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Abstract— We address the problem of human motion recog-
nition in this paper. The goal of human motion recognition is
to recognize the type of motion recorded in a video clip, which
consists of a set of temporarily ordered frames. By defining a
Mercer kernel between two video clips directly, we propose in
this paper a recognition strategy that can incorporate both the
information of each individual frame and the temporal ordering
between frames. Combining the proposed kernel with the support
vector machine, which is one of the most effective classification
paradigms, the resulting recognition strategy exhibits excellent
performance over real data sets.

Indexed Terms— human motion recognition, convolution ker-
nels, support vector machines.

I. I NTRODUCTION

The purpose of human motion recognition is to assign a
specific label to a human motion, which is usually recorded
on a video clip. Depending on the requirements of the specific
application, recognition needs to be performed either offline or
online. In offline recognition, a video clip recording a single
type of motion is available and one wants to identify the type
of motion recorded in the video clip. Online recognition is
usually needed in real time surveillance, and one wants to
identify the most probable motion type at each instance. In
either case, the motion type should be inferred from a sequence
of temporarily ordered frames, and a motion recognition
strategy should exploit both the content of each frame and
the temporal ordering between consecutive frames. Thus, the
strategies for offline and online recognition are essentially the
same, and we focus on offline recognition in this paper.

A common strategy to build a motion recognition system
consists of two steps. The first step is to extract a set of
features that characterizes the motion type, and the second
step is to construct a classifier that takes these features as
input and outputs the motion type. Most work in motion
recognition differs from each other on the feature extraction
method used, including extracting features from 2-D tracking
data [1]–[7] or 3-D tracking information [8], [9], or extracting
motion information directly from images [10]–[13]. Given
a set of extracted features, most recognition algorithms are
based on either template matching [12], [13] or state-space
matching which usually uses Hidden Markov Model (HMM)
[11]. Neural networks have also been used for this purpose [2].
The performance of these recognition algorithms, especially
those based on template matching, is highly dependent on
the quality of the extracted motion features. A comprehensive

review on human motion analysis can be found, for example,
in [14].

Rooted in statistical learning theory, the Support Vector
Machines (SVMs) [15], [16] have shown to be one of the
most effective paradigm for classification. There are two key
ingredients in a support vector machine. The first is the
idea of margin maximization, which was proved to provide
good generalization performance of the resulting classifier.
The second ingredient is the use of kernel, which measures
the similarity between objects. Since the idea of margin
maximization is hard-wired into the SVM formulation, in order
to apply the SVM in practice, the main task is to choose a
kernel appropriate for the given problem. More specifically,
to use SVM for motion classification, we need to choose a
kernel that incorporates the fact that each video clip consists
of a sequence of temporarily ordered frames.

The main contribution of this paper is to propose a kernel
that is defined directly over video clips, which incorporates
not only the information of each individual frame but also
the temporal ordering between consecutive frames. Using
support vector machines with the proposed kernel, the result-
ing motion recognition strategy exhibits excellent recognition
performance over real data sets.

In the rest of this paper, Section II briefly introduces
support vector machines, Sections III through VI describe the
proposed kernel between video clips, Section VII presents the
experimental results, and Section VIII concludes the paper
with future research directions.

II. SUPPORTVECTORMACHINES

In the typical setting of a binary classification problem, we
are given a training data setD of sizen

D = {(xi, yi) | xi ∈ X , yi ∈ {1,−1}, i = 1, . . . , n} , (1)

wherexi represents thei-th object andyi is the label ofxi.
For a test datumx0 ∈ X , the predicted labelh(x0) given

by the support vector machine (SVM) classifierh is [15]

h(x0) = sign(f(x0)) =

{

1 : f(x0) ≥ 0
−1 : f(x0) < 0

, (2)

wheref(x0) is called thefunctional marginand is defined as

f(x0) =

n
∑

i=1

α∗

i yiK(xi,x0) + θ∗. (3)



The vectorα∗ = [α∗

1 . . . α∗

n]
T is the solution of the following

quadratic optimization problem

Maximize :W (α) = α
T 1 −

1

2
α

T YT GYα (4a)

Subject to :0 ≤ α ≤ C andα
T y = 0, (4b)

where1 is a vector of ones,C is a regularization coefficient
that controls the trade-off between accuracy and smoothness
of the classifier and needs to be specified through model
selection,Y is a n × n diagonal matrix withYii = yi for
i = 1, . . . , n, and G is the so-calledGram matrix with
Gij = K(xi,xj) for i, j = 1, . . . , n. Detailed explanations
on how to solve problem (4) efficiently and computeθ∗ based
on α

∗ can be found, for example, in [17].
In the above formulation,K : X × X 7−→ R is called the

Mercer kernel[15], which is usually abbreviated askernel,
and R is the set of real number. By choosing an appropriate
kernelK, we implicitly specify a (usually nonlinear) mapping
φ from X to some Hilbert spaceH such that the following
equation holds for allxi,xj ∈ X

K(xi,xj) = 〈φ(xi), φ(xj)〉 , (5)

where 〈·, ·〉 is the dot product inH. With reference to (3),
this means that the SVM classifier is a linear classifier inH,
which could result in a (possibly highly) non-linear classifier
in X if the mappingφ is non-linear.

Thus, in order to build a SVM classifier, all we need is to
choose a value for the penalizing coefficientC and specify a
kernelK suitable for the problem interested. There are many
kernels that have been developed. For example, whenX is the
Euclidean space, popular kernels are:

Linear kernel: K(xi,xj) = xT
i xj , (6a)

Polynomial kernel:K(xi,xj) = (xT
i xj)

d, (6b)

Gaussian kernel: K(xi,xj) = exp
(

−σ‖xi − xj‖
2
)

, (6c)

whereσ > 0 in the Gaussian kernel. The linear kernel has been
successfully used in, for example, text classification problem
[18]. The polynomial kernel and Gaussian kernel have been
proven to be very effective in a handwritten digits recognition
problem [19]–[21].

In general, a symmetric functionK : X × X 7−→ R is
a kernel if and only if it satisfies one of the following two
conditions (see, e.g. [22], [23]).

• Condition I: There exists a mappingφ : X 7−→ H such
that, for allxi,xj ∈ X , we have

K(xi,xj) = 〈φ(xi), φ(xj)〉 . (7)

• Condition II: For anyx1,x2, . . . ,xn, wheren is any
positive number, then × n Gram matrixG with Gij =
K(xi,xj) is positive semi-definite.

Strictly speaking, the necessity of condition I, i.e., the exis-
tence of mappingφ, requires additional technical assumptions
on the spaceX and the functionK [23]. Since these assump-
tions are satisfied for most practical problems, we drop them
in this paper to make the presentation less complex.

walking running

Fig. 1. Raw images and filtered images of “walking” and “running”.

In the following Sections III through VI, we will propose a
kernel between two video clips for motion recognition prob-
lems, and prove its validity using the above two conditions.

III. M OTIVATION FOR A KERNEL BETWEEN TWO V IDEO

CLIPS

We assume that each video clip consists of several tem-
porally ordered frames, which are calledraw imageshere.
Figure 1 shows snapshots, i.e., raw images, of two common
type of human motions, “walking” and “running.”

Also shown in Figure 1 is thefiltered imagefor each raw
image, which was introduced in [24]. For each raw image in
a video clip, its filtered image is defined as the weighted sum
of the current raw image and all earlier raw images, and the
weight is larger for the more recent raw image. As shown in
Figure 1, the filtered image encodes a short period of motion
history prior to the current raw image.

Assuming every raw image is represented by its filtered
images, reference [25] proposed a motion recognition strategy
based on SVMs. In [25], one first trains a SVM classifier to
classify filtered images, where the training data are the filtered
images of a set of labeled video clips and the label of each
filtered image is the same as the label of the video clip to
which it belongs, and a kernel defined between filtered images
is used. The label of a test video clip is obtained by applying
majority voting over the labels of its filtered images, which
are predicted by the SVM classifier (c.f. Equation (2)).

Although promising results were obtained, one limitation of
the strategy in [25] is that it ignores the temporal orderingof
the filtered images in a video clip and treats each video clip
as a bag of filtered images. Figures 2 and 3 show a sequence
of filtered images corresponding to “walking” and “running”,
respectively, each of which records approximately half circle
of the motion. The most distinctive part between the filtered
image of walking and that of running lies in the bottom half
of the image, i.e., the layout of two legs. Viewing each filtered
image individually, there is a close resemblance between the
15-th filtered image in “walking” and the5-th filtered image in
“running” in terms of the layout of two legs. In other words,
there is some overlap between the set of filtered images of
“walking” and the set of filtered images of “running”. The
majority voting scheme in [25] was designed to address this
overlapping problem, with the assumption that most of the
filtered images of a video clip do not lie in the overlapped
region. However, this assumption may not always be valid,
for example, when there is a substantial amount of noise in
the recorded video clip.
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Fig. 2. Filtered images of a video clip of “walking.”

1 2 3 4 5 6 7 8 9 10 11 12 13   

Fig. 3. Filtered images of a video clip of “running.”

In this paper, while still using SVM as the underlying clas-
sification paradigm, we address the above issues by proposing
a kernel defineddirectly over video clips. The main idea is to
take the relative position of a filtered image in a video clip
into consideration. More specifically, taking Figures 2 and3 as
an example, we will incorporate the fact that the15-th filtered
image in Figure 2 is close to the end of the video clip, while
the 5-th filtered image in Figure 3 is close to the start of the
video clip.

IV. A K ERNEL BETWEEN TWO V IDEO CLIPS

We assume that, fori = 1, . . . , n, there areni temporarily
ordered frames in thei-th video clipvi and thep-th frame of
vi is represented by its filtered imagevp

i .
To quantify the relative position of filtered imagevp

i in vi,
we define theordering indextpi for v

p
i as

t
p
i =

p − 1

ni − 1
. (8)

Here, tpi = 0 means thatvp
i corresponds to the first frame in

vi and t
p
i = 1 means thatvp

i corresponds to the last frame
in vi. For thep-th filtered imagevp

i in video clip vi and the
q-th filtered imagevq

j in video clipvj , we define thetemporal
distanced(vp

i ,v
q
j ) between them as

d(vp
i ,v

q
j ) =

∣

∣t
p
i − t

q
j

∣

∣ . (9)

The value of the temporal distanced(vp
i ,v

q
j ) indicates how

well two framesv
p
i and v

q
j are temporarily aligned. More

specifically,d(vp
i ,v

q
j ) = 0 means that framesvp

i andv
q
j have

the same relative position, for example, being the first frame
of vi andvj , respectively. At another extreme,d(vp

i ,v
q
j ) = 1

means, for example, that one frame is the first frame in a video
clip and the other frame is the last frame in another video clip.

Based on the ordering indices of all filtered images in the
video clip vi, we representvi as a setxi of sizeni, i.e.,

xi = {(vp
i , t

p
i ) | p = 1, 2, . . . , ni}

=
{(

v1
i , t

1
i

)

,
(

v2
i , t

2
i

)

, . . . , (vni

i , tni

i )
}

. (10)

Definition 1 (Kernel Between Video Clips):Let KF : F ×
F 7−→ R be a kernel defined over filtered images, where
F denotes the space in which a filtered image lies and the
subscript “F” means “filtered image”, andKO : R×R 7−→ R

be a kernel defined over real numbers, where the subscript
“O” means “ordering index.” We define a “video” kernel
KV : X × X 7−→ R between two video clipsxi andxj as

KV(xi,xj) =

ni
∑

p=1

nj
∑

q=1

KO(tpi , t
q
j)KF(v

p
i ,v

q
j ), (11)

where ni is the number of filtered images inxi, nj is the
number of filtered images inxj , t

p
i is the ordering index

corresponding to the filtered imagevp
i , andt

q
j is the ordering

index corresponding to the filtered imagev
q
j . �

We will discuss the choice of kernelsKF andKO in the next
section. The following Proposition 2 shows that the symmetric
function KV defined in Equation (11) is indeed a kernel.

Proposition 2: Let KF : F×F 7−→ R andKO : R×R 7−→
R be kernels defined over spacesF and R, respectively.
The symmetric functionKV : X × X 7−→ R defined in
Equation (11) is a kernel.

Proof: The statement is proved by combining the fol-
lowing Lemmas 3 and 4.

Lemma 3:Let K1 : M×M 7−→ R andK2 : N×N 7−→ R

be two kernels defined over the spaceM andN , respectively.
The following symmetric functionK : (M,N )×(M,N ) 7−→
R is a kernel

K((mp,np), (mq,nq)) = K1(mp,mq)K2(np,nq), (12)

wheremp,mq ∈ M andnp,nq ∈ N .
Proof: The statement is proved by showing that the

symmetric functionK defined in Equation (12) satisfies Con-
dition II described in Section II, where the fact that the tensor
product of two positive semi-definite matrices is a positive



semi-definite matrix is used. We refer readers to Theorem2.20
in reference [22] for details of the proof.

Lemma 4:Let KU : U ×U 7−→ R be a kernel defined over
the spaceU , and u1 and u2 be two arbitrary finite subsets
of U . Then, the following symmetric functionK defined over
subsets ofU is a kernel

K(u1,u2) =
∑

u′

1
∈u1

∑

u′′

2
∈u2

KU(u′

1, u
′′

2). (13)

Proof: A rigorous proof of this Lemma can be found in,
for example, Section7 of reference [23]. We provide here an
intuitive proof by giving a mappingφ such that the Condition I
described in Section II is satisfied, i.e., the symmetric function
K defined in Equation (13) corresponds to an inner product.

SinceKU is a kernel, using Condition I described in Sec-
tion II, there exists a mappingφU such that, for allu′

1, u
′′

2 ∈ U ,

KU(u′

1, u
′′

2) = 〈φU(u′

1), φU(u′′

2)〉 .

We define the mappingφ as

φ(u) =
∑

u′∈u

φU(u′),

where u is a finite subset ofU . Then, the inner product
betweenφ(u1) andφ(u2) is

〈φ(u1), φ(u2)〉 =

〈

∑

u′

1
∈u1

φU(u′

1),
∑

u′′

2
∈u2

φU(u′′

2)

〉

=
∑

u′

1
∈u1

∑

u′′

2
∈u2

〈φU(u′

1), φU(u′′

2)〉

=
∑

u′

1
∈u1

∑

u′′

2
∈u2

KU(u′

1, u
′′

2)

= K(u1,u2).

Thus, the symmetric functionK defined in Equation (13)
corresponds to an inner product and, according to Condition
I described in Section II, is a kernel.

V. CHOICE OFKERNEL KF BETWEEN FILTERED IMAGES

AND KERNEL KO BETWEEN ORDERING INDICES

We discuss in this section how to choose the kernelKV ,
which measures the similarity between filtered images, and
the kernelKO, which is defined over ordering indices.

Without losing generality, we assume that each filtered
image has widtha and heightb and corresponds to a matrix
of size a × b. By concatenating the columns of the matrix,
each filtered image can be represented by a vector of length
a × b, i.e., an element in the Euclidean spaceR

a×b. Thus,
all kernels defined over the Euclidean space, such as those
in Equations (6), can be used as kernelKF. For example,
assuming the Gaussian kernel shown in Equation (6c) is used,
the termKF(v

p
i ,v

q
j ) in Definition 1 can be written as

KF(v
p
i ,v

q
j ) = exp

(

−σ‖vp
i − v

q
j‖

2
)

(14)

whereσ > 0 needs to be fixed through model selection.
In Definition 1, the termKO(tpi , t

q
j) quantifies the temporal

similarity between two filtered images, and its value shouldbe

large for two filtered images that are well temporarily aligned,
i.e., having similar ordering indices. One choice is to make
KO(tpi , t

q
j) vary inversely to the temporal distanced(vp

i ,v
p
j )

defined in Equation (9). There are many kernels satisfying
this requirement and one of them is the familiar Gaussian
kernel, based on which the termKO(tpi , t

q
j) in Definition 1

(c.f. Equation (11)) can be written as

KO(tpi , t
q
j) = exp

(

−γ
∣

∣t
p
i − t

q
j

∣

∣

2
)

, (15)

whereγ > 0 needs to be specified through model selection.
Putting things together, we arrive at the following kernel to

measure the similarity between video clips

KV(xi,xj) =

ni
∑

p=1

nj
∑

q=1

KO(tpi , t
p
j )KF(v

p
i ,v

q
j )

=

ni
∑

p=1

nj
∑

q=1

exp
(

−σ‖vp
i − v

q
j‖

2 − γ
∣

∣t
p
i − t

q
j

∣

∣

2
)

. (16)

VI. RELATED WORKS

As we mentioned in Section I, there have been many works
on human motion recognition. We review here some related
works on kernel design.

There is a general type of kernel defined over discrete struc-
tures calledconvolution kernel[23], [26], and the proposed
kernelKV can be seen as a kind of convolution kernel.

In one of the simplest formulations of the convolution
kernel, it is assumed that each object consists of several com-
ponents, and there is a (usually simple) kernel associated with
each component, which is called base kernel. The convolution
kernel between two objects is the sum of the base kernels, each
of which is evaluated over a pair of components coming from
two objects. As shown in Equation (10), we represent each
video clip as a set whose members are the pairs of filtered
image and ordering index. In other words, we assume that
the video clipvi is represented by a setxi consisting ofni

components, and thep-th component is the pair(vp
i , t

p
i ), where

v
p
i is the filtered image andtpi is the ordering index. Viewing

the productKF(·, ·)KO(·, ·) as a base kernel, the kernelKV

defined in Definition 1 can also be seen as the sum of the base
kernels evaluated between pairs of components.

The proposed video kernelKV is also related to the string
kernel, which is a special type of convolution kernel and
has been applied to, for example, text classification [27] and
protein sequence classification [28] problems.

For strings defined over a finite alphabet and of finite length,
the string kernelKs(s1, s2) between two stringss1 and s2 is
defined as theweighted sumof the similarities between sub-
strings ofs1 and s2 [27]. This definition is equivalent to the
familiar recursive definition based on which one can evaluate
Ks(s1, s2) efficiently using dynamic programming. For sub-
string s′1 of s1 and sub-strings′2 of s2, the similarity between
s′1 and s′2 is 1 if they are identical and0 otherwise. The
weight associated with the similarity betweens′1 and s′2 is a
decreasing function of the sum of thenumber of gapsof s′1 and
s′2 [29]. Here, the sub-strings′1 has a non-zero number of gaps



only if it is non-contiguous ins1. Viewing the number of gaps
as a measure of thequality of spatial alignmentbetween two
sub-strings, the string kernel weights the similarity between
two sub-strings based on how well they are aligned spatially.

The idea of weighting based on the quality of alignment
in the string kernel motivated the proposed kernelKV . More
specifically, we can view the kernelKV(xi,xj) between two
video clipsxi and xj as aweighted sumof the similarities
between filtered images ofxi andxj , where the similarity is
measured by the kernelKF and the weight is controlled by
the kernelKO. As shown in Equation (15), the kernelKO

is a decreasing function of the temporal distanced(vp
i ,v

q
j )

betweenvp
i andv

q
j . Viewing the temporal distanced(vp

i ,v
q
j )

as a measure ofquality of temporal alignmentbetween two
filtered images, the proposed video kernelKV weights the
similarity between two filtered images based on how well they
are aligned temporarily.

VII. E XPERIMENTAL RESULTS

In this section, we will demonstrate the effectiveness of the
proposed kernelKV on motion recognition using experiments
on real data sets. Let us denote the motion recognition strategy
based on SVM with kernelKV as “SVM-VideoKernel”. We
will compare SVM-VideoKernel against the strategy studiedin
reference [25], which is denoted as “SVM-FrameKernel”. As
we mentioned in Section III, the strategy SVM-FrameKernel
trains a SVM classifier using a kernel between filtered images,
and classifies a test video clip by applying majority voting over
the predicted labels of the filtered images.

Our goal here is to differentiate two types of motion, i.e.,
“walking” and “running.” There are58 video clips recording
the walking and running of29 persons, where every person
performed each type of motion exactly once. The number of
frames, which is also the number of filtered images, of a video
clip varies from21 to 53.

With reference to Equation (16) and after some experiments,
we use the following kernelKV to measure the similarity
between video clipsxi andxj and the following regularization
coefficientC in the experiment

KV(xi,xj)

=

ni
∑

p=1

nj
∑

q=1

exp
(

−0.02 × ‖vp
i − v

q
j‖

2 −
∣

∣t
p
i − t

q
j

∣

∣

2
)

. (17a)

C = 10. (17b)

After extensive experiments, the strategy “SVM-FrameKernel”
gives the lowest error rate when the following kernel and
regularization coefficient are used to train the SVM

K(vp
i ,v

q
j ) = exp

(

−0.1 × ‖vp
i − v

q
j‖

2
)

andC = 5. (18)

The two recognition strategies are evaluated using a mod-
ified cross validation called “Leave One Person Out Cross
Validation” (LOOCV-Person). In each fold of the LOOCV-
Person, two video clips performed by one person are used
as test data and the SVM classifier is trained using the other
56 video clips performed by the other28 persons. Table I

TABLE I

EXPERIMENTAL RESULTS OF29-FOLD LOOCV-PERSON

Recognition Strategy Error Rate (%)

SVM-FrameKernel [25] 1.72

SVM-VideoKernel 0

compares “SVM-VideoKernel” and “SVM-FrameKernel” in
terms of average error rate on test data over29-fold LOOCV-
Person. Here, the error rate is defined as the fraction of
misclassified video clips.

The advantage of strategy SVM-VideoKernel over strategy
SVM-FrameKernel is evident, since the former achieves a zero
error rate. As mentioned in Section III, in order for strategy
SVM-FrameKernel [25] to correctly classify a video clip, the
majority of the filtered images of this video clip must be
correctly classified. However, when the filtered images are
very noisy, a video clip can still be misclassified. Figure 4
shows the raw frames and filtered images of the video clip
that is misclassified by the SVM-FrameKernel strategy, and
correctly classified by the SVM-VideoKernel strategy where
the proposed kernelKV is used. We can see that, due to the
appearance of the subject, especially the gray level of pant,
the filtered images are quite noisy compared to the filtered
images shown in Figures 2 and 3. The zero error rate of
SVM-VideoKernel shown in Table I thus further substantiates
the robustness of the proposed recognition strategy, wherea
kernel between two video clips is used.

VIII. C ONCLUSIONS ANDFUTURE WORK

We proposed in this paper a novel human motion recogni-
tion strategy based on support vector machines by proposing
a kernel that is defined directly over video clips. We proved
the validity of the proposed kernel and demonstrated the
effectiveness of the proposed strategy through experiments on
real data sets.

There are several directions along which the current work
can follow. In this paper, we assume that a video clip is
temporarily properly aligned, i.e., the first frame roughly
corresponds to the beginning of the motion and the last
frame roughly corresponds to the end of the motion. The first
direction is thus to remove this assumption and one possible
solution is to use the following kernelK ′

V

K ′

V(xi,xj) = min
x
′

i
∈W (xi),x′

j
∈W (xj)

KV(x′

i,x
′

j), (19)

whereW (xi) andW (xj) are all possible temporal wrappings
of xi andxj , respectively, andKV is, for example, the kernel
defined in Definition 1. Second, we can use the kernel between
video clips to exploit other tasks in video data mining, such
as video segmentation through support vector clustering [30],
suspicious activity detection through one class SVM [31],
[32]. Finally, as shown in Section VI, the proposed kernel
KV can be seen as a specialization of a convolution kernel.
It is thus natural to exploit other specializations by using
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(a) Raw images

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) Filtered images

Fig. 4. A sub-sequence of the raw images and filtered images of a video clip of “walking” that is misclassified by strategy SVM-FrameKernel [25], but
correctly classified by strategy SVM-VideoKernel where theproposed kernelKV is used.

different decompositions of a video clip [23]. One example
is the following kernelK ′′

V

K ′′

V(xi,xj) =

ni
∏

p=1

nj
∏

q=1

KO(tpi , t
p
j )KF(v

p
i ,v

q
j ), (20)

whereKO andKF are, for example, the kernels described in
Section V.
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