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Abstract

Training support vector machines involves a huge optimiza-

tion problem and many specially designed algorithms have

been proposed. In this paper, we proposed an algorithm

called ClusterSVM that accelerates the training process by

exploiting the distributional properties of the training data,

that is, the natural clustering of the training data and the

overall layout of these clusters relative to the decision bound-

ary of support vector machines. The proposed algorithm

first partitions the training data into several pair wise dis-

joint clusters. Then, the representatives of these clusters

are used to train an initial support vector machine, based

on which we can approximately identify the support vectors

and non-support vectors. After replacing the cluster con-

taining no support vectors with its representative, the num-

ber of training data can be significantly reduced, thereby

speeding up the training process. The proposed ClusterSVM

has been tested against the popular training algorithm SMO

on both the artificial data and the real data, and a signifi-

cant speedup was observed. The complexity of ClusterSVM

scales with the square of the number of support vectors and,

after a further improvement, it is expected that it will scales

with square of the number of non-boundary support vectors.

1 Introduction

Support vector machines (SVM) (Vapnik [19]) have
been successfully applied in a variety of domains, in-
cluding handwritten digit recognition, text document
classification and microarray data analysis. In training
these SVMs, one needs to maximize a convex objective
function subjecting to box constraints. This kind of
optimization problem has been extensively studied and
many software packages have been developed. However,
the off-the-shelf packages typically require the entire
Gram matrix be stored in the main memory and, know-
ing the fact that the size of the Gram matrix scales with
the square of the number of training data, the mem-
ory requirement of these packages quickly makes them
impractical even for a moderate problem [6]. Thus,
many specially tailored optimization algorithms have
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been proposed. The first class of such algorithms tries
to solve the entire optimization problem by solving a
series of small problems. The basic techniques include
chunking and decomposition, which were discussed by
Boser et al. [4], Osuna et al. [15], Kaufman et al. [11] and
Joachims [10]. Especially noteworthy is the SMO (Se-
quential Minimal Optimization) algorithm by Platt [16]
that sequentially optimizes over a subset of size two,
for which we can perform the optimization analytically.
The success of these algorithms depends on an appropri-
ate criterion for the active set selection and an efficient
strategy to cache the Gram matrix. A second class of
algorithms tries to approximate the Gram matrix by a
smaller matrix either using the low-rank representation
(Fine et al. [9]) or by sampling (Williams et al. [20],
Achlioptas et al. [1]), thereby reducing the size of the
optimization problem and speeding up the training pro-
cess. However, the price for such speedup is some loss
of optimality. Keerthi et al. [12] proposed an algorithm
based on observations about the geometrical properties
of support vector machines.

In this paper, we proposed a fast training algorithm
called ClusterSVM whose idea is to speed up the
training process by reducing the number of training
data. This is accomplished by partitioning the training
data into pair wise disjoint clusters, each of which
consists of either only support vectors or only non-
support vectors, and replacing the cluster containing
only non-support vectors by a representative. In order
to identify the cluster that contains only non-support
vectors, the training data is first partitioned into several
pair wise disjoint clusters and an initial support vector
machine is trained using the representatives of these
clusters. Based on this initial SVM, we can judge
whether a cluster contains only non-support vectors
or not. For the cluster that contains both support
vectors and non-support vectors, based on the decision
boundary of the initial SVM, we can split it into two
subclusters that approximately contain either only non-
support vectors or only support vectors. This process
is then repeated if one of the subclusters contains
both support vectors and non-support vectors. The
training time of this strategy scales with the square
of the number of support vectors and, as shown by
experiments, an approximate can be found even faster.



Further, based on the theory underlying ClusterSVM,
it is expected that the training time will scale with
the number of boundary support vectors after some
straightforward extensions to the current work.

The rest of the paper is organized as follows. Sec-
tion 2 briefly introduces the optimization problem in-
volved in training SVM, followed by the theoretical re-
sults underlying ClusterSVM. In section 3, the experi-
mental results were reported on both the artificial data
and the real data. Finally, section 4 concludes the paper
with further research topics.

2 ClusterSVM

2.1 Support vector machines In a two-class clas-
sification problem, given a training data set D of size
n

(2.1) D =
{

(xi, yi) | xi ∈ RN , yi ∈ {1,−1}
}

where i = 1, 2, · · · , n and yi indicates the class member-
ship of the object i represented by vector xi, the support
vector classifier f(x) is defined as [19]

(2.2) f(x) = sign (d(x)) =

{

1 : d(x) ≥ 0
−1 : d(x) < 0

where d(·) is call the functional margin and it is defined
as

(2.3) d(x) = 〈w, Φ(x)〉H + b

where 〈·, ·〉H is the dot product of the reproducing kernel
Hilbert space H generated by a symmetric positive
definite kernel K(·, ·) satisfying the Mercel condition,
and Φ(·) is the mapping associated with K(·, ·) [19].
The optimal parameter w∗ and b∗ corresponding to the
optimal classifier f∗(x) can be obtained by solving the
following optimization problem [19]

Minimize : g(w, ξ) =
1

2
||w||2 + C

n
∑

i=1

ξi(2.4a)

Subject to : yi(〈w, Φ(xi)〉H + b) ≥ 1− ξi(2.4b)

ξi ≥ 0

With the help of Lagrange multipliers, the Wolfe dual
form of the above minimization problem is [19]

Maximize : W (α) = αT1− 1

2
αTHα(2.5a)

Subject to : 0 ≤ α ≤ C(2.5b)

αTy = 0.

where αi ≥ 0 (i = 1, 2, ..., n) are the Lagrange multi-
pliers, 1 is a vector of ones and H is the Gram matrix

with component Hij = yiyjK(xi,xj). The necessary
and sufficient condition for a weight vector w and La-
grange multiplier α to be optimal is the KKT condi-
tion [19], which are the primal and dual feasibility con-
straints plus the following complementarity’s conditions

αi (yi (〈w, Φ(xi)〉H + b)− 1 + ξi) = 0(2.6a)

ξi (αi − C) = 0(2.6b)

Based on the optimal solution α, the functional margin
d(·) can also be written as

(2.7) d(x) =
∑

xi∈DSV

K(xi, x) + b

where DSV is the set of support vectors, which are the
subset of training data that have nonzero α’s, that is,
0 < α ≤ C. It is the set of support vectors that
determines the decision boundary and all the other
training data, that is, non-support vectors, can be
removed without influencing the decision boundary.

2.2 ClusterSVM Figure 1 shows the training data
of a two-dimensional two-class classification problem.
The training data in the positive class are partitioned
into two disjoint clusters and those in the negative class
are partitioned into three clusters. The motivation of
ClusterSVM is to reduce the number of training data
by replacing a cluster with an appropriately defined
representative. However, not all clusters can be replaced
with a representative while yielding the same the SVM
as the SVM that would be obtained using the original
training data set D. It follows from the following
Proposition 2.1 that there are two kinds of clusters
that can be replaced without influencing the solution,
including the cluster that contains only non-support
vectors (α = 0) and the cluster that contains only
boundary support vectors (α = C).

Proposition 2.1. Let D denote the training data set
consisting of two disjoint sets D1 and D2 and, without
loosing generality, assume D1 is a subset of the training
data in class 1. Further, define the representative of
cluster D1 be a point x0 such that Φ(x0) is the mean of
the images of all data in D1 under Φ(·), that is,

(2.8) Φ(x0) =
1

n1

n1
∑

i=1

Φ(xi)

where n1 is the number of data in D1. Then the
optimization problem obtained by replacing the set D1

with its representative x0 and setting the upper bound
of α0, which is the Lagrange multiplier of x0 (c.f.(2.5)),
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Figure 1: A toy example. The representative of a cluster
is labeled with a solid square/circle. The decision
boundary of the SVM trained using the representatives
of 5 initial clusters is shown.

to n1C is equivalent to the one obtained by adding a
constraint to (2.5) that requires all Lagrange multipliers
corresponding to the data in D1 be equal.

Proof. Let α1 and α2 be the Lagrange multipliers of
the data in D1 and D2, respectively. The optimization
problem (2.5) can be written as

Maximize : W (α) =

(

α111 −
1

2
αT

1 H11α1

)

+

(

α212 −
1

2
αT

2 H22α2

)

− αT
1 H12α2(2.9a)

Subject to : 0 ≤ α1,i ≤ C, ∀i = 1, 2, ..., n1

0 ≤ α2,j ≤ C, ∀j = 1, 2, ..., n2

αT
1 y1 + αT

2 y2 = 0.(2.9b)

Upon replacing data in D1 with x0, the objective
function in (2.9) can be written as,

W (α) =

(

α0 −
1

2
α0H00α0

)

+

(

α212 −
1

2
αT

2 H22α2

)

− α0H02α2(2.10)

Using equation (2.8), we have

α0H00α0 = α0α0y0y0 〈Φ(x0), Φ(x0)〉

= α0α0y0y0

1

n2
1

n1
∑

i=1

n1
∑

j=1

〈Φ(xi), Φ(xj)〉(2.11)

Let α∗
1 be a vector of length n1 with all components

being equal to α0/n1, equation (2.11) can be written as

α0H00α0 =

n1
∑

i=1

n1
∑

j=1

α∗
1,iα

∗
1,jyiyjK(xi,xj)

= α∗T
1 H11α

∗
1(2.12)

where yi = y0 (i = 1, 2, ..., n1) and
∑n1

i=1
α∗

1,i = α0.
Since 0 ≤ α0 ≤ n1C, we have 0 ≤ α∗

1,i ≤ C (i =
1, 2, ..., n1). Similarly, α0H02α2 can be written as

(2.13) α0H02α2 = α∗T
1 H12α2

After substituting equations (2.12) and (2.13) into equa-
tion (2.10), we arrive the following optimization prob-
lem

Maximize : W (α∗
1, α2) =

(

α∗
11

∗
1 −

1

2
α∗T

1 H11α
∗
1

)

+

(

α212 −
1

2
αT

2 H22α2

)

− α∗T
1 H12α2(2.14a)

Subject to : 0 ≤ α∗
1,i ≤ C, ∀i = 1, 2, ..., n1

0 ≤ α2,j ≤ C, ∀j = 1, 2, ..., n2

α∗T
1

y1 + αT

2
y2 = 0.

α∗
1,i1

= α∗
1,i2

, ∀i1, i2 = 1, 2, ..., n1(2.14b)

The proposition follows by comparing equation (2.9)
and equation (2.14). �

It should be pointed out that, in general, a point x0

satisfying equation (2.8) may not exist (e.g., when K is
a Gaussian kernel). However, assuming the existence
of such x0 is only for the convenience of stating and
proving this proposition. In practice, replacing a cluster
with x0 can be implemented by replacing corresponding
rows/columns with there average in the Gram matrix.
The idea of Proposition 2.1 is illustrated in Figure 2 for a
toy problem that has two points in class 1 with Lagrange
multipliers α1 and α2, and one point in class −1 with
Lagrange multiplier α3. The cube pqst − ovwu is
the feasible region of the original optimization problem
(2.9). After replacing two data in class 1 by a point
whose image is the mean of the images of these two
data, the feasible region of the resulting optimization
problem (c.f. (2.14)) is the rectangle opsw. Thus, the
feasible region of the problem (2.14) is a subset of that
of the problem (2.9). It is not hard to show that the
optimal solution of (2.14) is also the optimal solution
of (2.9) if D1 satisfies either of the following conditions.
As in Proposition 2.1, D1 is a subset of the data in class
1 and it will be replaced by its representative defined by
equation (2.8).

• Condition 1 All data in D1 are non-support
vectors, which means the corresponding Lagrange



multiplier α1 = α2 = 0. With reference to Figure 2,
this means the feasible region of the problem (2.9)
and that of the problem (2.14) coincides at line op.

• Condition 2 All data in D1 are boundary
support vectors, which means the corresponding
Lagrange multipliers α1 = α2 = C. With reference
to Figure 2, this means that the feasible region of
the problem (2.9) and that of the problem (2.14)
coincides at line ws.

Figure 2: Illustration of Proposition 2.1

Thus, we can safely replace clusters of above two types
with a representative defined in equation 2.8 without in-
fluencing the solution, and this will make the complex-
ity of the resulting training algorithm scales with the
square of the number of non-boundary support vectors.
In the current algorithm, only the first condition is used,
which gives out one more simplification. Since the La-
grange multipliers of non-support vectors are all zeros,
we can choose a cluster’s representative to be one of its
members, instead of the one defined in equation (2.8).

The next issue is to identify clusters that contain
only non-support vectors. However, there is a cycle here
because the set of support vectors is unknown before
training is finished. The solution is to first partition the
training data into pair wise disjoint clusters, then train
an initial SVM using the representatives of these clus-
ters. Based on this initial SVM, we can approximately
tell the position of each cluster relative to the decision
boundary, thereby approximately identifying the clus-
ters containing no support vectors. For the cluster that
is believed to contain both support vectors and non-
support vectors, it is split into two subclusters, one of
which is expected to contain only support vectors and
the other is expected to contain only non-support vec-
tors. For example, in Figure 1, all data in the cluster
Dpos,2 have functional margin larger than one and it is

estimated not to contain any support vectors. However,
the cluster Dpos,1 contains data with functional margin
d(x) ≤ 1 and these data are likely to be support vec-
tors. Thus, the cluster Dpos,1 needs to be split into two
subclusters. It is believed that the subcluster having
data with d(x) > 1 contains no support vectors, while
the other subcluster is believed to contain only support
vectors. After splitting cluster Dpos,1, Dneg,1 and Dneg,2

and replacing some clusters with their representatives,
the resulting training data set Dreduced is shown in Fig-
ure 3, from which we can see a significant reduction
on the number of training data. Algorithm 1 summa-

x2

x1

: Negative class: Positive class

Figure 3: The reduced training data set Dreduced after
replacing some clusters with their representatives. For
clarity purpose, the decision boundary shown in Fig-
ure 1 is kept here.

rized the proposed ClusterSVM, where the pseudocenter
xp(Di) of a cluster Di is defined as

(2.15) xp(Di) = argmin
x∈Di

∥

∥

∥

∥

∥

x− 1

ni

ni
∑

k=1

xk

∥

∥

∥

∥

∥

2

where ‖ · ‖2 means 2-norm and ni is the number of data
in Di. The properties of Algorithm 1 (ClusterSVM ) is
summarized in Proposition 2.2.

Proposition 2.2.

1. Algorithm 1 will converge in a finite number of
steps.

2. The SV Mnew obtained using only Dreduced is the
same as the SVM that would be obtained using D
when Algorithm 1 terminates, that is, when the
following condition is satisfied

(2.16) yd(x) > 1, ∀x ∈ Dunused



where Dunused contains data in D but not in
Dreduced.

Proof. From Algorithm 1, we can see that the size of the
reduced training data set Dreduced is strictly increasing,
that is,

(2.17) |Dold
reduced| < |Dreduced|

Since there is a finite number of training data in D,
Dreduced will be the same as D in a finite number of
steps, which means that Algorithm 1 will converge in a
finite number of steps.

For the second part of the proposition, we need only
to show that, for the weight vector w of SV Mnew, the
KKT conditions are satisfied for all training data in
Dunused, that is, the Lagrange multiplier is zero. For
a given xi ∈ Dunused, we have

(2.18) yid(xi) > 1 =⇒ yi (〈w, Φ(x)〉H + b) > 1

Knowing the fact that ξi ≥ 0, this means that the
constraint specified by equation (2.4b) will not be
active, thus αi = 0. �

3 Experiments

3.1 Implementations Due to its popularity, the
training algorithm A we use in Algorithm 1 is Platt’s
SMO [16], and the ClusterSVM is compared with SMO.
An implementation of SMO by Chang et al. [5] and its
Matlab r© wrapper by Ma et al. [14] were used in this
paper. However, it should be pointed out that, being
used as a meta-algorithm, ClusterSVM could accelerate
any training algorithm. The clustering algorithm C

used here is the PDDP (Principal Direction Divisive
Partition) by Boley [3] because it is one the most
efficient clustering algorithms.

The number of initial clusters k+ (k−) can be any
number between one and the number of training data
n+ (n−) in D+ (D−). However, knowing the fact that
the initial SVM will be trained using the representatives
of the initial clusters and all subsequent partitions will
depend on this SVM, the number of initial clusters
should be large enough so that the initial SVM can
approximate the true SVM reasonably well. At the same
time, it should not be too large since letting k+ = n+

and k− = n− would make Dreduced = D, and there will
be no speedup. Another reason for preferring small k+

(k−) is that both clustering the training data D and
training the initial SVM can be performed very quickly.
In this paper, the following square root heuristic is
suggested

(3.19) k+ = round(
√

n+) and k− = round(
√

n−)

Algorithm 1 ClusterSVM: Two class SVM

Require: A SVM training algorithm A; A clustering
algorithm C; Training data set D = D+ ∪ D−,
where D+ (D−) is the set of the training data in
class 1 (−1); The number of initial clusters k+ (k−)
into which D+ (D−) is partitioned; The maximum
number of passes NPmax through the WHILE
loop.

1: Call the clustering algorithm C to partition D+

(D−) into k+ (k−) clusters, that is

D+ =

k+

⋃

i=1

D+

i and D− =

k−

⋃

i=1

D−
i

2: Define the set G of clusters as

G ← {D+

1 , · · · ,D+

k+ ,D−
1 , · · · ,D−

k−
}

3: Define the reduced training data set Dreduced as (c.f.
(2.15))

Dreduced ← {xp(D′),D′ ∈ G}

4: Flag ← 1, NP ← 0
5: while Flag = 1 and NP < NPmax do

6: Flag ← 0, NP ← NP + 1
7: Train SV Mnew using Dreduced and the training

algorithm A

8: Remove from Dreduced the datum that is the
representative of any cluster in G

9: Gold ← G and G ← ∅
10: for all D′ ∈ Gold do

11: if ∃x ∈ D′ such that yd(x) ≤ 1 according to
SV Mnew, where y is the label of x then

12: Flag ← 1
13: Split D′ into D′

sv and D′
nsv

D′
sv = {x|x ∈ D′ and yd(x) ≤ 1}

D′
nsv = {x|x ∈ D′ and yd(x) > 1}

14: Dreduced ← Dreduced ∪ D′
sv ∪ {xp(D′

nsv)}
15: G = G ∪ {D′

nsv}
16: else

17: Dreduced ← Dreduced ∪ {xp(D′)}
18: G = G ∪ {D′}
19: end if

20: end for

21: end while

22: Return the SV Mnew.

There are primarily two motivations for this heuristic.
First, knowing the fact that the time for clustering



typically scales linearly with the number of training
data [8], the square root heuristic can make the total
time to obtain the initial SVM scale linearly with the
number of training data. The second motivation is
that this heuristic has been suggested in the study of
clustering algorithms (e.g. [7]). The effectiveness of this
heuristic was demonstrated experimentally. Since the
initial SVM can approximate the true SVM quite well
and each pass through the outer WHILE loop (line 5 to
21 in Algorithm 1) involves training a SVM, the next
issue is how many times the WHILE loop should be
performed. Based on the experiments, it is enough to
carry out the WHILE loop once.

The last implementation issue is the strategy for
the multi-class classification problem. There are many
strategies for multi-class classification problem and, in
this paper, the “one versus the rest” strategy is used. In
this strategy, assuming there are m classes, m classifiers
are trained and each of them discriminates one class
from all the other classes. A test data is classified to
the class that has the maximum functional margin. In
order to avoid the repeated clustering, the clustering
algorithm is applied to the data of each class before
any classifier is trained. Then, to train the classifier
that discriminates the class i from the remaining m− 1
classes, the clusters corresponding to class i are used
as the partition of the data in class i, and the clusters
corresponding to the remaining m − 1 classes are put
together and used as the partition for the data in
that m − 1 classes. All experiments were run on a
PC running Windows 2000 Server with one Pentium
4 2.8GHz processor and 1GB RAM, and the algorithm
was implemented using Matlab r© [18].

3.2 Data sets There are three data sets examined in
this paper.

• Artificial data set This is a three-class clas-
sification problem and each class consists of data
drawn from a 2D normal distribution with covari-
ance matrix being identity matrix. The centers of
three classes are (0,

√
3), (−1, 0) and (1, 0). The

same number of training data are drawn for each
class and the size of the training data D varies from
300 to 6000. The test data set is of the same size
as the training data set and is constructed in the
same way. All 3 classifiers are obtained using the
regularization coefficient C = 10000 (c.f. equation
(2.4a)) and the linear kernel K(xi,xj) = xT

i xj .

• USPS data set This is the US Postal Service
(USPS) handwritten zip code recognition data set
and there are 7291 training data and 2007 test data,
all of which were collected from mail envelopes in

Buffalo [13]. Each digit is represented as a 16× 16
matrix whose entry ranges from −1 to 1. As
suggested by [17], a smoothing operation using a
Gaussian kernel with width 0.75 was applied to the
image as a preprocessing step. The regularization
coefficient C = 10 and the kernel is a homogeneous
polynomial kernel of degree 3, that is, K(xi,xj) =
(

x
T
i xj

256

)3

.

• Isolet data set This data set was downloaded
from UCI machine learning repository [2] and the
goal is to recognize 26 spoken letters. There are
6238 training data and 1559 test data. Each
datum has 617 attributes and each attribute is a
real number between −1 and 1. All 26 classifiers
were obtained using the regularization coefficient
C = 0.02 and the linear kernel K(xi,xj) = xT

i xj .

3.3 Experimental results The effect of the number
of initial clusters k was studied through the artificial
data set. There 2000 training data in each class (6000
total) and the number of initial clusters k varies from
1 to 81 with an interval of 2. For each value of k,
ten randomly generated training data set were tried.
Figure 4 compares the relative difference between the
error rate of the initial SVM with that of the true SVM
for different values of k. The relative difference RD is
defined as

(3.20) RD =
|ERinitial − ERtrue|

ERtrue

where ERinitial and ERtrue are the error rate on the
same test data set. Figure 5 shows the time to obtain
the initial SVM TInitial SV M as a function of the number
of initial clusters. TInitial SV M consists of time for
clustering and the time for training the initial SVM.
From Figure 4 and Figure 5, we can see that the
square root heuristic, corresponding to k = 45 in this
experiment, gives a reasonable good trade-off between
the accuracy and the complexity, although it is a rather
gross heuristic.

With the number of initial clusters being specified
by the square root heuristic, the effect of the number
of passes NP through the WHILE loop (line 5 to 21
in Algorithm 1) is shown in Table 1. The SVM trained
after 3 passes is the same as the SVM that would be
obtained using the original training data set, thus the
corresponding error rate can be taken as the reference.
From Table 1, it can be seen that one pass through
the WHILE loop is enough to give a good performance.
Thus, the maximum number of passes is set to 1 in
Algorithm 1, that is, NPmax = 1. In addition, it can be
seen from Table 1 that, with NP = 0, the initial SVM
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Figure 4: The performance of the initial SVM compared
to that of true SVM. The square root heuristic corre-
sponds k = 45. The seemingly good performance of
k = 1 comes from the symmetry of this problem and it
has no general implications.
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Figure 5: Time to obtain the initial SVM as a function
of the number of initial clusters k. The artificial data
set is used and the square root heuristic corresponds
k = 45.

also gives pretty good result.

Table 1: Effects of NP on the artificial data set (6000
training data). NP is the number of passes through the
WHILE loop in Algorithm 1.

NP 0 1 2 3
Error rate (%) 25.87 25.43 25.48 25.47

Table 2 through 4 compares the performance of
ClusterSVM with that of SMO, where the number of
initial clusters is specified by the square root heuris-
tic and the maximum number of passes through the
WHILE loop NPmax = 1. In these tables, the speed

up is defined as

(3.21) Speedup =
TSMO

TClusterSV M

where TSMO is the training time of SMO and
TClusterSV M is the training time of ClusterSVM. The
clustering time is the time used for the initial cluster-
ing. Based on these tables, we have the following obser-
vations.

• Ntrain,i (i = 1, 2, · · · , m) is the actual number
of training data used to train the i-th classifier.
For SMO, this number is the number of training
data of all classes and it is independent of which
classifier is being trained. For ClusterSVM, Ntrain,i

is the number of training data after replacing
every cluster containing no support vectors with
its representative. For the artificial data set shown
in Table 2, Ntrain,i is almost the same for all three
classifiers and this is within our expectations, since
this is a symmetric problem. However, for the
USPS data set shown in Table 3, Ntrain,i varies
from one classifier to another and this reflects the
fact that all ten classifiers are inherently different.
For example, discriminating digit 1 from the other
digits is different from discriminating digit 0 from
the other digits. Similarly, for the Isolet data set
shown in Table 3, different classifier has different
number of training data. Thus, the ClusterSVM
reduces the number of training data in a task
dependent way.

• Ntrain is the average number of training data over
all k classifiers and, comparing ClusterSVM with
SMO, it can be seen that ClusterSVM reduce the
number of training data significantly. It is this
data reduction that help accelerating the training
process.

• The speed up of ClusterSVM over SMO is 3.2 for
the artificial data set, 1.5 for the USPS data set
and 1.9 for the Isolet data set.

• Comparing the error rate of SMO and that of
ClusterSVM, it can be seen that the speedup of
ClusterSVM sacrifices little performance. This nice
property is attributed to the good initial clusters,
whose overhead is only a small faction of total
training time.

Finally, the scaling performance of ClusterSVM was
shown in Figure 6 for the artificial data set, which shows
the average training time over 10 runs. It can be seen
that ClusterSVM scales better than SMO.



Table 2: Artificial data set. Ntrain,i is the actual
number of training data to train the i-th classifier.

SMO ClusterSVM
Ntrain,1 6000 3260
Ntrain,2 6000 3026
Ntrain,3 6000 3022

Ntrain 6000 3103
Training time (sec.) 8344 2588

Clustering time (sec.) NA 3
Speedup 3.2

Error rate (%) 25.47 25.43

Table 3: USPS data set. Ntrain,i is the actual number
of training data to train the i-th classifier.

SMO ClusterSVM
Ntrain,1 7291 788
Ntrain,2 7291 2364
Ntrain,3 7291 1975
Ntrain,4 7291 1544
Ntrain,5 7291 2259
Ntrain,6 7291 1621
Ntrain,7 7291 1206
Ntrain,8 7291 2407
Ntrain,9 7291 1560
Ntrain,10 7291 2638

Ntrain 7291 1836
Training time (sec.) 105 68

Clustering time (sec.) NA 18
Speedup 1.5

Error rate (%) 5.43 5.28
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Figure 6: Comparison of the scaling performance of
ClusterSVM and that of SMO on the artificial data
set. The solid line represents SMO and the dashed line
represents ClusterSVM

4 Conclusions

An efficient SVM training algorithm ClusterSVM was
proposed in this paper and a significant speedup over

Table 4: Isolet data set. Ntrain,i is the actual number
of training data to train the i-th classifier.

SMO ClusterSVM
Ntrain,1 6238 1102
Ntrain,2 6238 1237
Ntrain,3 6238 840
Ntrain,4 6238 1242
Ntrain,5 6238 1123
Ntrain,6 6238 1102
Ntrain,7 6238 1016
Ntrain,8 6238 932
Ntrain,9 6238 957
Ntrain,10 6238 1039
Ntrain,11 6238 1048
Ntrain,12 6238 914
Ntrain,13 6238 945
Ntrain,14 6238 1159
Ntrain,15 6238 946
Ntrain,16 6238 1435
Ntrain,17 6238 1018
Ntrain,18 6238 883
Ntrain,19 6238 762
Ntrain,20 6238 1225
Ntrain,21 6238 980
Ntrain,22 6238 1346
Ntrain,23 6238 1258
Ntrain,24 6238 837
Ntrain,25 6238 852
Ntrain,26 6238 864

Ntrain 6238 1041
Training time (sec.) 278 144

Clustering time (sec.) NA 24
Speedup 1.9

Error rate (%) 4.55 4.55

SMO was observed on both the artificial data set
and the real data set. The possible extensions to
ClusterSVM are the follows.

• The second sufficient condition mentioned after the
Proposition 2.1 has not been used in ClusterSVM.
It is not hard to incorporate this condition into
ClusterSVM and this would make the training time
scale with the number of non-boundary support
vectors. This would definitely speed up the SVM
training further.

• With the help of a clustering algorithm, Clus-
terSVM effectively incorporate the distributional
property of the training data into the training pro-
cess. It is expected that the similar idea can be used



to improve other supervised learning algorithm like
neural networks.
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