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Abstract—We address the problem of human motion recog- review on human motion analysis can be found, for example,
nition in t_his paper. The goa_ll of human r_notion_ recog_nition _is in [14].
to recognize the type of motion recorded in a video clip, which Rooted in statistical learning theory, the Support Vector

consists of a set of temporarily ordered frames. By defining a .
Mercer kernel between two video clips directly, we propose in Machines (SVMs) [15], [16] have shown to be one of the

this paper a recognition strategy that can incorporate both the Most effective paradigm for classification. There are twp ke
information of each individual frame and the temporal ordering ingredients in a support vector machine. The first is the

between frames. Combining the proposed kernel with the support jdea of margin maximization, which was proved to provide
vector machine, which is one of the most effective classification 4,4 generalization performance of the resulting classifie
paradigms, the resulting recognition strategy exhibits excellent . . . .
performance over real data sets. The s_ec_onq ingredient is t_he use pf kernel, _Whlch measures
the similarity between objects. Since the idea of margin
Indexed Terms— human motion recognition, convolution ker- maximization is hard-wired into the SVM formulation, in erd
nels, support vector machines. to apply the SVM in practice, the main task is to choose a
kernel appropriate for the given problem. More specifically
to use SVM for motion classification, we need to choose a
The purpose of human motion recognition is to assign kernel that incorporates the fact that each video clip cssi
specific label to a human motion, which is usually recordesf a sequence of temporarily ordered frames.
on a video clip. Depending on the requirements of the specificThe main contribution of this paper is to propose a kernel
application, recognition needs to be performed eithemaffor that is defined directly over video clips, which incorpogate
online. In offline recognition, a video clip recording a dig not only the information of each individual frame but also
type of motion is available and one wants to identify the typ#ie temporal ordering between consecutive frames. Using
of motion recorded in the video clip. Online recognition i$upport vector machines with the proposed kernel, the tresul
usually needed in real time surveillance, and one wants ity motion recognition strategy exhibits excellent redtign
identify the most probable motion type at each instance. performance over real data sets.
either case, the motion type should be inferred from a semuen |n the rest of this paper, Section Il briefly introduces
of temporarily ordered frames, and a motion recognitiofupport vector machines, Sections Il through VI descriiee t
strategy should exploit both the content of each frame apgoposed kernel between video clips, Section VIl preseres t
the temporal ordering between consecutive frames. Thes, #xperimental results, and Section VIII concludes the paper
strategies for offline and online recognition are essdpttak  with future research directions.
same, and we focus on offline recognition in this paper.
A common strategy to build a motion recognition system Il. SUPPORTVECTORMACHINES
consists of two steps. The first step is to extract a set ofj, ye ynical setting of a binary classification problem, we
features that characterizes t_he motion type, and the sec%rpg given a training data s& of sizen
step is to construct a classifier that takes these features as
input and outputs the motion type. Most work in motion D = {(x;,y;) | x; € X, y; € {1,-1},i=1,....,n}, (1)
recognition differs from each other on the feature extoarcti
method used, including extracting features from 2-D tragki Wherex; represents thé-th object andy; is the label ofx;.
data [1]-[7] or 3-D tracking information [8], [9], or extring ~ FOr a test datunx, € X, the predicted labeh(x,) given
motion information directly from images [10]-[13]. Givenby the support vector machine (SVM) classifieis [15]
a set of extracted features, most recognition algorithnes ar . 1: f(x0) >0
based on either template matching [12], [13] or state-space  h(xo) = sign(f(xo)) = { 1 f(xo) <0 @
matching which usually uses Hidden Markov Model (HMM) ' 0
[11]. Neural networks have also been used for this purpdse [@here f(x) is called thefunctional marginand is defined as
The performance of these recognition algorithms, esggcial n
those based on template matching, is highly dependent on F(x0) = Za:ﬁyiK(Xi,XO) + 0" ©)
the quality of the extracted motion features. A comprehensi et

I. INTRODUCTION



The vectora® = [a} ... o*]” is the solution of the following walking running

guadratic optimization problem ‘f\ -{’
Maximize :W(a) = a®1 — %aTYTGYa (4a) l { h}
Subject to 0 < a < C anda’y =0, (4b) &7\

where1l is a vector of onesC' is a regularization coefficient Fig. 1. Raw images and filtered images of “walking” and “runriing
that controls the trade-off between accuracy and smooshnes
of the classifier and needs to be specified through model

selection,Y is an x n diagonal matrix withY;; = y; for In the following Sections Il through VI, we will propose a
i = 1,...,n, and G is the so-calledGram matrix with kernel between two video clips for motion recognition prob-
Gij = K(x;,x;) for i,j = 1,...,n. Detailed explanations lems, and prove its validity using the above two conditions.

on how to solve problem (4) efficiently and compétebased
on a* can be found, for example, in [17].

In the above formulationk : X x X —— R is called the
Mercer kernel[15], which is usually abbreviated dsernel We assume that each video clip consists of several tem-
andR is the set of real number. By choosing an appropriaterally ordered frames, which are calledw imageshere.
kernel K, we implicitly specify a (usually nonlinear) mappingFigure 1 shows snapshots, i.e., raw images, of two common
¢ from X to some Hilbert spacé{ such that the following type of human motions, “walking” and “running.”
equation holds for alk;,x; € X Also shown in Figure 1 is théiltered imagefor each raw

image, which was introduced in [24]. For each raw image in

K (i, %) = (9(x:), 6(x5)) ®) 4 video clip, its filtered image is defined as the weighted sum

where (-, -) is the dot product inH. With reference to (3), of the current raw image and all earlier raw images, and the

this means that the SVM classifier is a linear classifieHin weight is larger for the more recent raw image. As shown in

which could result in a (possibly highly) non-linear cldigsi Figure 1, the filtered image encodes a short period of motion
in X if the mappingg is non-linear. history prior to the current raw image.

Thus, in order to build a SVM classifier, all we need is to Assuming every raw image is represented by its filtered
choose a value for the penalizing coeffici€ntand specify a images, reference [25] proposed a motion recognitionegyat
kernel K suitable for the problem interested. There are marased on SVMs. In [25], one first trains a SVM classifier to
kernels that have been developed. For example, whénthe classify filtered images, where the training data are theréitt
Euclidean space, popular kernels are: images of a set of labeled video clips and the label of each
filtered image is the same as the label of the video clip to
which it belongs, and a kernel defined between filtered images

Polynomial kernelX (x;,x;) = (x; x;)?, (6b) is used. The label of a test video clip is obtained by applying

Gaussian kernel: K(x;,x;) = exp (—a‘”xi — XjHQ) . (6¢) majority voting over the labels of its filtered images, which
. . . are predicted by the SVM classifier (c.f. Equation (2)).
wheres > 0 in the Gaussian kernel. The linear kernel has been 5,441 promising results were obtained, one limitatién o
successfully used in, for example, text classification [@ob the strategy in [25] is that it ignores the temporal orderiig

[18]. The polynomial kernel and Gaussian kernel have begf), fitered images in a video clip and treats each video clip
proven to be very effective in a handwritten digits recoignit as a bag of filtered images. Figures 2 and 3 show a sequence

problem [19}-[21]. . . . of filtered images corresponding to “walking” and “running”
In general, a symmetric functioh’ : &' x X +— RIS | oqhactively, each of which records approximately haltleir

a kernel if and only if it satisfies one of the following WOyt the motion. The most distinctive part between the filtered

conditions (see, e.g. [22], [23]). image of walking and that of running lies in the bottom half
« Condition I: There exists a mapping : X — H such of the image, i.e., the layout of two legs. Viewing each fetbr

I[Il. M OTIVATION FOR A KERNEL BETWEEN TWO VIDEO
CLIPS

Linear kernel: K (x;,x;) = x! x;, (6a)

that, for allx;,x; € X, we have image individually, there is a close resemblance between th
K(xi,x;) = (o(x:), ¢(x;)) - (7) 15-thfiltered image in “walking” and thé-th filtered image in
running” in terms of the layout of two legs. In other words,
« Condition Il:  For anyxi, xa,...,X,, Wheren is any there is some overlap between the set of filtered images of
positive number, the: x n Gram matrixG with G;; = “walking” and the set of filtered images of “running”. The
K(x;,x;) is positive semi-definite. majority voting scheme in [25] was designed to address this

Strictly speaking, the necessity of condition I, i.e., these overlapping problem, with the assumption that most of the
tence of mapping, requires additional technical assumptiongltered images of a video clip do not lie in the overlapped
on the spaceX’ and the functionk” [23]. Since these assump-region. However, this assumption may not always be valid,
tions are satisfied for most practical problems, we drop theior example, when there is a substantial amount of noise in
in this paper to make the presentation less complex. the recorded video clip.
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Fig. 2. Filtered images of a video clip of “walking.”
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Fig. 3. Filtered images of a video clip of “running.”
In this paper, while still using SVM as the underlying clas- ={(vi.t}), (vi.t]), ..., (v}, t')}. (10

sification paradigm, we address the above issues by praposin . i
a kernel definediirectly over video clipsThe main idea is to _ Definition 1 (Kernel Between Video Clipshet Kg @ F x

take the relative position of a filtered image in a video clig. —— R be a kemel defined over filtered images, where
into consideration. More specifically, taking Figures 2 gras < denotes the space in which a filtered image lies and the
an example, we will incorporate the fact that thieth filtered SUPSCript “F” means “filtered image”, anllo : R xR — R
image in Figure 2 is close to the end of the video clip, whilge a kernel defined over real numbers, where the subscript

the 5-th filtered image in Figure 3 is close to the start of thé®  Means “ordering index.” We define a *video” kernel
Ky : X x X — R between two video clipk; andx; as

video clip.
n; Nj
IV. A KERNELBETWEENTWO VIDEO CLIPS | Ky(xi,x;) = ZZKo(tf,tg)KF(V?V?% (11)
We assume that, for=1,...,n, there aren; temporarily p=1qg=1

ordered frames in théth video clipv; and thep-th frame of where n, is the number of filtered images i;, n, is the

Vi 1S repres_,ented by |t_s flltere_d_ |mag§_. . _ number of filtered images ix;, ! is the ordering index
To quantify the relative pogmon %f filtered imag¢ in v, corresponding to the filtered imagé/, andt] is the ordering
we define theordering indext;’ for vy as index corresponding to the filtered imag%. [ ]
We will discuss the choice of kernelsg and K in the next
section. The following Proposition 2 shows that the symioetr
function Ky defined in Equation (11) is indeed a kernel.
e Proposition 2: Let K : Fx F— RandKo: RxR —
R be kernels defined over spacés and R, respectively.
The symmetric functionky : X x X —— R defined in
Equation (11) is a kernel.
Proof: The statement is proved by combining the fol-
d(vP,v) = |t — 1. (9) lowing Lemmas 3 and 4. [
- ) . Lemma 3:Let K; : MxM — RandK, : N xN — R
e value of the temporal distanckv;’, v7) indicates how pe o kernels defined over the spateand.\, respectively.

well _t\_/vo framesv? and v;? are temporarily aligned. More The following symmetric functiod : (M, N')x (M, N) —
spemﬂcally,d(vf,v‘?) = 0 means that frames_f andv“}_have R is a kernel

the same relative position, for example, being the first #am

of v; andv;, respectively. At another extremé(vy,v{) = 1 K((m,,n,), (mg,n,)) = Ky1(my,, my)Ks(n,,n,), (12)
means, for example, that one frame is the first frame in a vide%
clip and the other frame is the last frame in another videm cli W€ ™My, Mg € M andn,, n, € V.

Based on the ordering indices of all filtered images in the F'00f: The statement is proved by showing that the
video clip v;, we represent; as a set; of sizen,, i.e., symmetric functionk” defined in Equation (12) satisfies Con-

dition 1l described in Section Il, where the fact that thesten
x; ={(vP ) |p=1,2,...,n;} product of two positive semi-definite matrices is a positive

1771

p_p—1

H= = ®)
Here,t = 0 means thaw? corresponds to the first frame in
v; and ¢’ = 1 means that! corresponds to the last fram
in v;. For thep-th filtered imagev? in video clipv; and the
g-th filtered imagevj in video clipv;, we define theemporal
distanced(vy, v§) between them as



semi-definite matrix is used. We refer readers to Thedt@t large for two filtered images that are well temporarily aégn

in reference [22] for details of the proof. m i.e., having similar ordering indices. One choice is to make
Lemma 4:Let Ky : U x U — R be a kernel defined overKo(tf,tj) vary inversely to the temporal distandév;, v’)

the spacd{, andu; and uy be two arbitrary finite subsetsdefined in Equation (9). There are many kernels satisfying
of U. Then, the following symmetric functiok” defined over this requirement and one of them is the familiar Gaussian

subsets ot/ is a kernel kernel, based on which the terdio(t7,t7) in Definition 1
c.f. Equation (11)) can be written as
Kwm) = 30 3 Kofui,u (13) (©f Equation (11)
) u 1€ u2 El§2 . KO(tfatg) = eXp (_’V ’tf - t?f) ) (15)
Proof: A rigorous proof of this Lemma can be found in,

for example, Sectiorm of reference [23]. We provide here anwhere~ > 0 needs to be specified through model selection.
intuitive proof by giving a mapping such that the Condition |  Putting things together, we arrive at the following kerreel t
described in Section Il is satisfied, i.e., the symmetricfiom measure the similarity between video clips
K defined in Equation (13) corresponds to an inner product. n;

Since Ky is a kernel, using Condition | described in Sec- (xi,%;) ZZKO tz,tf VP ;1)
tion II, there exists a mappingy such that, for alk}, v} € U,

p=1q=1
KU(LL17 ) <¢U(U1) ¢U(U2)> :Zzexp( U||V quHQ ’Y|tf*t?‘2) ) (16)
We define the mapping as p=1g=1
_ Z du(u') VI. RELATED WORKS
u'€u As we mentioned in Section |, there have been many works
where u is a finite subset of/. Then, the inner product ©" human motion recognition. We review here some related
betweens(u;) and ¢(uy) is works on kernel design. _ _
There is a general type of kernel defined over discrete struc-
. tures calledconvolution kernel23], [26], and the proposed
(p(wr), o(uz)) = < > du(w). > dulu > kernel Ky can be seen as a kind of convolution kernel.
wem uz €2 In one of the simplest formulations of the convolution
= > > (uwh), duluh)) kernel, it is assumed that each object consists of several co
uf€uy uf €uy ponents, and there is a (usually simple) kernel associaiiéd w
_ Z Z Ku(d, ul) each component, which is called base kernel. The convalutio

kernel between two objects is the sum of the base kernels, eac
of which is evaluated over a pair of components coming from
two objects. As shown in Equation (10), we represent each
Thus, the symmetric functiodX defined in Equation (13) video clip as a set whose members are the pairs of filtered
corresponds to an inner product and, according to Condititnage and ordering index. In other words, we assume that
| described in Section I, is a kernel. m the video clipv; is represented by a sef consisting ofn;
components, and theth component is the paiv?, t7), where

V. CHOICE OFKERNEL K¢ BETWEEN FILTERED IMAGES v’ is the filtered image and’ is the ordering index. Viewing

AND KERNEL Ko BETWEEN ORDERING INDICES the productir(-,-)Ko(-,-) as a base kernel, the kernal,

We discuss in this section how to choose the ketfigl defined in Definition 1 can also be seen as the sum of the base
which measures the similarity between filtered images, arérnels evaluated between pairs of components.
the kernelKo, which is defined over ordering indices. The proposed video kerndly is also related to the string

Without losing generality, we assume that each filteragrnel, which is a special type of convolution kernel and
image has widthu and heightb and corresponds to a matrixhas been applied to, for example, text classification [27 an
of size a x b. By concatenating the columns of the matrixprotein sequence classification [28] problems.
each filtered image can be represented by a vector of lengtiFor strings defined over a finite alphabet and of finite length,
a x b, i.e., an element in the Euclidean spage*®. Thus, the string kernelK(s;,s2) between two strings; ands; is
all kernels defined over the Euclidean space, such as th@sgined as theveighted sunof the similarities between sub-
in Equations (6), can be used as kerdét. For example, strings ofs; ands, [27]. This definition is equivalent to the
assuming the Gaussian kernel shown in Equation (6c) is usgfniliar recursive definition based on which one can evaluat

/ 1"
ujEul uy €ug

= K(ul, I,IQ).

the termKg(v}, v{) in Definition 1 can be written as K(s1,s2) efficiently using dynamic programming. For sub-
) tring s} of s; and sub-strings), of s,, the similarity between
Ke(v?,v?) = exp (—o v — vI|2 14) SN9s; OF sy ar 2 O1 S5 .
F(VEov)) exp (~o|lvi Vil ) (14) s} and s, is 1 if they are identical and) otherwise. The

whereo > 0 needs to be fixed through model selection.  weight associated with the similarity betwegpands), is a
In Definition 1, the termKo (¢}, ) quantifies the temporal decreasing function of the sum of thember of gapsf s} and
similarity between two filtered images, and its value shddd s/, [29]. Here, the sub-string| has a non-zero number of gaps



TABLE |

only if it is non-contiguous irs;. Viewing the number of gaps EXPERIMENTAL RESULTS OF29-FOLD LOOCV-PERSON

as a measure of thguality of spatial alignmenbetween two

sub-strings, the string kernel weights the similarity bextw Recognition Strategy | Error Rate ¢6)
two sub-strings based on how well they are aligned spatially SVM-FrameKernel [25] 1.72
The idea of weighting based on the quality of alignment SVM-VideoKernel 0

in the string kernel motivated the proposed kerhAgl. More
specifically, we can view the kernély (x;,x;) between two

video clipsx; andx; as aweighted surof the similarities compares “SVM-VideoKernel” and “SVM-FrameKernel” in

between filtered images of; andx;, where the similarity IS orms of average error rate on test data @fefold LOOCV-
measured by the kernélr and the weight is controlled by person. Here, the error rate is defined as the fraction of
the kernel Ko. As shown in Equation (15), the kernélo | isclassified video clips.

. ; . . » g
Ibs a decrtje)asw:jg (flur\1;:t|0|j of rt]he tempor;allj.dlstamﬁe%,vz) The advantage of strategy SVM-VideoKernel over strategy

etweenv; andv;. Illewnggt e teer(?'ra 'Stinoﬁ(vi’vj) SVM-FrameKernel is evident, since the former achieves a zer
as a measure ajuality of temporal alignmenbetween two error rate. As mentioned in Section Ill, in order for strateg

fi!te_red_ images, the prgposed_ video kerde|, weights the SVM-FrameKernel [25] to correctly classify a video clipgth

S|m|Iar|ty between twq filtered images based on how well th%ajority of the filtered images of this video clip must be

are aligned temporarily. correctly classified. However, when the filtered images are
VIl. EXPERIMENTAL RESULTS very noisy, a video clip can still be misclassified. Figure 4

In this section, we will demonstrate the effectiveness ef tthOW.S th? raw fr.ames and filtered images of the video clip
proposed kerneky, on motion recognition using experimentsthat IS m'SCIaS.S.'f'ed by the SVM-.FrameKerneI strategy, and
on real data sets. Let us denote the motion recognitioreglyat correctly classified by Fhe SVM-Videokemel strategy where
based on SVM with kerneky as “SVM-VideoKernel”. We the proposed kerneky IS used. WPT can see that, due to the
will compare SVM-VideoKernel against the strategy studied appe_arance_of the SUbJeCtZ esng|aIIy the gray level OT’ pant
reference [25], which is denoted as “SVM-FrameKernel”. AEpe filtered images are quite noisy compared to the filtered
we mentioned in Section lll, the strategy SVM-FrameKernd'29€s shown in F|gure§ 2 and 3. The zero error rqte of
trains a SVM classifier using a kernel between filtered image%VM'V'dEOKeme' shown in Table | thus_f_urther substantate
and classifies a test video clip by applying majority votivgto the robustness of the_ propo_sed_ recognition strategy, where
the predicted labels of the filtered images. kernel between two videa clips Is used.

Our goal here is to differentiate two types of maotion, i.e.,
“walking” and “running.” There areés8 video clips recording
the walking and running o29 persons, where every person We proposed in this paper a novel human motion recogni-
performed each type of motion exactly once. The number gén strategy based on support vector machines by proposing
frames, which is also the number of filtered images, of a videpkernel that is defined directly over video clips. We proved
clip varies from21 to 53. the validity of the proposed kernel and demonstrated the

With reference to Equation (16) and after some experimenggfectiveness of the proposed strategy through expersnamt
we use the following kerneky to measure the similarity real data sets.
between video clips; andx; and the following regularization  There are several directions along which the current work
coefficientC' in the experiment can follow. In this paper, we assume that a video clip is

Kv(xi, ;) temporarily properly aligned, i.e., the first frame roughly
ne corresponds to the beginning of the motion and the last

_ Z Zexp (_0.02 x |[vP — V;;”z _ ‘tyi) _ t?|2) . (17a) fr_ame_ rou_ghly corresponds to _the end of_the motion. The fi_rst

direction is thus to remove this assumption and one possible

VIII. CONCLUSIONS ANDFUTURE WORK

p=1q=1 Lo . ,
C =10, (17b) solution is to use the following kernéty,
After extensive experiments, the strategy “SVM-Framelg€rn Ky (xi,%5) = X,‘eW(X’TLUEw(X_) Kv(x;, X}), (19)
gives the lowest error rate when the following kernel and ! o ’
regularization coefficient are used to train the SVM whereW (x;) andW (x;) are all possible temporal wrappings

of x; andx;, respectively, and(y is, for example, the kernel
defined in Definition 1. Second, we can use the kernel between
The two recognition strategies are evaluated using a modedeo clips to exploit other tasks in video data mining, such
ified cross validation called “Leave One Person Out Cross video segmentation through support vector clusterifgy [3
Validation” (LOOCV-Person). In each fold of the LOOCV-suspicious activity detection through one class SVM [31],
Person, two video clips performed by one person are us@2]. Finally, as shown in Section VI, the proposed kernel
as test data and the SVM classifier is trained using the oth€y can be seen as a specialization of a convolution kernel.
56 video clips performed by the othé@8 persons. Table | It is thus natural to exploit other specializations by using

}((vf,vg)::exp(g4ll X vag—ngQ) andC =5. (18)
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(b) Filtered images
Fig. 4. A sub-sequence of the raw images and filtered images aem \clip of “walking” that is misclassified by strategy SVMafmeKernel [25], but

correctly classified by strategy SVM-VideoKernel where fiteposed kerneKy is used.

different decompositions of a video clip [23]. One examplg4]
is the following kernelKY/

ng My [15]
Ky(xi,x;) = [[ [] Kot &) Kev v, (20 1O
p=lg=1 [17]

where Ko and K are, for example, the kernels described in

Section V.
[18]
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