning framework based on the incoherence
among dictionary atoms, presenting clustering and classi-
fication scenarios. A fast online dictionary learning tech-
nique was introduced in Mairal et al. [19]. Dictionary
learning under more structured circumstances are presented
in [20, 21]. To the best of our knowledge, this is the first
work in dictionary learning over positive definite matrices.

1.2. Notation

In this section we define the notation to be used through-
out the paper. S+n denotes the class of n × n symmetric
positive semidefinite matrices, while S++

n refers to strictly
positive definite matrices. A � 0 (A � 0) denotes A is pos-
itive (semi)definite. A � B (A � B) indicate that (A−B)
is positive (semi)definite. A = {Ai}Ki=1 is the dictionary
and S = {Sj}Nj=1 is the data set, with Ai ∈ S++

n ∀ i,
Sj ∈ S++

n ∀ j.
Given a data point S, the sparse coding procedure finds

an approximation Ŝ =
∑K

i=1 xiAi, such that x ∈ R+
K .

We denote this as Ŝ = x ⊗ A. xj denotes the coefficient
vector corresponding to Sj .

The LogDet divergence [22] Dld : S+n × S++
n → R+ is

defined by:

Dld(X,Y ) = tr
(
XY −1

)
− log det

(
XY −1

)
− n. (1)

1.3. Sparse Coding for Positive Definite Matrices

Given a dictionary A and data point S, the positive defi-
nite sparse coding problem [1] is given by

min
x≥0

Dld (x⊗A, S) + λ‖x‖1 (2a)

s.t. 0 � x⊗A � S, (2b)

where λ is the regularization parameter inducing sparsity
on x. The sparse coding is convex, and is solved by reduc-
ing the optimization in (2) to the MAXDET form [23], for
which efficient Interior Point (IP) algorithms exist.

The residual reconstruction error E = S − Ŝ is al-
ways at least positive semidefinite, E � 0, due to the con-
straint (2b). In reality, E � 0 since the smallest eigenvalue
is of the order of 10−8 to 10−10, or larger when λ increases.

In [1], the dictionary A was randomly initialized, or was
formed from a subset of the training examples (for a classi-
fication setting). However, by adapting the dictionary to the
data, the reconstruction accuracy of the sparse coding can
be improved. In the next section, we describe our formula-
tion and approach for learning the dictionary from the given
data.

2. Positive Definite Dictionary Learning
In this section, we describe our formulation to learn the

dictionary A that can best reconstruct the given data set S
in a sparse fashion. Given a training data set S = {Sj}Nj=1,
the problem of learning a dictionary A = {Ai}Ki=1 can be
formulated as:

min
A,X

N∑
j=1

Dld (xj ⊗A, Sj) + λ‖xj‖1 (3a)

s.t. xij ≥ 0 ∀ i, j
Ai � 0 ∀ i

0 � xj ⊗A � Sj ∀ j.
(3b)

The dictionary learning problem is non-convex in both
(A, X), but is convex in each argument given the other
fixed. Hence we solve the optimization by alternating min-
imization, repeating the following two steps:

1. Given S and A fixed, solve for X .

2. Given S and X fixed, solve for A.

The first stage involves sparse coding of each data point
Sj ∈ S independently. The second stage comprises up-
dating the dictionary A. The dictionary is initialized with
either randomly sampled data points from S, or randomly
generated positive definite matrices.



Since the decomposition x ⊗ A is unique only up to
scale, and this can affect the constraint or regularization on
x in the sparse coding stage, we normalize all the dictionary
atoms Ai to have unit trace, trAi = 1.

The dictionary update is inspired by the K-SVD algo-
rithm of Aharon et al. [3]. We update each dictionary atom
Ai ∈ A at a time, sequentially. During this time, the spar-
sity structure of the coefficients is kept constant, while al-
lowing the non-zero coefficients of Ai to change. This sub-
set of data points, for which xij is non-zero, is referred to
as the active set, ωi = {j|1 ≤ j ≤ N, xij 6= 0}.

2.1. Atom Update - Gradient Descent

To update atom Ai, we optimize the following using a
steepest descent approach:

min
Ai�0

∑
j∈ωi

Dld (xj ⊗A, Sj) . (4)

xj ⊗A = Ŝj =
∑
i′ 6=i

xi′jAi′ + xijAi. (5)

Writing the objective in (4) as a function of Ai, we have

f(Ai) =
∑
j∈ωi

tr
(
xijAiS

−1
j

)
− log det Ŝj + C, (6)

where C encompasses those terms independent of Ai. The
gradient descent direction dAi is given by:

dAi = −∇f(Ai) =
∑
j∈ωi

xij

(
Ŝ−1j − S−1j

)
. (7)

Since Ŝj � Sj , we have S−1j � Ŝ−1j , yielding a positive
semidefinite descent direction. The gradient descent update
is, therefore,

Ai ← Ai + αdAi, (8)

with stepsize α ≥ 0 determined using line search tech-
niques.

2.2. Atom Update - Alternative Formulation

Here we propose an alternative atom update approach to
the gradient descent method explained above. This method
is much faster and in practice yields a better reduction in the
original objective function compared to gradient descent.
From (5),

Ŝj =
∑
i′ 6=i

xi′jAi′ + xijAi = Ŝ
(i)
j + xijAi. (9)

Ŝ
(i)
j is the reconstruction of Sj without the contribution of
Ai, leading to the new residual,

E
(i)
j = S − Ŝ(i)

j = Ej + xijAi. (10)

The residual E(i)
j is strictly positive definite, since xij > 0

and Ai � 0. Plugging this back into (4),

min
Ai�0

∑
j∈ωi

Dld

(
Ŝ
(i)
j + xijAi, Ŝ

(i)
j + E

(i)
j

)
. (11)

Instead of directly minimizing (11), here we will attempt
to minimize the LogDet divergence between the product
xijAi and the new residual E(i)

j .

min
Ai�0

∑
j∈ωi

Dld

(
xijAi, E

(i)
j

)
. (12)

Since Dld(αX,αY ) = Dld(X,Y ),

min
Ai�0

∑
j∈ωi

Dld

(
Ai, Ẽ

(i)
j

)
. (13)

where Ẽ(i)
j = E

(i)
j /xij .

The intuition behind this approach comes from the K-
SVD algorithm of Aharon et al. [3], where the atom update
step comprises fitting a new atom into a similar residual er-
ror. Although the LogDet divergence does not decouple in
such a way, it follows the similar idea of finding the best
atom Ai that fits the residual error Ẽ(i)

j . As will be seen
empirically, this produces a much greater reduction in the
residual reconstruction error at each atom update step than
the gradient descent optimization of the original objective
function.

Writing out the expression for the LogDet divergence
and ignoring the constant n,

min
Ai�0

∑
j∈ωi

tr

(
Ai

(
Ẽ

(i)
j

)−1)
− log det

(
Ai

(
Ẽ

(i)
j

)−1)
.

Taking the derivative with respect to Ai, and setting it
to zero, we get an expression which corresponds to the har-
monic mean of {Ẽ(i)

j }, j ∈ ωi.

Ai =

 1

|ωi|
∑
j∈ωi

(
Ẽ

(i)
j

)−1−1 . (14)

Since we require the atom Ai to be normalized by its trace,
we can ignore the scaling term due to |ωi|. The updated
atom Ai is therefore given by:

Ai =

∑
j∈ωi

(
E

(i)
j /xij

)−1−1 . (15)

We also refer to this as the parallel-sum update, since (15)
is the positive definite generalization of parallel sums for
positive scalars [24].

2.3. Coefficient Correction

In the gradient descent-based update method, once the
atom Ai is updated, each of the corresponding coefficients
xij for j ∈ ωi can be independently determined by an effi-
cient line search [23]. In this step, it is important to respect



the original constraints 0 � Ŝ � S.

min
xij≥0

Dld

(
Ŝ
(i)
j + xijAi, Sj

)
+ λxij (16a)

s.t. 0 �
(
Ŝ
(i)
j + xijAi

)
� Sj (16b)

In the first update method, the atom is only slightly per-
turbed, with a small positive semidefinite increment. Hence
a line search for updating just the corresponding coefficients
was sufficient. However, in the alternative update, since the
updated atom is completely new, i.e., more than just a per-
turbed version of the previous value, the coefficient distri-
bution amongst the atoms for a given data point may not
still be valid. Hence after each atom is updated, we sparse
code all the data points using this atom once again. As will
be seen empirically in Section 3.1, while the gradient-based
update results in a very small decrease in the objective func-
tion, the alternative update, in spite of the fact that it did not
attempt to minimize the original objective directly, results in
a much greater reduction in the net residual reconstruction
error.

2.4. Online Dictionary Learning

Both of the atom update equations in (7-8) and (15) are
conducive to online generalization1. Suppose at time t we
get a new data point St, which sparse coded over the ex-
isting dictionary At−1 results in the reconstruction Ŝt, with
coefficients xi,t for i = 1, . . . ,K. The atoms which are
used, i.e. xi,t > 0, can be updated sequentially. The atoms
which are unused do not change.

In the gradient descent method, the online update can be
written as

Ai,t ← Ai,t−1 + αxi,t

(
Ŝ−1t − S−1t

)
. (17)

The online version of the parallel-sum update is given by

A−1i,t ← A−1i,t−1 +
(
E

(i)
t /xi,t

)−1
. (18)

where E(i)
t the residual computed using (10).

2.5. Computational Complexity

Since the dictionary update involves the inversion of at
most N n× n matrices, each atom update step is O(Nn3),
in both the gradient descent and parallel sum update meth-
ods. Since n is usually of the order of 10 ∼ 20 for re-
gion covariance descriptors in most computer vision ap-
plications, it is still a very practical algorithm. Moreover,
the region covariances provide a very low-dimensional con-
densed representation capable of greater performance than
vector descriptors of much higher dimensions. For e.g.,
in [4], consider the performance of 560-dimensional texton

1if we account for the atom normalization with some book-keeping.

histograms vs. 5× 5 region covariances for texture classifi-
cation.

The sparse coding step accounts for a higher complex-
ity, and a naı̈ve implementation of the interior point algo-
rithms for MAXDET [23] gives O(max(n2K2,K2)). Cur-
rent work involves development of a specialized implemen-
tation taking into account the problem structure in the posi-
tive definite sparse coding.

3. Experimental Results
In this section we demonstrate the use of the positive def-

inite dictionary learning algorithms. Experiments on syn-
thetic data compare the performance of the two different
update methods, and show the reduction of residual error
due to each method. Experiments based on computer vi-
sion applications of texture classification and face detection
show that learning a concise dictionary representation not
only improves classification performance, but also serves as
a simple and straightforward object detector based on the re-
construction error of covariances extracted from candidate
image regions.

3.1. Synthetic Experiments

In this experiment, we generate synthetic data consist-
ing of 5 × 5 positive definite matrices, using the following
approach:

• Generate a dictionary of K random positive definite
atoms. K was chosen to be 8, 15, and 30 to reflect
under-complete, complete and over-complete dictio-
naries.

• Generate N = 300 random sparse vectors x with
T = 4 non-zero entries. Each x is generated by first
sampling T out of K locations uniformly at random,
and then populating those T entries by i.i.d. sampling
from U(0, 1).
• Synthesize N training data points, where each point S

is computed as the sample covariance of a set of 5n2

samples from the multivariate Gaussian N (0,x⊗A).
• Learn a new dictionary using the training points
S = {Sj}Nj=1.

Since we do not (and in this sparse coding formulation, can
not) impose that the training signals be sparse coded with
T = 4 coefficients during the dictionary learning proce-
dure, we will not exactly recover the same dictionary. We
can only compare the residual of the learned dictionary with
that of the original dictionary. Note that the original dictio-
nary will not have a zero error, since there is an inverse
Wishart [25] perturbation due to extracting the sample co-
variances.

In Figure 1, we show the objective function, the total
residual error, decreasing with the number of iterations, for
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Figure 1: Normalized objective function for the two dictionary
learning algorithms. The dotted lines denote gradient descent and
the continuous lines represent the parallel-sum update. The plots
are shown for K = 8 (blue,�), K = 15 (red,+) and K = 30
(green,o).

both the training algorithms. The objective function is nor-
malized with respect to that of the original dictionary, so
that the true dictionary will have a total residual error of 1.
The parallel-sum update algorithm gives a much better re-
duction in residual error, compared to the gradient descent
update. In fact, for K = 8 and K = 30, there is very little
reduction in the objective function, in the scale of that of the
original dictionary. This is due to the fact that the gradient
descent only perturbs the atoms very slightly during the up-
date step, while the parallel-sum update enables the atoms
to make huge jumps in the positive definite space.

For this experiment as well as the following, the regu-
larization parameter λ is set to 10−3. For the remaining
experiments, we only use the parallel-sum update for the
dictionary learning.

3.2. Texture Classification

In this section we demonstrate the effect of dictionary
learning in a classification setting for region covariances.
We compare the classification performance with learned
dictionaries versus dictionaries formed by randomly sam-
pling the training set.

We use a subset of the texture mosaics from the popu-
lar Brodatz texture dataset [26]. Intensity and gradient fea-
tures {I, |Ix|, |Iy|, |Ixx|, |Iyy|} were extracted, and 5 × 5
covariance descriptors were computed over 32× 32 blocks
(in steps of 16 pixels) in the training images. A separate
dictionary was learned for each class, with N = 225 train-
ing covariances, and K = 5 dictionary atoms, per class.
Each class dictionary is trained independently, without us-
ing training samples from the other class in a discriminative
fashion. For the random dictionary, K training points were

Mosaic 5-NN Random Learned
Classification (%) Dictionary (%) Dictionary (%)

1 8.94 2.76 0.00
2 8.13 6.99 0.81
3 6.50 12.85 8.13
4 17.89 26.02 11.38
5 17.07 9.43 4.88
10 0.00 0.69 0.23
11 1.61 12.51 2.99
12 1.38 0.78 0.00

Table 1: Texture classification results: Error rates (%) on the Bro-
datz texture dataset - 1-5 are the five 5-texture mosaics, and 10-12
are the three 2-texture mosaics.

sampled to fill in the dictionary.
The dictionary-based classification is performed as fol-

lows - each test point is independently sparse coded with
each class dictionary, using the sparse coding formulation
in (2). The residual error due to each class dictionary Ak

is denoted as D∗ld(x
∗ ⊗ Ak, S), where x∗ is the optimal

coefficient vector for that (S,Ak) pair. The test point is as-
signed the label k∗ of the class whose dictionary results in
the minimum residual reconstruction error.

k∗ = argmin
k

D∗ld(x
∗ ⊗Ak, S).

Test points were generated by sampling 32 × 32 blocks
from the mosaic image in regions of uniform texture. No
spatial regularization of any sort is used in the classification
procedure, and each test point is labeled independently.

The error rates of classification on the five 5-texture mo-
saics and the three 2-texture mosaics from [26] are shown
in Table (1). A k-NN classifier with k = 5, retaining the
entire training set and using the Riemannian geodesic dis-
tance [16], is also shown for comparison. The error rates for
the random dictionary are averaged over 5 runs, each sam-
pling a different dictionary. Note that the purpose of this
experiment is not to show that covariance dictionaries are
the best classifiers for texture. Rather, the message to take
away from this experiment is that learning the dictionary
from the data provides a substantial performance gain com-
pared to randomly sampled dictionaries, for classification
applications. This is well-known and accepted for vector
dictionary learning, and is demonstrated here for positive
definite dictionaries.

The residual reconstruction error for training the 5-class
dictionaries for the first five Brodatz texture mosaics are
shown in Figure 2. The objective function is normalized
with respect to the residual error before training, and hence
at iteration 0, the objective function value will be 1. The
plot is to demonstrate that the residual error decrease due
to the parallel-sum update algorithm is also very strong for
practical datasets, and as can be seen, the total residual error
is reduced to almost half of the original.



0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

Iterations

R
el

at
iv

e 
o

b
je

ct
iv

e 
fu

n
ct

io
n

 

 

Mosaic 1

Mosaic 2

Mosaic 3

Mosaic 4

Mosaic 5

Figure 2: Normalized objective function over the parallel-sum dic-
tionary learning iterations for the five 5-texture mosaics. The ob-
jective function is the total of residual errors of all 5 dictionaries,
at each stage. The plot also shows the objective function values
during the dictionary update, after updating each atom.

3.3. Face Detection

In the previous sections we have seen empirically that
the residual reconstruction error in sparse coding is reduced
by learning positive definite dictionaries, and classification
performance with learned covariance dictionaries is much
better than random non-adaptive dictionaries. In this sec-
tion, we explore the use of the covariance dictionary for
face detection. For training, we use images from the FERET
face database [27]. 7 images, each from 109 subjects were
chosen, and 19× 19 covariance descriptors were extracted.
The features used were {x, y, I} and Gabor filter responses,
g00(x, y), . . . , g71(x, y), with 8 orientations and 2 scales.
The preprocessing and feature extraction are performed fol-
lowing the approach of Pang et al. [13]. The N = 763
training covariances were used to train a dictionary of size
K = 38.

For testing, images from the GRAZ01 person
dataset [28] were processed to extract the same spa-
tial, intensity and Gabor features. Covariance descriptors
were computed over regularly spaced, overlapping win-
dows (60 × 60, in steps of 15 pixels). All the covariances
were sparse coded with the learned face dictionary, and the
residual error Dld(Ŝ, S) is used to obtain a detection score
at each window. The score was computed as

score = e
− 1

2

(
Dld(Ŝ,S)

σ2
d

)2

, (19)

where σd is the bandwidth, computed as the standard devi-
ation of the residual errors in the entire image.

The original images and the corresponding face score
images are shown in Figure 3. Note that this is a very sim-
ple and straightforward application of the region covariance

Figure 3: Face detection results: Sample images (from the
GRAZ01 [28] dataset) and their corresponding face score maps
are shown. High values of the face score (white) indicate the like-
lihood of a face being present, centered at that location. The score
images are normalized with respect to their maximum value, for
viewing reasons.

dictionary learning, with no complex post-processing. The
residual error from sparse coding an image region with the
face dictionary gives us an good estimate of the probabil-
ity of that window being a face. A mode-finding procedure
over this probability map will give the best face detections.
Future work includes searching over windows at multiple
scales, as well as learning multiscale dictionaries in terms
of the covariance descriptors.

4. Conclusions & Future Work
In this paper, we proposed a novel dictionary learning

methodology for positive definite matrices. The dictionary
learning was formulated with an alternating minimization
approach, and two different atom update procedures were
elaborated. Update equations for online dictionary learn-
ing were also presented. Synthetic experiments were shown
to validate the learning approaches. Practical computer vi-
sion examples were also demonstrated in the classification
as well as detection setting, both indicating the performance
of trained covariance dictionaries.

Future work includes analysis of regret bounds for the
online dictionary learning updates, as well as faster meth-
ods for coefficient updates. Multiscale extensions either in
the covariance descriptors themselves or in the dictionary
learning procedure would be very suitable for detection ap-
plications such as that shown here. While we manually fix
the number of dictionary atoms here, automatic selection of
dictionary size is another interesting issue to be addressed.
Scalability of the learning methods to much larger matrix
dimensions is also being investigated.
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