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Abstract—In this paper we extend distance metric learning to
a new class of descriptors known as Region Covariance Descrip-
tors. Region covariances are becoming increasingly popular as
features for object detection and classification over the past few
years. Given a set of pairwise constraints by the user, we want to
perform semi–supervised clustering of these descriptors aided by
metric learning approaches. The covariance descriptors belong
to the special class of symmetric positive definite (SPD) tensors,
and current algorithms cannot deal with them directly without
violating their positive definiteness. In our framework, the
distance metric on the manifold of SPD matrices is represented
as an L2 distance in a vector space, and a Mahalanobis–type
distance metric is learnt in the new space, in order to improve the
performance of semi–supervised clustering of region covariances.
We present results from clustering of covariance descriptors
representing different human images, from single and multiple
camera views. This transformation from a set of positive definite
tensors to a Euclidean space paves the way for the application
of many other vector-space methods to this class of descriptors.

Index Terms—distance metric learning; semi–supervised clus-
tering; region covariance descriptors; appearance clustering.

I. INTRODUCTION

In surveillance and tracking scenarios, there is usually a
supervisor manning a station of monitors displaying the feeds
from multiple cameras. The system depends on the supervisor
to a certain extent to perform flawless detection and tracking
of different people in the image streams. It is neither feasible
for the supervisor to identify and track each and every person
viewed on the screen, nor is it practical to expect the system
to be ideal, i.e. fully unsupervised with perfect accuracy,
but semi–supervision is a possible option. This is especially
attractive when the dataset is huge. Semi–supervised input
in terms of a few labeled instances is again not always
feasible, since the supervisor cannot remember every person
and provide them unique labels or IDs.

The provision of pairwise constraints between data points
[1], [2] is a possible way of semi–supervision, where the
supervisor can specify whether or not two human images
represent the same person or different people. This method
of pairwise comparisons is much easier and can be done by
a user even without domain knowledge. A skilled supervisor
can do this very rapidly, with the exception of situations when
there are heavy occlusions or illumination changes. Further,
even if unique label IDs are available for a small set of
images, we can always convert these instance–level constraints

to pairwise constraints. Such constraints can also be generated
automatically using domain–specific information.

Region covariance descriptors [3] are becoming increasingly
popular as features for object detection over the past few
years. Methods for fast computation of region covariances
using integral images [4] enable the use of these compact
features for many practical applications that demand real–
time performance. Hu et al. [5] use covariance descriptors
for probabilistic tracking, using particle filtering. Palaio and
Batista [6] also perform multi–object tracking using region
covariances and particle filters. Other local features have also
been used in human detection and tracking, and [7] provides an
experimental evaluation of different features, including region
covariances, on benchmark datasets. In [8], Paisitkriangkrai et
al. boost the covariance features to improve the classification
accuracy. Pang et al. [9] use Gabor–based region covariance
descriptors for face recognition. Our aim is to learn a distance
metric on these region covariance descriptors to improve
clustering accuracy.

Fig. 1. ISOMAP embedding of a dataset of 367 region covariances
representing 16 different people. Constructed from 40–nearest–neighborhoods.
The representative image of each person is shown near the embeddings of their
corresponding covariance descriptors.

There have been many distance metric learning approaches
to improve the performance of nearest–neighbor classifiers
[10] and clustering [11], [12]. In [13] Yang and Jin present



a Bayesian framework for distance metric learning. Schultz
and Joachims [14] develop an algorithm based on the SVM
training approach to learn a distance metric from pairwise
comparisons. More towards computer vision, [15], [16] learn
distance functions for image retrieval purposes, and [17] uses
kernel–based distance metrics for the same problem. Davis
et al. [18] provide an information–theoretic framework for
distance metric learning, and also present an online algorithm
with provable regret bounds. We use this metric learning
algorithm in our problem domain to learn a distance metric
efficiently.

Fig. 1 depicts the problem at hand. The region covari-
ances obtained from a large dataset are embedded using
ISOMAP [19] for visualization. Representative images of each
person are also shown. The distribution of the descriptors is not
uniform, and lie on some convoluted manifold themselves, as
is often the case for human image descriptors. The motivation
for this work is therefore to learn a metric that clearly
“understands” the data manifold structure better, while also
respecting the positive definiteness of the descriptor used.

The main contribution of this paper is the development of a
framework for metric learning in the space of positive definite
tensors. We extend vector–based metric learning methods to
positive definite tensors, by representing the tensors as vectors
in a manner such that it respects the positive definiteness
of the tensors, and the learnt metric can be used as a valid
transformation in the original tensor space. Further, the robust
clustering of covariances from multiple cameras, based on the
learnt metric, enables the efficient use of these descriptors
for multi–camera detection and tracking applications. The rest
of the paper is organized as follows: In the remaining part
of Section I, we describe the region covariance descriptors.
Section II describes the problem statement and the goal of
the approach. Section III elaborates the various stages in
our algorithm. Section IV presents experimental results, and
Section V wraps up with the conclusions and future research
directions.

A. Region Covariance Descriptors

Let each pixel in an image I be represented by an n–
dimensional feature vector z. A given image region R is
represented by a n × n covariance matrix C of the feature
vectors {zi}|R|i=1 of the pixels in region R. The feature vector
z usually consists of color information (in some preferred
color–space) and information about the first and higher order
derivatives of the image intensity along the x and y directions,
depending on the application intended. Although covariance
matrices are positive semi–definite in general, in practice the
covariance descriptors themselves are regularized by adding
a small constant multiple of the identity matrix, making
them strictly positive definite. Thus the region covariance
descriptors belong to PD(n), the space of n × n positive
definite matrices forming a connected Riemannian manifold.
Given two covariance matrices Ci and Cj , the Riemannian
distance metric d(Ci, Cj) gives the length of the geodesic

connecting these two points on this manifold [20],

dAI(Ci, Cj) =
∥∥∥log

(
C
−1/2
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−1/2
i

)∥∥∥
F

(1)

where the log represents the matrix logarithm and ‖ ·‖F is the
Frobenius norm. The subscript AI represents the fact that the
Riemannian metric is affine–invariant in the sense that any
congruence transformation to a covariance matrix C of the
form C ′ = XCXT by a non–singular matrix X will not affect
the distance under this metric [20].

II. PROBLEM DESCRIPTION

Let C = {Ci}Ni=1, Ci ∈ PD(n) be the set of region
covariance descriptors given. These may be obtained from
images captured by a single camera or a collection of cameras.
The user (supervisor) provides a set of pair–wise constraints in
the form of must–links, or similarity constraints S, and cannot–
links, or dissimilarity constraints D ([1], [2]). In other words,
(Ci, Cj) ∈ S implies that Ci and Cj belong to the same
cluster (person), and (Ci, Cj) ∈ D implies that Ci and Cj
belong to the different clusters (persons). We would like to
obtain a partitioning of C into k clusters, {C1, . . . , Ck}, which
respect these constraints. Towards this end, it is desirable to
learn a distance metric, from the given data and constraints,
which would enhance the clustering performance over data
points which are not involved in any constraint, or held–out
test points.

Current distance metric learning algorithms work primarily
with vector–valued data, and any tensor data is first arranged in
vector form (by row–major scanning) as a pre–processing step.
Vectors formed from positive definite matrices in this manner
will lie on a connected cone in high–dimensional space, and
any Euclidean algebra is not valid on this manifold. Our goal
is to learn a distance metric in a framework which respects
the positive definite property of the descriptors.

III. APPROACH

Our approach involves a method of vectorizing the covari-
ance matrices so that the vectors can lie anywhere (uncon-
strained) in the new space. Therefore, Euclidean approaches
can be applied here without any restrictions. We learn a
Mahalanobis–type metric in this space and perform con-
strained clustering under this new metric. Since a metric in
some embedding space φ(x) of data points is also a metric
for the original data points x, the distance function learnt in
our approach is also a well–defined metric. Fig. 2 shows the
different steps in our approach. The system finally outputs the
clusters of appearances, where each cluster represents separate
individuals.

A. Modifying the Metric : Mapping to Euclidean Space

Our approach requires a single uniform embedding into a
Euclidean space and hence, instead of using the Riemannian
metric, we use another related metric in its place.
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Fig. 2. Flowchart describing the steps in our approach. The user–provided
constraints are used for both distance metric learning and constrained clus-
tering. The inverse mapping from the vectors back to the n × n covariance
matrices is an optional step.

The matrix logarithm is an embedding into Euclidean space
which induces the Log–Euclidean distance metric [21], [22]
between two positive definite matrices Ci and Cj , given by

dLE(Ci, Cj) = ‖logCi − logCj‖F . (2)

According to [23], the Log–Euclidean metric is a lower bound
to the geodesic distance on the manifold, and this bound is
exact when the two matrices Ci and Cj commute.

dAI(Ci, Cj) ≥ ‖logCi − logCj‖F . (3)

Noting here that the Frobenius norm of a matrix is simply
the L2 norm of the vector composed of all the components of
this matrix, and that the squared Mahalanobis distance (x −
y)TA(x − y) is a modification of the squared L2 distance
(x − y)T (x − y), it is clear that a similar modification can
be applied to the Frobenius norm. However, it is important to
maintain the property of positive definiteness of the covariance
matrices under the modified distance metric, i.e. the modified
distance should also be a metric on positive definite matrices.
Hence instead of simply vectorizing the elements of the n ×
n matrix into a vector lying in some constrained region in
R
n2

, we adopt a mapping to Rn(n+1)/2 where the vectors are
unconstrained and can occupy any region in this space. This
is explained in the remainder of this section.

The matrix logarithm L = logC, of a positive definite
matrix C, is just a symmetric matrix. If we denote the
spectrum of C as {λi}ni=1 with λi > 0 for 1 ≤ i ≤ n (since C
is positive definite), then the spectrum of L is {log λi}ni=1, and
therefore it can have zero and even negative eigenvalues. Since

this is now just a symmetric matrix with no other constraints,
we can convert the upper triangular part of L into a vector c,
with appropriate scaling of the off–diagonal elements, so that
‖L‖F = ‖c‖2 ([22]).

For example, we can convert the following 3×3 symmetric
matrix L into a vector c as:

L =

 L11 L12 L13

L12 L22 L23

L13 L23 L33

⇒ c =



L11√
2L12√
2L13

L22√
2L23

L33

 . (4)

Here it is evident that ‖L‖F = ‖c‖2. Thus we can convert
L = logC into a vector c, containing the main diagonal
elements (unscaled) and all elements above this diagonal
(scaled by

√
2). By this conversion, we can reduce the Log–

Euclidean metric of Eq. 2 to be the Euclidean distance between
two vectors. If a and b are obtained from logA and logB
respectively in the above manner, then the metric can be
rewritten as

dLE(A,B) = ‖a− b‖2 . (5)

If A and B are n × n positive definite matrices, then a,b ∈
R
m where m = n(n+1)

2 . It is important to note here that the
vectors a and b are completely unconstrained, i.e. they can lie
anywhere in Rm, since the matrices logA and logB are just
symmetric matrices with no restrictions on their eigenvalues.
Thus the covariance descriptors are taken from the manifold
PD(n) to Rm. Note that this is a reversible transformation.

B. Metric Learning

In the previous section, the transformation from the Rieman-
nian manifold of positive definite matrices to an unconstrained
Euclidean space was explained, which enabled us to convert
the tensor covariance descriptors into vectors in Rm. Now we
will learn a distance metric on these vectors, that respects the
constraints imposed by the user. Following the information–
theoretic approach of Davis et al. [18], we learn a Mahalanobis
distance function on this new set of vectors C′ = {ci}Ni=1 using
the set of similarity S and dissimilarity D constraints.

The (squared) Mahalanobis distance is parameterized by a
positive definite matrix A ∈ Rm×m, and is given by

d2
A(ci, cj) = (ci − cj)

T
A (ci − cj) . (6)

If (Ci, Cj) ∈ S , then we would like the Mahalanobis
distance between them dA(ci, cj) ≤ u, where u is some
upper bound. If (Ci, Cj) ∈ D, then we would like the
Mahalanobis distance between them dA(ci, cj) ≥ l, where
l is some lower bound. Learning this Mahalanobis metric
A is formulated as a problem of minimizing the differential
relative entropy between two zero–mean Gaussians, under the
above–mentioned similarity and dissimilarity constraints, and
involves a Bregman optimization where the LogDet divergence
is minimized subject to linear constraints. Unlike previous
methods for metric learning[11], this is fast, scalable, can



incorporate a prior distance function, and does not need any
eigenvalue decomposition or semi–definite programming.

If A and A0 parameterize two different Mahalanobis dis-
tance functions, then their corresponding multivariate Gaus-
sians are

p(x;A) =
1
ZA

exp(− 1
2d

2
A(x,µ)) (7)

p(x;A0) =
1
ZA0

exp(− 1
2d

2
A0

(x,µ)) (8)

where ZA, ZA0 are the normalizers, and A−1 and A−1
0 denote

the corresponding covariances. Given pairs of similar points S
and dissimilar points D, the distance metric learning problem
is to minimize the KL–divergence between the two Gaussians.

min
A

KL(p(x;A0)‖p(x;A)) (9)

subject to d2
A(xi, xj) ≤ u (xi, xj) ∈ S
d2
A(xi, xj) ≥ l (xi, xj) ∈ D

If we assume the means of the Gaussians to be the same,

KL(p(x;A0)‖p(x;A)) =
1
2
Dld(A−1

0 , A−1)

=
1
2
Dld(A,A0) (10)

where Dld(A,A0) is the LogDet divergence [18]

Dld(A,A0) = tr(AA−1
0 )− log det(AA−1

0 )−m. (11)

The learning is then reformulated in terms of a Bregman
optimization problem, where LogDet divergence is minimized
over all positive semi–definite matrices, under linear con-
straints.

min
A�0

Dld(A0, A) (12)

s.t. tr(A(xi − xj)T (xi − xj)) ≤ u (xi, xj) ∈ S
tr(A(xi − xj)T (xi − xj)) ≥ l (xi, xj) ∈ D

Davis et al. [18] efficiently solve this optimization problem,
allowing slack variables ξij in case there is no feasible
solution that satisfies all the constraints. The interested reader
is referred to [18] for the complete details of the algorithm
used and choice of parameters. In our experiments A0 was
set to the identity matrix, and u and l to the 5th and 95th

percentile values of the sample data distances, respectively.
The advantage of this method is that it is easily extended to
an online setting, and [18] provides a theoretical guarantee
about the regret bounds of the online algorithm as compared
to an optimal batch version of the same algorithm. Thus in
our framework, the system can learn the distance metric in an
online fashion, when the dataset grows and new constraints
are provided by the supervisor.

As mentioned at the beginning of this section, since this
Mahalanobis metric is a well–defined metric in the Euclidean
space, which can be thought of as an embedding space
φ(·) for the covariance matrices, the forward and inverse
transformations along with the Mahalanobis metric together

define a proper and well–defined metric in the original space
of covariance matrices as well.

Once the new Mahalanobis metric A is learnt according
to the above algorithm, we compute the distance matrix
DLE
A (i, j) = d2

A(xi, xj) ∀i, j. This is the modified Log–
Euclidean distance matrix. It is also possible to view the
Mahalanobis distance as the Euclidean (L2) distance in a
transformed space, where the transformation is represented
by the matrix square root of the Mahalanobis matrix, A1/2,
i.e. d(x′i, x

′
j) = d(A1/2xi, A

1/2xj) = dA(xi, xj). If c was
obtained from C following the procedure in Section III-A, this
can be reversed to get back another positive definite matrix
C ′ from Lc. From the modified set of covariance matrices,
C′ = {C ′i}Ni=1, we compute the Riemannian affine–invariant
metric given by Eq. 1, to get the distance matrix DAI

A . We
also have the initially computed DAI and DLE matrices from
the original affine–invariant and Log–Euclidean metrics.

C. Constrained Clustering

In the previous part, we learnt a distance metric from the
given points and constraints, which is now used along with the
constraints, to cluster the data points. We use the PC-KMeans
(pairwise–constrained k–means) approach of Basu et al. [12],
where the usual k–means objective function is modified to
include the penalties for violating any of the given pairwise
constraints. When the data points are vectors x ∈ R

n, the
PC-Kmeans objective function is written as

Jpckm =
∑N
i=1 ‖xi − µli‖2 +

∑
(xi,xj)∈S wij1[li 6= lj ]

+
∑

(xi,xj)∈D w̄ij1[li = lj ] (13)

where li is the label of xi, µli is the mean of all the
points having label li, 1 is the indicator function (1[true] =
1,1[false] = 0), and wij and w̄ij are the respective penalties
for violating a must–link or cannot–link constraint between a
pair (xi, xj).

A kernelized version of this algorithm is used here. Let the
(original or modified) distance matrix D obtained from the
previous step represent the squared distance in some unknown
implicit embedding φ(x). This may be the one of the modified
distance matrices DAI

A or DLE
A , or the original distances DAI

or DLE . The kernel matrix K for this embedding can be
derived from the distance matrix as

Dij = {φ(xi)− φ(xj)} · {φ(xi)− φ(xj)}
= φ(xi) · φ(xi) + φ(xj) · φ(xj)− 2φ(xi) · φ(xj)
= Kii +Kjj − 2Kij .

Kij =
1
2

(Kii +Kjj −Dij) . (14)

The PC–Kmeans can be directly performed as a coordinate–
free procedure on this kernel matrix, similar to kernel k–means
[24]. The extra penalty terms in the objective function Jpckm
for violation of constraints can be computed using the assigned
labels. We select wij = w̄ij = 1. The number of clusters k is
assumed to be known.



The initial seeding is a crucial part of any k–means al-
gorithm, due to the fact that the procedure can get stuck at
local minima. A careful choice of seeding is important to
obtain good clustering results. Approaches such as [25] are
specifically designed for semi–supervised clustering problems.
However, we follow the k–means++ algorithm of Arthur
and Vassilvitskii [26] in order to choose the initial centers,
since it performs much better in practice and comes with
the theoretical guarantee that it is Θ(log k) competitive with
the optimal clustering (where k is the number of clusters).
The pre–computation of distances required for seeding in this
method is not an overhead in our case, since we already have
the distance matrix computed beforehand.

Thus the learnt distance metric A along with the user–
provided constraints are used to cluster the different covari-
ance descriptors, and these appearance clusters correspond to
distinct individuals from the camera images.

IV. EXPERIMENTAL RESULTS:

The performance evaluation is presented in terms of two
measures: the Corrected Rand Index and the pairwise F–
measure.

The Rand Index [1], [11], [27] is a common measure of
accuracy in the clustering literature. Each clustering of the
dataset of N points is considered as a collection of

(
N
2

)
pairwise decisions, as to whether a pair of points belong to the
same cluster or different clusters. The Rand Index gives the
agreement between the predicted labels and the ground truth.

RandIndex =
# correct decisions
# total decisions

. (15)

However, the correctness of decisions for the pairs directly
involved in any constraints is ensured. Therefore, following
[28], [29], we instead adopt the Corrected Rand Index, which
computes the agreement in the free decisions, i.e., which are
not involved in any constraints.

CorrectedRandIndex =
# correct free decisions
# total free decisions

. (16)

The pairwise F–measure, which is based on traditional
information retrieval measures such as precision and recall,
is also used [12], [2], [30] to evaluate clustering accuracy.

Precision =
# PairsCorrectlyPredictedInSameCluster

# TotalPairsPredictedInSameCluster
.

Recall =
# PairsCorrectlyPredictedInSameCluster

# TotalPairsActuallyInSameCluster
.

F-measure =
2× Precision × Recall

Precision + Recall
. (17)

We evaluate the performance of the algorithm on five
different datasets, Cam1 to Cam5, collected at our laboratory,
varying the number of constraints provided by the user. These
consist of 5× 5 covariance matrices obtained from the R,G,B
color channels and x− and y− gradients. The constraints for
the experiments are obtained by random selection of pairs

and determining their similarity or dissimilarity based on the
ground truth. The transitive closure of the constraints [1], over
both the must–links S and the cannot–links D, is performed,
and the resulting constraint set is used as input to the algorithm
for distance metric learning and constrained clustering.

The number of clusters and number of points in each cluster
is specified in Fig. 3. The Cam4 dataset is a subset of Cam5
containing half the number of clusters. These two datasets
were collected using two camera views of the same area, and
hence demonstrate the performance of the method in a multi–
camera setting. The embedding of Fig. 1 is formed from a
subset of descriptors from the Cam5 dataset. The constrained
clustering performed directly using the Riemannian metric
is referred to as ‘AI’, while that performed directly using
the Log–Euclidean metric is referred to as ‘LE’. The same
methods but with the learnt Mahalanobis distance A are
referred to as ‘AI+A’ and ‘LE+A’ respectively. The recovery
of the covariance matrices after the transformation by A1/2

enables us to use the Riemannian metric on the transformed
covariances as well. Fig. 4 shows the plots of Corrected Rand
Index and F–measure for the Cam1 dataset. Similarly Figs. 5
and 6 show these plots for the Cam2 and Cam3 datasets,
respectively. Figs. 8 and 9 correspond to the datasets Cam4
and Cam5.

The plots show that the distance metric learning greatly
improves the clustering performance, even under a small
number of user constraints. The improvement becomes more
significant as more and more constraints are added, and
the learnt metric clearly ‘understands’ the underlying data
manifold structure better, as was mentioned as our motivation.

The number of constraints provided may be misleading, in
relation to the number of data points, but it is important to note
that these are pairwise constraints. For a dataset of N points,
there are

(
N
2

)
= N(N−1)

2 possible pairs. Hence, in the Cam1
dataset containing 94 data points, we provide results for up
to 100 constraints. This number expressed as a fraction of the
total possible pairs, is 100

(94
2 ) = 100

4371 = 2.28%. For the Cam2
dataset, we provide a maximum of around 200 constraints,
which is 6.17% of all possible pairs, and for Cam3, around 400
constraints forming approximately 3%. Cam4 and Cam5 are
provided with a maximum of 3.5% and 0.93% of all pairwise
constraints respectively.

In the Cam2 dataset, the distance metric learning boosts

Dataset K # Data points

Cam1 2 94 (18, 76)

Cam2 3 81 (17, 27, 37)

Cam3 4 166 (71, 21, 31, 43)

Cam4 9 241

Cam5 18 415

Fig. 3. Left: Datasets used where K is the number of clusters. Right: His-
togram showing the distribution of points in each cluster in the Cam5 dataset.
Cam4 is a subset of Cam5 and is depicted in a darker shade.



(a) (b)

Fig. 5. Plot of the Corrected Rand Index (a) and pairwise F–measure (b) for the Cam2 dataset, for different techniques. Results are averaged over 50 trials,
and 1–standard–deviation bars are displayed.

(a) (b)

Fig. 6. Plot of the Corrected Rand Index (a) and pairwise F–measure (b) for the Cam3 dataset, for different techniques. Results are averaged over 50 trials,
and 1–standard–deviation bars are displayed.

the classification accuracy to near perfect as soon as a few
constraints are introduced. However, there is high variability
in the constrained K–means procedure without metric learning.
This can be explained as follows: Fig. 7 shows an ISOMAP
[19] embedding of the data points from the Cam2 dataset.
The metric learning clearly induces a transformation on the
data points where similar points are brought closer together,
while dissimilar points are pushed away from each other. This
embedding shows how the distance metric learning improves
the separation between dissimilar points even when the number
of constraints is small. Since some of the points from clusters
1 and 2 in the original space are very close, with barely
any noticeable boundary, initialization by k-means++ is not
always helpful. Even a slight offset of the initial centers
will result in the merging of both those clusters into one.
This results in the high variability of performance for the
constrained k–means procedure without any metric learning
for this dataset.

When the metric learning approach is introduced, even with
a few constraints, the dissimilarity between the points in these
clusters become evident, and the clusters are pushed away
from each other. Hence our method produces consistent and

almost perfect results. Due to the fact that there were few
must–link constraints between the data points in cluster 2, the
points in this cluster have not been pulled together sufficiently.
However the cannot–link constraints from the other clusters,
1 and 3, towards cluster 2 ensured the clear separation of the
points from different clusters.

Results from the Cam4 and Cam5 datasets emphasize that
the framework is useful in clustering descriptors obtained from
different camera views, despite any hardware–specific variabil-
ity. The distance metric implicitly learns these variations and
enables efficient detection and tracking of individuals across
different cameras.

V. CONCLUSIONS AND FUTURE WORK

Thus we have presented an approach to extend distance
metric learning to a special class of feature descriptors known
as region covariance descriptors. The covariance matrices
are converted into a vector in R

m where the vectors are
unconstrained and allowed to occupy any region in that space.
This enabled the extension of vector–based distance metric
learning techniques, and a global Mahalanobis distance metric
is learnt in the embedding space R

m from the pairwise



(a) (b)

Fig. 8. Plot of the Corrected Rand Index (a) and pairwise F–measure (b) for the Cam4 dataset, for different techniques. Results are averaged over 50 trials,
and 1–standard–deviation bars are displayed.

(a) (b)

Fig. 9. Plot of the Corrected Rand Index (a) and pairwise F–measure (b) for the Cam5 dataset, for different techniques. Results are averaged over 50 trials,
and 1–standard–deviation bars are displayed.

constraints provided by the user. Constrained clustering based
on the modified distance metric clearly shows significant
improvement over constrained clustering using the original
Riemannian metric on the data points. In a multi–camera
setting, the disparities across different camera views can be
learnt in a unified setting based on this framework, to aid
multi–view detection and tracking applications.

This work has implications for diffusion tensor imaging
(DTI), since each voxel in DTI is represented by a 3 × 3
positive definite tensor, which provides information about wa-
ter diffusion across the voxel. Semi–supervision or constraints
based on domain–specific knowledge can help in segmenting
the DTI data efficiently. Further, we are currently working on
learning a local distance metric in the tangent space of each
data point of the manifold, based on the Riemannian affine–
invariant metric. A nonlinear extension to our approach is also
possible with kernel–based learning, and the online version
of the metric learning algorithm can be used for incremental
learning of the distance metric as more data and constraints
arrive.
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