

ULV AND GENERALIZED ULV SUBSPACE TRACKING ADAPTIVE
ALGORITHMS

Srinath Hosur Ahmed H. Tewfik Daniel Boley

Dept. of Electrical Engineering and Computer Science,

University of Minnesota, Minneapolis, MN 55455

EDICS 2.6
November, 1995
Abstract

Traditional adaptive filters assume that the effective rank of the input signal is the same as the input
covariance matrix or the filter length N. Therefore, if the input signal lives in a subspace of dimension
less than N, these filters fail to perform satisfactorily. In this paper we present two new algorithms for
adapting only in the dominant signal subspace. The first of these is a low-rank recursive-least-squares
(RLS) algorithm which uses a ULV decomposition to track and adapt in the signal subspace. The second
adaptive algorithm is a subspace tracking least-mean-squares (LMS) algorithm which uses a generalized ULV
(GULV) decomposition, developed in this paper, to track and adapt in subspaces corresponding to several
well conditioned singular value clusters. The algorithm also has an improved convergence speed compared
to that of the LMS algorithm. Bounds on the quality of subspaces isolated using the GULV decomposition

are derived and the performance of the adaptive algorithms are analyzed.

1 Introduction

Conventional adaptive algorithms assume that the desired signal lives in a space whose dimension is
the same as the input covariance matrix or the length of the filter. However, in many signal processing
applications, such as interference suppression using the adaptive-line-enhancer (ALE), the input signals
exist in a subspace whose dimension is much lower than the filter length. In such cases, adaptive filtering
only in those subspaces which contain dominant signal components results in a performance improvement
due to the exclusion of the noise only modes. In this paper, we develop two new algorithms for adaptive
filtering in the signal subspaces. The first of these algorithms is a low rank recursive-least-squares (RLS)

algorithm which uses the ULV algorithm to track and adapt only in the signal subspaces. The second

This work was supported in part by ONR under grant N00014-92-J-1678, AFOSR under grant AF/F49620-93-1-0151DEF,
DARPA under grant USDOC6NANB2D1272 and NSF under grant CCR-9405380.

algorithm is a subspace tracking least-mean-squares (LMS) algorithm which uses a generalization of the
ULV decomposition developed in this paper.

Traditionally the singular value decomposition (SVD) is used to compute the low-rank least squares
solution [1]. However, in real time applications, it is expensive to update the SVD. Recently, a low rank,
eigensubspace RLS algorithm has been proposed in [2] using a Schur-type decomposition of the input cor-
relation matrix. This algorithm requires O(rN) flops, where r is the effective rank of the input correlation
matrix. However, the algorithm requires the knowledge of this rank r. Hence, it is not suitable to applica-
tions where r varies with time. Rank-revealing QR (RRQR) decompositions may also be used to solve the
least-squares (LS) problem [3]. These algorithms can track the rank and therefore do not suffer from the
disadvantage of [2]. The computational complexity of this approach is O(N?). However, it has been shown
[4] that the quality of approximation of the singular value subspaces using RRQR (and hence the closeness of
the truncated RRQR decomposition to the truncated SVD) depends on the gap between the singular values.
The LS problem was also solved by using a truncated ULV decomposition to approximate the data matrix
[4]. Although the computational expense, O(N?), of this algorithm is greater than that of [2], this method
offers the advantage that it is able to track rank changes. Furthermore, the quality of the approximations to
the singular value subspaces that it produces does not depend on the magnitude of the gap in the singular
values.

In many applications in signal processing and in particular for low rank subspace domain adaptive
filtering, one is not interested in the exact singular vectors but in the subspaces corresponding to clusters
of singular values of the same order of magnitude. Recently, some subspace updating techniques have
been suggested [5]-[9]. A Kalman filter was used to update the eigenvector corresponding to the smallest
eigenvalue in [5]. However it was not suggested how to modify the algorithm in case of multiple eigenvalues
corresponding to noise. In [6], a fast eigen-decomposition algorithm which replaced the noise and signal
eigenvalues by their corresponding average values was proposed. This technique could work well if the exact
eigenvalues could be grouped together in two tight clusters. In [7] and [8], the averaging technique of [6] is
used. However, the SVD is updated instead of the eigenvalue decomposition. This reduces the condition
numbers to their square roots and increases numerical accuracy. Again the assumption that the singular
values could be grouped into two tight clusters is made. In normal signal scenarios and in particular for the
application targeted in this paper, this assumption is generally not valid.

The ULV decomposition was first introduced by Stewart [10], to break the eigenspace of the input
correlation matrix R, where N is the length of the impulse response of the adaptive filter, into two
subspaces, one corresponding to the cluster of largest singular values and the other corresponding to the
smaller singular values or noise subspace. This method is easily updated when new data arrives without
making any a priori assumptions about the overall distribution of the singular values. Each ULV update
requires only O(N?) operations. An analysis of the ULV algorithm was also performed [4, 11]. It was shown
in [4] that the “noise” subspace (the subspace corresponding to the cluster of small singular values) is close

to the corresponding SVD subspace. The analysis of [11] also shows that the ULV subspaces are ouly slightly

more sensitive to perturbations. These analyses show that the ULV algorithm can be used in many situations
where SVD was the only available alternative to date.

We use the ULV decomposition to develop a low rank recursive-least-squares (RLS) algorithm. The
proposed algorithm tracks the subspace that contains the signal of interest using the ULV decomposition
and adapts only in that subspace. Though the ULV decomposition requires O(N?) flops, the increase in
computational complexity can be justified by the fact that the ULV decomposition is able to track changes
in the numerical rank.

We also develop a new subspace tracking least-mean-squares (LMS) algorithm. The ULV decomposition
tracks only two subspaces, the dominant signal subspace and the smaller singular value subspace. Even
though, the dominant subspace contains strong signal components, its condition number might still be large.
Now, recall that the convergence speed of the LMS algorithm depends inversely on the condition number of
the input autocorrelation matrix (the ratio of its maximum to minimum eigenvalue) [12, 13]. Thus, a low
rank LMS algorithm which uses the ULV decomposition would still have a poor convergence performance.
We therefore develop a generalization of the ULV algorithm to track several well conditioned subspaces of
the input correlation matrix. The input is then projected onto these subspaces and LMS adaptive filtering
is performed in these well conditioned subspaces. This improves the convergence speed of the subspace
tracking LMS algorithm.

This paper is organized as follows. In Section 2 we introduce the rank revealing ULV decomposition and
the idea of tracking subspaces corresponding to clusters of singular values. Readers already familiar with the
ULV decomposition can skip Section 2.1 and the first part of Section 2.2. The concluding part of this section
contains a discussion on various heuristics used to decide if a gap exists between the singular values. This
discussion motivates the use of a new heuristic introduced in this paper with the ULV and especially the
GULV algorithms. Some of the bounds on the quality of the subspaces are reviewed in Section 2.3. We also
derive a new bound on the angle between the subspaces generated using the ULV algorithm on a perturbed
data matrix and the corresponding subspaces obtained using a SVD on the true data matrix. Next, we
develop the ULV-RLS algorithm. The GULV algorithm is presented in Section 5. In this section, we also
show that the bounds on the subspace quality derived for the plain ULV decomposition can be recursively
applied to estimate the quality of the subspaces obtained using the GULV procedure. Section 6 introduces
the idea of subspace domain LMS adaptive filtering and Section 7 analyzes its performance. Numerical

examples are discussed in Section 8.

2 The ULV decomposition

Many signal processing problems require that we isolate the smallest singular values of a matrix. The matrix
is typically a covariance matrix or a data matrix that is used to estimate a covariance matrix. The decision
as to how many singular values to isolate is usually based on a threshold value (find all the singular values

below the threshold) or on a count (find the last r singular values). While extracting the singular values one

often wants to keep clusters of the singular values together as a unit. In the SVD, this extraction is easy
since all the singular values are “displayed”. One can therefore easily traverse the entire sequence of singular
values to isolate the desired set. Therefore, in order to isolate the smallest singular values, one needs to
choose a proper threshold and identify all the singular values which lie below this threshold. As mentioned
earlier, the drawback of the SVD is that it requires O(N?) flops. Here, we review the ULV decomposition of
Stewart [10]. The ULV decomposition can be used to divide the singular values into two groups and compute

a basis for the space spanned by the corresponding groups of singular vectors.

2.1 Data Structure

The ULV decomposition of a real k¥ x N matrix A (where k > N) is a triple of 3 matrices U, L, V plus
a rank index r, where

A =ULV", (2.1)

V is a N x N orthogonal matrix, L is a NV x N lower triangular matrix and U has the same shape as A

with orthonormal columns. The lower triangular matrix L can be partitioned as

L= €0 2.2
_<E F) (22)

where, C, the leading r x r part of L has a Frobenius norm approximately equal to the norm of a vector of

the r leading singular values of A. That is, if the singular values of A satisfy
01(A)>---0,(A) > 0,41(A) > ---on(A) (2.3)

then ||C||% ~ 02(A) + --- + 02(A). This implies that C encapsulates the “large” singular values of L and
(E, F) (the trailing N —r rows of L) approximately encapsulate the N — r smallest singular values. The last
N — r columns of V encapsulate the corresponding trailing right singular vectors.

In the data structure actually used for computation, L is needed to determine the rank index at each
stage as new rows are appended. However, U is not needed to obtain the right singular vectors. Therefore,
a given ULV decomposition can be represented just by the triple [L, V,r]. The ULV decomposition is rank
revealing' in the sense that the norm of the matrix [E F] is smaller than some specified tolerance.

Thus, this decomposition immediately provides us with the sub-spaces corresponding to a group of largest
singular values and another corresponding to the group of smallest singular values.

The ULV updating procedure updates the ULV decomposition of the data matrix corresponding to the
input process, as additional data vectors become available. In essence, it updates the subspaces corresponding
to the group of large eigenvalues and that of small eigenvalues of the correlation matrix of the input to the

adaptive filter.

'term coined by T. F. Chan

chop C
cc . .. cc+ . . cC
rotate rotate away CcC
ccc. . cccC+ . ccc
from — from — 7Zeros — ccc
eeef . eeef+ EEETF
right left increment cccc
eeeff eeeff eeeff
rank index e e e e f
RRRRR R .

Figure 1: Sketch of Absorb_One procedure. Upper case letters denote large entries, lower case letters small

entries in the ULV partitioning, R denotes an entry of the new row, + a temporary fill, and . a zero entry.

2.2 Primitive Procedures

The ULV updating process consists of five primitive procedures. The first three procedures are designed
to allow easy updating of the ULV decomposition as new rows are appended. Each basic procedure costs
O(N?) operations and consists of a sequence of plane (Givens) rotations [14]. Pre-multiplication by a plane
rotation operates on the rows of the matrix while post-multiplication operates on its columns. By using a
sequence of such rotations in a very special order, we can annihilate desired entries while filling in as few
zero entries as possible. We then restore the few zeroes that are filled in. We show the operations on L,
partitioned as in (2.2). Each rotation applied from the right is also accumulated in V, to maintain the
identity A = ULV”, where U is not saved. The last two procedures use the first three to complete a ULV

update.

e Absorb_One: Absorb a new row. The matrix A is augmented by one row, yielding

()= ()

The matrices L, V are then updated to restore the ULV structure, and the rank index r is incremented

by 1. The process is sketched in Fig. (1).

e Extract_Info: The following information is extracted from the ULV decomposition: (a) an approxi-
mation of the last singular value of C (i.e., the leading r x r part of L), and (b) a left singular vector of

C corresponding to this singular value. These are computed using a condition number estimator [15].

e Deflate One: Deflate the ULV decomposition by one (i.e., apply transformation and decrement the
rank index by one so that the smallest singular value in the leading r x r part of L is "moved” to the
trailing rows). Specifically, transformations are applied to isolate the smallest singular value in the
leading r X r part of L into the last row of this leading part. The transformations are constructed using
item (c) from Extract_Info and applied in a manner similar to Absorb_One. Then the rank index is
decremented by 1, effectively moving the smallest singular value from the leading part to the trailing
part of L. This operation just moves the singular value without checking whether the singular value

moved is close to zero or any other singular value.

e Deflate_To_Gap: This procedure tries to move the rank boundary, represented by the rank index r,
toward a gap among the singular values. Let s be the smallest singular value of C obtained using
Extract_Info. The Deflate_To_Gap procedure essentially decides if the magnitude of this singular
value is of the same order as that of the singular values in the trailing part of L. This decision is
made using a heuristic. After applying the heuristic, if the procedure decides that s is of the same
order of magnitude as the trailing singular values, a deflation is performed using Deflate_One. The
procedure then calls Extract_Info with the new rank index. This process is repeated till a gap in
the singular values is found. Various heuristics can be used to try and determine if a gap between the
singular values exists. However some of them are not suitable for use with generalization of the ULV.

We examine some of these techniques in Section 2.2.1 and discuss their relative merits and demerits.

e Update: This procedure encompasses the entire process. It takes an old ULV decomposition and a new
row to append, and incorporates the row into the ULV decomposition. The new row is absorbed, and

the rank is deflated if necessary to find a gap among the singular values.

2.2.1 Choice of heuristics for deflation

Various heuristics can be used to decide if a gap exists in the singular values. The choice of the heuristic
is extremely important as it is used to cluster the singular values and hence obtain the correct singular
subspaces. To our knowledge three heuristics (including the one used in this paper) have been proposed in
literature.

The heuristic proposed in [16] estimates the smallest singular value, s of C and compares it with a user
specified tolerance. This tolerance, provided by the user, is usually based on some knowledge of the eigenvalue
distribution. The choice of the tolerance is important. If it is too large, the rank may be underestimated
and if it is too small, it may be overestimated. Also, as we shall see later, the user has to provide several
tolerances to track more than two clusters using the generalized ULV decomposition. In practice all these
tolerances may not be available. Therefore, this heuristic cannot be used in the GULV algorithm that we
describe next.

A second heuristic has been proposed in [9]. This heuristic decides that a gap in the singular values
exists if s* > d?(f? + b?) where f is the Frobenius norm of the trailing part [E, F]. The parameter b, called
Zero_Tolerance, is selected by the user. It is included to allow for round-off or other errors. This heuristic
has the nice feature that only the Spread d and the Zero_Tolerance b need to be specified. The algorithm
then uses this heuristic to cluster all singular values of similar order of magnitude. However, when the rank
increase is greater than one or the algorithm underestimates the numerical rank, this heuristic leads to some
problems. In particular if one of the larger singular values lies within the trailing part, the heuristic might
decide that no gap exists. Deflation is then repeatedly applied till the rank index becomes zero. As the
algorithm is limited to growing the rank boundary by no more than one for each iteration, the algorithm has

to be reinitialized by artificially moving the rank boundary all the way down to the smallest eigenvalue of L

T T T

Stewart’s heuristic
— - Boley’s heuristic
—— Proposed heuristic

[an
(=2
T

= = =
(=] N s
T T
L L

Rank Index
[e¢]
L

4t 4

0 Il Il Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900 1000
Iterations

Figure 2: Tracking performance of ULV using different heuristics for finding a gap in singular values

and searching for the rank boundary (using deflations). Though it is a reasonable assumption that the rank
usually does not change by more than one, the problem still exists if the rank is underestimated. Figure 2
shows the rank tracking behavior of the ULV algorithm using the heuristics of [10], [9] and that proposed
in this paper. The input initially consisted of two complex sinusoids each having an amplitude of 0.1. The
background noise was white with a variance of 1072, Therefore, there are initially two large singular values
with magnitudes on the order of 0.01 each. The ULV algorithms using all the heuristics converge to a rank
estimate of two. Next a complex exponential of unit amplitude is added to the input. Now the larger group
of singular values is {1,0.01,0.01}. The figure shows that after some time, the ULV algorithm using the
proposed heuristic and that of [10] converged to a rank of three. However, the ULV algorithm using the
heuristic of [9] converges to one. This is because, the heuristic initially under estimated the rank as two.
Thus, a singular value of magnitude 0.01 is isolated into the trailing part of L, making the Frobenius norm
of this part of the same order as the smallest singular value of the leading part and forcing a deflation.

We will see later that even though the outermost rank boundary in a generalized ULV decomposition
cannot change by more than one, the inner rank boundaries can change by more than one. As the rank
increase of each boundary is limited to one per iteration, a large singular value would be isolated into the
next group of small singular values. Thus, the situation described above might occur frequently and the
inner rank boundary might be erroneously estimated. Therefore, this heuristic also cannot be used with the
GULV decomposition.

The heuristic proposed in this paper tries to combine the advantages of the two heuristics that we
discussed above. By using the heuristic proposed in this paper, we can automatically isolate clusters of

singular values of similar order of magnitude i.e., the condition number of each cluster lies within the user

defined Spread. Also, it does not suffer from the disadvantage of the second heuristic. If the estimate of
the rank boundary is too low, the heuristic allows the rank to grow until it attains the correct value. This
heuristic estimates the smallest singular value, f, of L in addition to that of C (s). The heuristic then decides
that a gap between the singular values exists if s > df, where d is the Spread chosen by the user. Thus,
this heuristic does not require a user specified tolerance. In case of the GULV decomposition, f is simply
the smallest value of the small singular value group adjacent to the group on which Deflate_To_Gap is being
applied. We shall see later that this heuristic can be used with the GULV decomposition with minimum
additional computations. The tracking performance of the ULV decomposition using this heuristic is shown
in Fig. 2. Note that if we replace df by the user specified tolerance in our heuristic, we obtain the heuristic

of [10].

2.3 Quality of Subspaces

Consider the orthogonal projector onto a subspace S, Ps. For two equi-dimensional subspaces &7 and Sy,

the distance between subspaces is characterized by
sinf(S1,S82) = [[(I = Ps,)Ps, || = [(I - Ps,)Ps, |- (2.4)

Bounds have been derived for the ULV algorithm to assess the distance between the ULV subspaces and the
corresponding singular subspaces and to measure sensitivity of the subspaces to perturbations.

Let the ULV decomposition of A be represented as

L, O
A=[U,UU]| H E [VTVO]T (2.5)
0 0
and the SVD of A be given by
pIM 0
A= [UleU’} 0 %, ., [Vlvzr- (2.6)
0 0

The following theorem due to Fierro and Bunch [4] shows that as the off-diagonal block H decreases, the
ULV subspaces converge to their SVD counterparts.

Theorem 1 (Fierro & Bunch) Let A have the ULV in (2.5) and the SVD in (2.6). Assume ||-|| = || - |2
If |E|| < omin(Ly) then

- =l E|
H(R(Vr):R(Vl)) = U?nin(LT) _ ||E||2
. || H]|
sing(R(U:), R(UL)) - < =g
ﬁ sin
ey < S oRO RO

These bounds also reveal that there is a limit on how close some subspaces can be.
In most applications, we will have access to the perturbed matrix A = A + §A rather than A itself. Let
A have the ULV decomposition

L. 0
A-[000]| & B [VTVO]T. 2.7)
0 0

Further, let X, and Y, form an orthogonal basis for R(V,) and R(U,) respectively. Define
e = max (|JAX, |, | Y7 5A]). (2.8)

Then, the following theorem bounds the sensitivity of the ULV subspaces.

Theorem 2 (Fierro) Let A and A have the ULV decompositions (2.5) and (2.7) respectively. If omax(E) <
Omin(Ly) then for € as defined in (2.8) we have

. ~ (IH]] + |[H]) omax (E) €
sinf(R(V,),R(V, < = ~
RV) AV Trin (L) — [E[I3 Omin(Ly) — ||E|2
[H]| + | H]| €

sin o(R(U,), R(U,))

Umin(f‘r) — E[l2 Umin(f‘r) - ||E||2
These results indicate that the ULV subspaces are only slightly more sensitive to perturbations than the
singular subspaces [11].

The above theorems provide us with bounds on the distance between ULV subspaces and the SVD
subspaces. They also provide us with bounds on the angle between the subspaces obtained by performing a
ULV decomposition on the actual data matrix and a perturbed data matrix. However, they do not provide
any bounds on the distance between the subspaces obtained using the ULV decomposition on a perturbed
matrix and those obtained using the SVD on the actual matrix. In many signal processing applications, the
ULV decomposition is preferred to the SVD due to its lower computational complexity. One such application,
adaptive filtering in subspaces, is discussed in this paper. Here, the input data is projected onto several well
conditioned subspaces containing the input signal energy. The projected data in these signal subspaces is
then adaptively combined to generate an estimate of the desired response. In applications such as these, the
data matrix is usually corrupted by noise. We therefore need to provide bounds on the angle between the
subspaces obtained using the ULV decomposition on a perturbed matriz and those obtained using the SVD
on the actual matriz as a measure of the quality of the subspaces isolated using the ULV decomposition.
Such bounds may be obtained directly from Theorem 2 by noting that the SVD of A may be viewed as a
ULV decomposition with H =0, L, = 3, E = X, and V,, = V;. Hence, we have the following new

theorem.

Theorem 3 Let A and A have the SVD and ULV decompositions (2.6) and (2.7) respectively. If omax(E) <

omin(Ly) then for € as defined in (2.8) we have

£, 41 ‘

B U?nin(i‘r) - ‘73+1 Umin(f*r) - Ur+1.

sinf(R(V,), R(V1))

The above theorem indicates that as the norm of the off-diagonal block H decreases, the error between the
ULV subspace and the corresponding true SVD subspace is dominated by the magnitude of the perturbation
in the data matrix. Note that by setting the matrix H = 0 in the ULV decomposition, we decouple the first
singular value group from the second singular value cluster. In particular, we effectively have obtained the

singular subspaces for the matrix. If, furthermore, there exist o and ¢ such that

omin(L) > a+4d and o4 < a, (2.9)

the above theorem reduces to the perturbation bounds for singular subspaces obtained by Wedin [17]. We
therefore, obtain the perturbation bound for singular subspaces as a special case of the ULV bound. Note
also that this discussion implies that by using refinement strategies (at extra computational cost), we can
increase the accuracy of the ULV estimates of the SVD subspaces by reducing the norm of H. Therefore,
the perturbation JA yields the ultimate limit on the accuracy of the subspaces obtained using the ULV

decomposition.

3 Low Rank RLS Algorithm

In this section we use the ULV decomposition to develop a subspace tracking RLS algorithm. Let the input

signal vector at time n be given by
x(n) = [zo(n), z1(n),...,zn_1(n)]". (3.1)

Note that in case of filtering z1(n) = z(n — k). Also, let the adaptive filter weight vector at this time be

h(n). The corresponding filter output is the obtained as
d(n) = x" (n)h(n). (3.2)

The error between the desired response d(n) and that estimated by the adaptive filter d(n) can be written

as

e(n) =d(n) —d(n) = d(n) - x" (n)h(n). (3.3)
The RLS algorithm tries to recursively solve the weighted LS problem
min A e (i)]2 34
i 33" i) (3.4)
By rewriting (3.4), we find that the RLS algorithm solves the following problem [12].
min |2 (n) (X (n)h(n) — d(n)]* (3.5)

In (3.5), d(n) = [d(1),d(2),---,d(n)]" is the desired response vector, X(n) is the input data matrix given
by
X(n) = [x(1),x(2),...,x(n)] , (3.6)

10

and A(n) is the n x n diagonal exponential weighting matrix given by

A(n) = diag(/\”’l,/\”’Q. . 1). (3.7)

3

When A =1, the LS solution can be expressed in terms of the SVD as
hus(n) = X' (n)d(n) = V(n) = (n)U” (n)d(n). (38)

Here, (-)! denotes the pseudoinverse [1].

When X(n) is close to rank deficient, the least squares solution is ill conditioned due to the inversion
of the small singular values in 3f(n). In such cases, a rank r approximant X, (n) of the matrix X(n) is
constructed by setting the N — r small singular values of X(n) to zero in its singular value decomposition.

Thus, if the singular value decomposition of X(n) is given by (2.6), its low rank approximate is given by

.(n) O
T
Xy (n) = |Uy(n)Uz(n)U" (n) 0 0, | |Vi()Va(n)| =Ui()E,(n)V](n). (3.9)
0 0
The solution to the modified LS problem is then obtained as
hyrs(n) = Xi(n)d(n) = Vi(n)2 ' (n)UT (n)d(n). (3.10)

It has been recently suggested, [18], that the rank r approximate of X(n), discussed above, be replaced
by a matrix obtained using a truncated ULV decomposition. The main motivations behind the use of the
ULV decomposition is its lower computational expense, O(N?) as compared to the SVD O(N?). Thus, the

modified minimum norm solution can be computed as [18]
hyy 1s(n) = V,. ()L ' (n) U’ (n)d(n). (3.11)

It was however not suggested how the algorithm is to be modified in case the data matrix X(n) grows as
new data becomes available. Clearly, in such a case storing U(n) is not a viable option. In this section, we
suggest a method to obtain a recursive solution to the modified LS problem (3.10).

The LS minimization problem discussed above is invariant under any unitary transformation. For some

n > N, let the ULV decomposition of the weighted data matrix be given as

L,(n) 0
AY?(n)X(n) =U(n) | Hn) Em) | VI (n), (3.12)
0 0

U (n)AY?(n)(d(n) — X(n)h(n)) = H(n) E(n) , (3.13)

11

where

U” (n)AY?(n)d(n) = [o | . (3.14)

Thus the RLS problem is equivalent to solving for h(n) the system of linear equations

{Lr(n) 0 -|
| H(n) E(®) |

Note that V(n) =[V,(n)Vg(n)]. Therefore, the above equation can be rewritten as

VT (n)h(n) = p(n). (3.15)

L o |[Viebm | [pw) 1)
H(n) E(n) VI (n)h(n) prv_r(n) |

where p,.(n) are the first r elements of p(n). Thus, the low rank RLS solution can be obtained in two steps

as

g(n) = L. '(n)p,(n) (3.17)

huvois(n) = V,(n)g(n). (3.18)

The computation of the ULV-LS solution using Egs. (3.17)-(3.18) requires only O(Nr) flops.

Note that the ULV algorithm updates U(n), L(n) and V(n) from previously computed values. To do
this, it appends the new input vector x(n) as a row to A'/?L(n — 1) and applies Givens rotations from the
right and the left in a special order to compute L(n). This operation can be written as
L(n AM/2L(n — 1
2 T (n) () G(n). (3.19)

] xT(n)
The ULV algorithm discards all the rotations applied from the left. The right rotations are absorbed into

V(n). However, the vector p(n) can be easily updated from p(n — 1) as

n M/2p(n —1

[p(n)] =T7%(n) [P) W : (3.20)
v | IR ON

Since each Givens rotation affects only two elements of the vector, we must perform O(N) flops to update

p(n). Thus, the low rank RLS requires O(N?) flops per iteration.

4 ULV-RLS Performance Analysis

In this section we perform a simple convergence analysis of the ULV-RLS algorithm. The ULV subspaces
are in general perturbed from their SVD counterparts. Therefore, the main purpose of this section is to
analyze these effects on the convergence behavior of the ULV-RLS algorithm. For the rest of this section,
we assume that the algorithm operates in a stationary environment. Therefore, we set the exponential

weighting factor A = 1 to get the optimal steady-state result. This assumption implies that the environment

12

is stationary and allows us to draw some general conclusions about the ULV-RLS algorithm. The expressions
can be easily modified for a non-unit A.

In order to analyze the behavior of the ULV-RLS algorithm, we consider the following multiple linear
regression model. Assume that the input is in a low rank subspace of dimension r where r < N. The N x 1
input vector x(n), at time n, is projected into the r dimensional subspace using a r x N transformation matrix,
S,. The columns of ST are the r eigenvectors of the covariance matrix R = E[x(n)x” (n)] corresponding to
its r non-zero eigenvalues. The resulting r x 1 vector y(n) = S,x(n) is weighted by g,, a r X 1 regression
parameter vector in the transform domain. The desired output d(n) is then generated, according to this
model, as

d(?’l) = yT(n)go + 60(71) = XT(n)ho + 60(71), (4'21)

where e,(n) is called the measurement error and h, is the corresponding time domain N x 1 regression
parameter vector,

h, =S'g,. (4.22)
The process {e,(n)} is assumed to be white with zero mean and variance 0. Since algorithm operates in a

stationary environment, the vector h, is constant.

4.1 Weight vector behavior

The rank-r ULV-RLS weight vector at time n, hupy_ps(n), satisfies (see (3.11)),
UT (n)Lr(n)Vz(n)hUL\/,Ls (n) = d(n) (423)
From (4.21), we see that the regression vector satisfies

X(n)h, = d(n) — e,(n), (4.24)

where e,(n) = [e,(1),€,(2),...,e,(n)]T is the vector of the measurement errors up to time n. As the rank

of X(n) is r, we can rewrite (4.24), using the SVD of X(n) defined in (2.6), as
U, (n)X,(n)V] (n)h, = d(n) — e,(n). (4.25)

Subtracting (4.25) from (4.23), multiplying both sides of the result by X*'(n) and performing some simple

mathematical manipulations, we obtain
Vo (m)LY ()L () VT (n)bury—1s(n) — Vi () Z2(0) VT ()b, = X7 (n)e, (n). (4.26)

Notice that ®(n) = V,.(n)LT (n)L,(n) VT (n) is an approximation to the matrix, ®(n) = Vi (n)X2(n)VT (n).
Therefore,

V,.(n)LE)L, (n)VE(n) = Vin)E%(n)VI(n) +F(n), or (4.27)

‘s

>
z
Il

®(n) +F(n) (4.28)

13

where F(n) is the error in the approximation. Thus, from (4.26) and (4.28), we obtain

®(n) (hury-1s(n) — hy) = F(n)h, + X" (n)e, (n). (4.2)

Taking the expectation of both sides of (4.29) for a given realization x(k),1 < k < n, and noting that the

measurement error €,(n) has zero mean, we obtain
Elhyy_1s|x(k),1 < k < n] =h, + ®(n)F(n)h,. (4.30)

Assuming the stochastic process represented by x(n) is ergodic, we can approximate the ensemble averaged
covariance matrix R of x(n) as,

1
R~ —®(n) large n. (4.31)
n

Thus, (4.30) can be rewritten as,
1 1 t
E[hULV,Ls(n”X(k), 1 S k S T]] ~ ho + E(R + EF(H)) F(’I’L)hg. (432)

In the above expression, as n tends to infinity, the perturbation %F(n) tends to a finite value due to the
inaccuracy in the subspaces estimated by the ULV decomposition. In fact, it has been shown that [18]

||U127’V;1F — UTL’I’VZ’H
[0, VT

< sinf(R(V,), R(V1)). (4.33)

Thus, unlike traditional RLS algorithm, which is asymptotically unbiased [12], the ULV-RLS algorithm has
a small bias. However, the magnitude of this bias depends on the closeness of the ULV subspace, V., to
its corresponding singular subspace. This closeness, in turn, depends on the magnitude of the off diagonal
matrix H (See Theorem 1). Therefore, using extra refinements, it is possible to reduce the norm of H to

close to zero and make the bias negligible.

4.2 Mean squared error

Let us now perform a convergence analysis of the RLS algorithm based on the mean squared value of the a
priori estimation error of the RLS algorithm.

The a priori estimation error a(n) is given by
a(n) =d(n) — hiiy_rs(n — 1)x(n). (4.34)
Eliminating d(n) between (4.34) and (4.21), we obtain
a(n) = e,(n) — (hyyv_Ls(n — 1) —hy,)"x(n) = ey(n) — €' (n —1)x(n). (4.35)
Now note that it follows from (4.29) that

K(n) = Ele(n)e” (n)|x(k),1 < k <n] = &'(n)F(n)h,h! F(n)®!(n) + o>®! (n)@ (1)@ (n). (4.36)

14

Define, J'(n) = a*(n). We then have

E[J'(n)}x(k),1 <k <n] = E[a’(n)x(k),1<k<n]

—Ele,(n)xT(n)e(n — 1)|x(k),1 < k < n] (4.37)

o? 4+ Tr[x(n)x" (n)K(n — 1)), (4.38)

where we used the fact that e(n — 1) is independent of e,(n) given x(k),1 < k < n.
We therefore have

ELT'(n)|x(k),1 < k < n] = o+ Tr[x(n)x" (n)®' (n)F(n)h,h! F(n) &' (n)]+0>Tr[x(n)x" (n)®F (n)®(n) & (n)].
(4.39)
Notice that the second term in the above equation depends on the distance between the ULV and the SVD
subspaces. Now, the magnitude of LF(n) depends on the norm of the off diagonal matrix H (see [18],
(4.33) and Theorem 1). This norm can be made arbitrarily small using extra refinements. Furthermore,the

magnitude of the third term in the RHS of (4.39) is O(X). Therefore, for small perturbations the a priori
MSE is

E[J' (n)|x(k),1 < k < n]x o+ o> Tr[x(n)xT (n)®1 (n)®@(n)®T(n)] = o 4 o> Tr[x(n)x? (n)®'(n)]. (4.40)

If we now take the expectation of both sides of the above equation with respect to x(-) and use (4.31) and
the definition of ®(n), we obtain for large n

E[J'(n)] = o® + TZ (4.41)

Based on (4.41), we can make the following observations about the ULV-RLS algorithm: 1) the ULV-RLS
algorithm converges in the mean square in about r + N iterations, i.e., its rate of convergence is of the same
order as that of the traditional RLS algorithm, and 2) if the quality of the subspaces approximated are
high, e.g., in a stationary environment, the a priori MSE of the ULV-RLS approaches the variance of the
measurement error. Therefore, in theory, in such an environment it has a zero excess MSE. Thus, its MSE

performance is similar to that of the traditional RLS algorithm.

5 Generalized ULV Update

As mentioned in the introduction, the ULV decomposition tracks only two subspaces, the dominant
signal subspace and the smaller singular value subspace. Even though, the dominant subspace contains
strong signal components, its condition number might still be large. Thus, a low rank LMS algorithm which

uses the ULV decomposition would still have a poor convergence performance. We therefore generalize the

15

ULV decomposition in this section to track subspaces corresponding to more than two clusters of singular
values. Each iteration of the GULV decomposition can be thought of as a recursive application of the ULV
decomposition on the larger singular value cluster, i.e., the ULV decomposition is applied to obtain two
singular value clusters. The ULV decomposition is applied to the larger singular value cluster to decompose
it into two clusters. The ULV decomposition is again applied to the larger of these clusters and so on.

The following GULV decomposition primitive procedures are implemented by calling the ordinary ULV

decomposition procedures.

e Generalized Absorb_One. Add a new row and update all the rank boundaries. This procedure just
calls Absorb_One using the outermost boundary, i.e., with the data structure [L, V,r;] (assuming that
there are k + 1 clusters). This has the effect of incrementing r,. The resulting rotations have the
effect of expanding the top group of singular values by one extra row, hence all the inner boundaries,

ri,---Tr_1 are incremented by one.

e Generalized Deflate_One. This procedure deflates the lowest (outermost) singular value boundary
provided to it. Thus if r; is the boundary provided to this procedure, Deflate One is applied to
[L,V,r]. As in Generalized Absorb_One, the upper boundaries must be incremented by one. In
order to restore the separation that existed between all the singular value clusters before application
of these update procedures, the upper boundaries must be deflated. Therefore, deflation of the r;_;
boundary necessitates that all boundaries inner to 7;,_; be incremented by one. In particular, r;_o
has to be deflated twice. This further implies that all boundaries inner to r;_» have to be once again
incremented by two and so on. However, while incrementing the inner boundaries, care should be
taken so that any inner boundary value is never greater than its next outer boundary i.e., the ith
boundary r; < 7;41. Thus the number of deflations at any boundary, r;, turns out to be the separation
between r; and 7;41 that existed before Generalized Absorb_One. As the deflations on any boundary
r; are performed using Deflate_One on [L,V,r;], all rank boundaries outer to r;, i.e., riy1,-- -1 are
not modified. In other words, the Generalized Deflate _One procedure just deflates the outer most

boundary by one and restores all the existing separations between inner boundaries.

e Generalized Deflate To_Gap. This procedure is similar to the Deflate_To_Gap procedure of the ULV.
When applied on the " rank boundary, represented by the rank index r;, it uses the heuristic used by
Deflate_To_Gap to try to move the boundary toward a gap among the singular values. The smallest
singular value of the current cluster, s,,, is compared with the smallest singular value of the next cluster
i.e., s;,,,. Note that for the outermost cluster s, , is the same as on. The procedure then uses the
heuristic that a gap exists if s, > ds,,_,, where d > 1 is the user chosen Spread. If this condition fails,
Generalized Deflate_One is called repeatedly until this condition is satisfied. Note that we need to
compute s, for only the outermost rank boundary (for this boundary, s, , is the smallest singular
value of L). The update algorithm follows a “bottom-up” approach, i.e., outer rank boundaries are

updated before the inner ones are. Thus, when updating an inner rank boundary, the value s, of

16

the minimum singular value of the next cluster is available at no extra cost. Therefore this approach
would require only O(N?) flops more than the heuristic given in [16] in order to obtain the smallest
singular value of L. This extra complexity can be avoided if an estimate of this singular value (e.g., an
estimate of the noise power) is provided by the user. The main advantage of this heuristic over that
proposed in [16] is that it avoids the need for the user to provide the different tolerances needed to

check if a gap exists at each rank boundary.

e Generalized Update: This procedure encompasses the entire process. It takes an old GULV decom-
position and a new row to append, and incorporates the row into the GULV decomposition. The new

row is absorbed, and the new rank boundaries are found using the procedures described above.

5.1 Performance Bounds

The bounds derived for the quality of the subspaces obtained using the ULV algorithm can be directly
applied to determine the bounds on the quality of subspaces using the GULV algorithm. Consider the case
where there are four clusters of singular values. The GULV decomposition for this case is given by
L, 0 0 0
H, L, 0 O T
A=(Ug U U, U.) (Vi, Vi, Vi, Vo). (5.1)
H, H; L 0
H, H; H; E

In the above decomposition, any lower triangular portion of the L matrix together with the corresponding

Ly, O
trailing part is a valid ULV decomposition. For example (> corresponds to the leading lower
Hl L’CQ
H2 H3 L’Cg

H, H; H;
valid ULV decomposition. In such a case, the subspace spanned by (Vy, Vjy,) would correspond to the

0
triangular portion while the rest of the matrix, (> corresponds to the trailing part of a

large singular value subspace and the remaining columns of V would span the subspace corresponding to the
smaller singular values. Thus, for these subspaces, the bounds discussed in the previous section are valid.
Consider the orthonormal matrix Z = (Z; Zo Z3 Z,) where the sub-matrices Z; are mutually
orthogonal. Let its perturbed counterpart be Z = (Zl 22 23 24) where the sub-matrices Zk are again
mutually orthogonal. Consider the product Z”Z
7'z, 7217, 7217, 717,
7'z, 717, 7'7; 717,
71z, 7'z, 717; 72717,
77z, 2772, 2772, 2717,

777 = (5.2)

The distance between the subspaces R(Z,) and R(Z,) is bounded by the norm of the matrix (Z7'Z, ZTZs Z17Z,).

A
Similarly, the distance between the subspaces R((Z1 Zz)) and R((Z, 7)) is bounded by the norm of
277, ZTZ,
717s 717,

> . A bound on the distance between the subspaces R(Z3) and R(Z) can be ob-
tained by noting that elements of the matrix (Z2TZ1 Zgzg Z;Z4) are elements of the matrices required

the matrix (

17

to characterize the distances between the subspaces R(Z;) and R(Z;) and R((Z; Z»)) and R((Z1 Zs)).
Thus, a bound on the quality of the subspaces, Zs, i.e., the distance between R(Zs) and R(Zs), is the square
root of the sum of squares of the bounds on the distance between R(Z1) and R(Z1), and the distance between
R(Z, Zy)) and R((Z1 Z-)).

In general if the matrix Z (correspondingly Z) is partitioned into L groups, for the subspace spanned by

the I*"' group R(Z;) we have

sin@(R(Z1), R(Z)) < ((upper bound on sin@(R((Z1 -+ Zi—1)),R(Z1 - Zi_1))))?
+ (upper bound on sin0(R((Ziey -+ Zp)) R((Zisr - Z1))?)?
< upper bound onsin§(R((Z, --- Z; 1)), R(Z1 --- Zi1)))
+ upper bound onsin@(R((Zix1 -+ Z1)),R(Ziyr -+ Zp)) (5.3)

In order to generalize the bounds of Theorem 1 for the k" GULV subspace, we first replace Z by the matrices
V or U, obtained using the GULV decomposition, and Z by the corresponding matrix obtained using the
SVD in (5.3). We now note that the upper bounds in the RHS of (5.3) are bounds on valid ULV subspaces
and can be obtained from Theorem 1. Substituting these bounds into (5.3) generalizes Theorem 1.

Again, to generalize Theorem 2, we replace Z by V or U, obtained using the GULV decomposition on A
and the corresponding matrix obtained using the GULV decomposition on A, in (5.3). The upper bounds
in the RHS of (5.3) are obtained by noting that these are bounds on valid ULV subspaces and applying

Theorem 2. Theorem 3 can also be generalized in a similar fashion.

6 Generalized ULV-LMS Algorithm

The LMS algorithm tries to minimize the mean squared value of the error e(n), given by (3.3) by

updating the weight vector h(n) with each new data sample received as
h(n + 1) = h(n) + px(n)e(n) (6.1)

where the step size p is a positive constant.

As noted in the introduction, the convergence of the LMS algorithm depends on the condition number of
the input autocorrelation matrix, y(R;) [19, 12], where E[R,| = E[x(n)x” (n)]. When all the eigenvalues
of the input correlation matrix are equal, i.e., the condition number x(R;) = 1, the algorithm converges
fastest. As the condition number increases (i.e., as the eigenvalue spread increases or the input correlation
matrix becomes more ill-conditioned), the algorithm converges more slowly.

Instead of using a Newton-LMS or a transform domain LMS algorithm to improve the convergence speed
of the LMS algorithm, we will develop here a GULV based LMS procedure. The GULV decomposition
groups the singular values of any matrix into an arbitrary number of groups. The number of groups or

clusters is determined automatically by the largest condition number that can be tolerated in each cluster.

This condition number in turn is determined by each cluster has singular values of nearly the same order

18

of magnitude, i.e., the condition number in each cluster is improved. If we now apply an LMS algorithm
to a projection of the filter weights in each subspace, the projected weights will have faster convergence.
The convergence of the overall adaptive procedure will depend on the most ill-conditioned subspace, i.e., the
maximum of the ratio of the largest singular value in each cluster to its smallest singular value.

Let us transform the input using the unitary matrix V(n) obtained by the GULV decomposition. As
the GULV decomposition is updated at relatively low cost, this would imply a savings in the computational
expense. We note that V almost block diagonalizes R, in the sense that it exactly block diagonalizes a
small perturbation of it. In particular, let the input data matrix, X = [x(1),...,x(n)]T = ULV” with L
defined by (2.2). Since R, = VLTLV” V exactly block diagonalizes R, — A as follows:

c’c 0)

VR, AV =
0 F'F

ETE ETF
A=VT V.

where

F'E 0
Here, |A||r < f2 is small, with f = ||[E, F]|| .

Let the input data vector x(n) be transformed using V(n) as
y(n) = VT (n)x(n). (6.2)

The first 7y coefficients of y(n) belong to the subspace corresponding to the first singular value cluster, the
next ry coefficients to the second singular value cluster and so on. The variance of coefficients of y(n) in
each such cluster is nearly the same. This is due to the fact that each subspace is selected to cluster the
singular values to minimize the condition number in that subspace. This implies that the adaptive filter
coefficients in the transform domain can also be similarly clustered.

The GULV-LMS update equations for updating the transform domain adaptive filter vector g(n) are

given as

gn+1) = g(n)+Me(n)y(n) (6.3)

gin+1) = Q"'(n+1gn+1) (6.4)

where M is a diagonal matrix of step sizes used and Q(n + 1) is an orthogonal matrix indicating the

cumulative effect of Givens rotations performed to update V(n + 1) from V(n), i.e.,
V(in+1)=Vn)Q(n +1). (6.5)

It is easy to deduce, from the fact that the output of the transform domain adaptive filter should be the

same as that of the tapped delay line adaptive filter, that
g(n) = VT (n)h(n), (6.6)

and

gn+1) =V (n)h(n+1). (6.7)

19

As the transformed coefficients belonging to a single cluster have nearly the same variance, the corre-
sponding coefficients of g(n) can be adapted using the same step size. In other words, the diagonal elements
of M are clustered into values of equal step sizes. The size of each cluster depends on the size of the corre-
sponding subspace. The adaptation within each subspace therefore has nearly optimal convergence speed.
Thus, for the subspace tracking LMS filter to have a fast convergence, it should converge with the same speed
in each subspace. This implies that the slow converging subspace projections (usually the ones with lower
signal energy) should be assigned large step sizes. Note that the average time constant 7., of the learning

curve [12] is 7oy & , where A,y is the average eigenvalue of the input correlation matrix or the average

_1
EITE N
input power. Therefore, the step size for coefficients in a subspace should be made inversely proportional
to the average energy in that subspace. Now note that the diagonal values of the lower triangular matrix L
generated by the GULV decomposition reflect the average magnitude of the singular values in each cluster.
This information can therefore be directly used to select the step sizes.

As the slowly converging subspace projections are usually those subspaces with lower signal energy, a
large step size for these subspaces implies that the noise in these subspaces is boosted. By not adapting in
these subspaces, we can reduce the excess MSE. This can be done by setting the corresponding diagonal
entries of M to zero. Also, in case the autocorrelation matrix is close to singular, the projections of the tap

weights onto the subspaces corresponding to zero singular values need not be updated. This results in stable

adaptation.

7 GULV-LMS Performance Analysis

Several analyses of the LMS and Newton-LMS algorithm have appeared in literature. The GULV-LMS
algorithm differs from traditional LMS and Newton-LMS type algorithms in that the subspaces estimated by
the GULV algorithm are perturbed from the true subspaces by a small amount. The goal of this section is to
analyze the effect of this perturbation on the performance of the algorithm. Specifically, we will consider its
effect on the mean and mean-squared behavior of the weight vectors in our algorithm. We also study its effect
on the steady-state mean square error of the proposed algorithm. Our analyses are approximate in that they
rely on the standard simplifying assumptions that have been used in the literature to analyze the various
variants of the LMS algorithm. They nevertheless provide guide lines for selecting M and an understanding
of the performance of the algorithms that is confirmed by simulations (cf. Section 8). Specifically, we make

the following standard assumptions

1. Each sample vector x(n) is statistically independent of all previous vectors x(k), k =0,...,n — 1,

2. Each sample vector x(n) is statistically independent of all previous samples of the desired response,
dk), k=0,...,n—1
Ex(n)d(k)]=0, k=0,...,n—1. (7.2)

h

3. The desired response at the nt instance, d(n) depends on the corresponding input vector x(n).

4. The desired response d(n) and the input vector x(n) are jointly Gaussian.

7.1 Weight vector behavior

The LMS algorithm tries to minimize the output MSE, E[J(n)], given as
E[J(n)] = Ele*(n)] = E[d*(n) - 2d(n)g" (n)y(n) +g" (n)y(n)y" (n)g(n)]. (7.3)
As the transformation is a unitary transformation, the above equation is equivalent to
E[J(n)] = E[d*(n) — 2d(n)hT (n)x(n) + hT (n)x(n)xT (n)h(n)] = 02 + h’ (n)R,h(n) — 2h’ (n)rg., (7.4)

where o2 is the variance of the desired signal and rg, is the cross-correlation of the input vector x(n) and
the desired output d(n)
rar = Efx(n)d(n)]. (7.5)

The MSE is a quadratic function of the weight vector h(n), and the optimum solution corresponding to

its minimum, h* is the solution of he Wiener equation
R,h" =ry,. (7.6)
In particular, the optimum weight vector, is given by

h* = R} 'ra,. (7.7)

T

Now consider a low rank solution to the Wiener equation (7.6). Assume that the eigenvalues of R, can be
clustered into p groups. Let the rank [low rank approximate for R, be the matrix constructed by replacing

the p — [smallest eigenvalue clusters of R, in its eigendecomposition by zeros, i.e.,

L P
Rz,l = ZZ)‘ikSiksz;= (78)

k=1 i=1
where py, is the number of eigenvalues in the k" cluster. The l-order solution, h!, is then obtained by solving

the modified Wiener equation

Rz,lhl =Tdx. (79)

Note that when [= p, h! = h*.

Suppose now that we use a GULV-LMS algorithm that adapts only in the dominant I subspaces produced
by the GULV decomposition. Let h(n) be the time domain weight vector that it produces. We now proceed
to show that under the simplifying assumptions listed above, h(n) converges to h! with a very small bias.
This bias depends on the quality of the estimated subspaces i.e., how close they are to the true eigenvector

subspaces. We also show that when [= p, h(n) converges to h* with a zero bias as n tends to infinity.

21

Let the unitary transformation matrix V(n) be partitioned into p blocks, each block corresponding to

the subspace of a cluster eigenvalues having the same order of magnitude. i.e.,
V(n) =[Vi(n)[Va(n)]---[Vy(n)]. (7.10)

The orthogonal projection matrix, Py (n) in the subspace corresponding to the k' cluster of eigenvalues

is obtained by the GULV algorithm at the n'® as
Pi(n) = Vi(n)VI(n). (7.11)
The GULV-LMS update equation (6.3) can therefore be rewritten as
VT (n)h(n +1) = VI (n)h(n) + Me(n) V" (n)x(n). (7.12)

Note that step size matrix M is chosen to be a block diagonal matrix, with each block being a scalar multiple
of the identity of appropriate dimension. This is due to the fact that we have a single step size for the modes

belonging to a single cluster of eigenvalues. Pre-multiplying the above equation by V(n), we obtain

h(n+1) = h(n)+ > mpPi(n)e(n)x(n) (7.13)

k=1

!

= h(n) + Z mre(n)xg(n), (7.14)

k=1
where x;(n) = Pi(n)x(n) denotes the projection of the input vector x(n) onto the subspace estimate

corresponding to the k'" cluster of eigenvalues.
We define the weight error vector as

€(n) =h(n) — hy, (7.15)

where h; is the modified Wiener solution as discussed above.
Subtracting h; from both sides of Eq. (7.14), and using (7.15) and the definitions of e(n) and d(n), we

obtain
l

l
e(n+1) =T~ mxp(n)x" (n))e(n) + Y my(d(n)x(n) — xx(n)x" (n)hy). (7.16)
k=1 k=1

From Theorems 2 and 3, it can be seen that the distance between the perturbed ULV subspaces and the
corresponding true subspaces depends on the amount of perturbation, e. The input correlation matrix is
estimated as a sample average, R, = 1/nX”(n)X(n). Therefore, the perturbation e tends to 0 as n tends
to infinity. This implies that for large n, we can assume that Py (n) converges to its steady state value Py,

which is independent of x(n). Taking the expectation of both sides of Eq. (7.16), for large n, we obtain

l l
Blem+1)] = BE(I=Y mxi(n)x" (n))e(n)]+ > mpElxy(n)d(n) — xx(n)x" (n)hy)]
k=1 k=1
l l
= (I-) miPyRy)E[e(n)] + Y miPy(ra — Ryhy), (7.17)
k=1 k=1

22

where we have made use of the independence assumptions. Noting that
»
hy=h" -) P;h", (7.18)
j=l+1
and using Eq (7.6) we obtain,

l

Ele(n+1)] = (I - kaPk ka Z P,R,P;h". (7.19)

= j=Il+1
Rewrite R, in terms of its eigenvalues and eigenvectors,
P Pk
k=1 i=1
If the subspaces estimated by the GULV algorithm have converged exactly to the subspaces spanned by the

corresponding clusters of eigenvectors, PyR,, is given by

PR, =) Aisis),. (7.21)
This is due to the fact that s;, ’s lie in the subspace spanned by the columns of P and therefore
Pysi; = Owjsi;,

where d;; is the Kronecker-delta, 6x; = 1, £k = j and 6;; = 0 otherwise. Thus whenever [= p or the
estimated subspaces converge to the exact subspaces, the second term in Eq. (7.19) is zero.
However, the subspaces estimated by the GULV algorithm will in general be perturbed from the true

subspaces by a small amount. Therefore we have

Pk
PR ZA%S“ s; +Ey, (7.22)
i=1
and
P:R.P; = B . (7.23)

Using (7.23) in (7.19), the weight error update equation can be rewritten as,

1 Pk l P
Elem+1)] = @Y m(>_ Aisis +Ep)Ele(n)] + Y my Y Eijh* (7.24)
k= i=1

k=1 j=l41

= S(I-M(A +E))STE[¢(+ka Z E; h*, (7.25)
k=1 Jj=l+1

where R, = SAST is the eigendecomposition of R,. By making the transformation é = S”e and h* = STh*,

we can rewrite Eq. (7.25) as
Elé(n+1)]=(I—-M(A + E))E|é(n)] + F,h", (7.26)

where F; = Zlk:l mg Y 5_;1 Exj. This error equation is of the form derived for the LMS algorithm [12]

and can be rewritten as

Elé(n+1)] = (T - M(A + E))™" E[eg] + (1 — (M(A + E))")(I - M(A + E))~'F;h*. (7.27)

23

Thus, if the step-size for each cluster my, satisfies the condition [19], [20]
1

O<mg < ——
max (/\lk +7h'k)

(7.28)

where 7;, is the perturbation in the corresponding eigenvalue due to the perturbation matrix E, we get
Elé,] = (I-M(A +E))"'F;h*. (7.29)

In particular, note that unlike the LMS algorithm, E[€] # 0. It follows from Theorem 3, that if the norm
of the off diagonal matrix H is reduced close to zero using refinement strategies, then for large n the ULV
subspaces converge to the true SVD subspaces. Therefore, the norms ||Ej ;|7 and ||F;||r are usually small.
Also as pointed out earlier, in case | = p, F; = 0. Thus, E[é.] = 0. Therefore, for this case, the algorithm
converges in mean to the optimum weight vector h*.

Using the inequality (Weyl’s Thm., p. 203 of [21]),
Ai(A +B) < Ai(A) + B2, (7.30)
we get,

max (A;, +7;,,) < max (A;,) + ||E||2- (7.31)

Thus for convergence it is sufficient to choose my, as,

OIS (%) + T (73
7.2 Mean squared Error
The MSE, E[.J(n)] of the LMS algorithm is given by
E[J(n)] = E[e*(n)] = El(d(n) — g" (n)y(n))?): (7.33)
However, as the transformation is unitary, it can be written as,
ELI(n)] = El(d(n) " (n)x(n))?] = 3 + h” (n)Ruh(n) — 207 (n)r . (7.34)
The above equation can be re-written in terms of the weight error vector €(n) as [12]
E[J(n)] = Jypin + Ele” (n)Re(n)). (7.35)

In the above equation, Jij; denotes the minimum MSE achieved by the optimum weight vector. The excess
MSE is then given by

E[Jex(n)] = E[e" (n)Re(n)] = Tr[RK(n)], (7.36)
where Tr[-] denotes the trace operator and K(n) = E[e(n)el (n)] is the weight error correlation matrix. The
misadjustment error is the excess MSE after the adaptive filter has converged, E[Jex(c0)].

It is show in [22] that E[Jex(c0)] is given by

BlJex(o0)] = 5 e i (7.37)

where A is the diagonal eigenvalue matrix of the input correlation matrix R,. The proof of (7.37) is

straightforward and we omit it for lack of space.

24

7.3 Discussion

The condition on my, for convergence, (7.32), is similar to that obtained in [19], [20]. Specifically, when
the matrix M is replaced by a multiple of the identity matrix, uI and E = 0, the convergence condition
becomes

O<p<

(7.38)

max

Note also that if the subspaces estimated using the GULV algorithm were the true subspaces and the

condition number of each cluster is 1, then E = 0, and by choosing M such that
MA = ul, (7.39)

the convergence condition becomes

O<pu<l (7.40)

This is equivalent to whitening the input process by preconditioning with the appropriate M. In practice,
the elements of E are negligible and omax(E) is very small. Further, the step size for each cluster my is
chosen to be the inverse of the estimate of the variance of the component of the input signal that lies in
the cluster (i.e., the inverse of the average of the eigenvalues in the cluster). This implies that the condition
for convergence (7.32) is almost always satisfied in practice. Choosing the step sizes as the inverse of the
estimated power in each cluster also matches the speeds of adaptation across the clusters.

The step sizes for modes/subspaces which contain essentially noise and little signal components can be
chosen to be very small. As the subspaces have been decoupled on the basis of signal strengths, adapting
very slowly or not at all in the noise only subspaces leads to little loss of information which is confirmed
by simulations (cf. Sec. 8). As discussed above, adapting only in the | dominant subspaces corresponds
to adaptively estimating the solution to the modified Wiener equation (7.9). This implies that there is an
inherent “noise cleaning” associated with such an approach. It is noted [23] that as we slowly increase the
number of nonzero my’s corresponding to the subspaces containing significant signal strengths, the MSE
decreases until the desired signals are contained in these spaces. A further increase would only increase the
MSE due to the inclusion of the noise eigenvalues. Also note that the solution to the unmodified normal
equations (7.6) involve inverting the input correlation matrix. Therefore, the contribution of the noise
eigenvalues to the MSE using this solution is inversely proportional to their magnitudes. Hence, if the noise
eigenvalues are small (high SNR), this amounts to noise boosting, resulting in a larger MSE. As conventional
adaptive filters recursively estimate this solution their MSE at convergence is also high.

Egs. (7.25) and (7.26) give a recursive update equation for the weight error vector. The speed with which
this weight error vector tends to zero determines the speed of convergence of the algorithm. Assume the

GULYV projections have converged at step K. Also assume that we can cluster the eigenvalues of R, into p

25

clusters, i.e., the diagonal eigenvalue matrix, A, of R, can be written as,

(A 0]

A,
A=| (7.41)

0 - A,

where Ay is the diagonal matrix of eigenvalues corresponding to the k" cluster. Rewriting (7.26) in terms

of some weight error vector €y, we obtain for n > K,

E[en+1)] = (I-M(A+E)"""EEek]

= (I diag(my1,---,m,I)[diag(A1,---,A,) + E]" "1 " K Elek]. (7.42)

For sufficiently small E, Eq. (7.42) indicates that the convergence speed in each subspace depends on the
step size matrix myI and the condition number of Ay. For the same step size, the modes corresponding to
smaller eigenvalues of Ay converge more slowly than those corresponding to its larger eigenvalues. Also note
that to achieve minimum MSE, one needs to adapt only in the signal subspaces. Therefore, the convergence
of the GULV-LMS adaptive filter to the required solution depends only on the condition number of the
cluster identified by the GULV decomposition corresponding to each of the Ay.

For the k’th subspace identified by the GULV algorithm, the condition number is given as

max (A, + 7i,) < max (\;,) + omax(E)

E™ subspace) = — ; '
x(pace) min (A, +7;,) ~ min(}\;,) — omax(E)

(7.43)

However, as noted above, in steady state the perturbation is very small and the condition number of the
subspace identified by the GULV decomposition is close to the condition number of the corresponding cluster
of eigenvalues. The speed of the adaptive algorithm therefore depends on the speed of convergence in that
subspace which has the maximum condition number. By proper application of the GULV algorithm and
choice of the subspaces, this condition number can be made to be close to unity for fast convergence.

The misadjustment error expression given by Eq. (7.37) is approximate. In deriving this result, we have
made use of the fact that E is a very small perturbation, and can be neglected. Now if the step size my, for

the k*® dominant cluster is chosen such that

my, = p/ Tr(Ay)

where Tr(Ayg) is the total input power in that cluster, then it can be easily verified that Tr(MA) = u x
(size of the input signal subspace). Thus, for small i, the misadjustment error depends linearly on the step
size and the effective rank of the input signal.

We therefore conclude that for a step size leading to the same misadjustment error, the GULV-LMS
algorithm would converge at least as fast as the LMS algorithm. It would converge faster than the LMS

algorithm, when the condition number of the input correlation matrix x(R.) is large.

26

8 Simulation Results

An Adaptive Line Enhancer (ALE) experiment was conducted to illustrate the performance of the algo-
rithm when the adaptation is done only in the signal subspaces. The input to the ALE was chosen to
be 0.01cos (#£n) + cos (32n). White Gaussian noise with a variance of -60 dB and -160 dB was added
to obtain the learning curves of Fig. 3 and Fig. 4 respectively. The figures show the performance of the
GULV-LMS algorithm, the plain ULV-LMS, plain LMS, traditional RLS, QRD-RLS, GULV-RLS and the
Schur pseudoinverse based least squares method discussed in [2]. The learning curves show the improved
performance of the GULV-LMS algorithm. It can be seen from these figures that breaking up the subspaces
corresponding to the larger singular values into sub clusters using the GULV algorithm further reduces the
condition numbers of these clusters. This in turn yields an improvement in the convergence performance of
the GULV-LMS algorithm.

Fig. 4 also demonstrates the stability of the GULV based RLS and LMS algorithms when the input
matrix becomes numerically ill-conditioned. As the GULV based algorithms are based on Givens rotations,
they enjoy the same stability properties of the QRD-RLS algorithm.

Fig. 5 shows the tracking behavior of the GULV based procedures. The input to the ALE in this figure

n). A new signal, 0.01cos (3Zn) was added to the input at the 500" iteration. Thus the

is initially cos ({% T

input correlation matrix initially has a rank of 2 which suddenly changes to 4. The GULV algorithm tracks
this change of rank. Also, it divides the larger singular value cluster (which now has 4 singular values) into
two clusters with two singular values of the same order of magnitude in each cluster. This results in the
improved performance of the GULV based RLS and LMS algorithms. On the other hand, the algorithm of
[2] has a starting value of the rank set to 2. Therefore its behavior is similar to that of the GULV based

algorithms initially. However, as it is not able to track the rank change, its performance worsens.

9 Conclusions

In this paper we developed the GULV algorithm for isolating subspaces corresponding to clusters of sin-
gular values of the same order of magnitude. A new heuristic was also suggested for deflation in the ULV
decomposition. We derived a new bound on the distance between the subspaces obtained using a ULV
algorithm on a perturbed data matrix and those obtained using the SVD on an exact data matrix. For the
special case where the off-diagonal block is zero, this bound reduces to the perturbation bounds on the SVD
subspaces. The bounds on the accuracy of the ULV subspaces were also extended to those isolated using
the GULV algorithm. The GULV algorithm was then used to obtain a subspace domain LMS algorithm
to improve the convergence rate whenever the input autocorrelation matrix is ill-conditioned. The rate of
convergence of this algorithm depends on the largest condition number among the clusters of singular values
isolated using the GULV decomposition. This in turn depends on the user defined Spread. However, there

is a tradeoff between the convergence speed and the computational expense of the GULV algorithm. We

27

also demonstrated the power of this algorithm, using simulations, by adapting only in subspaces containing

strong signal components. The GULV algorithm was also used to obtain a low-rank GULV-RLS algorithm.

Present work involves investigating the tradeoffs between error due to non-adaptation in noisy subspaces

and the reduction in the excess MSE. Future work targets reducing the computational complexity of the

GULV algorithm.

References
[1] G. H. Golub and C. F. Van Loan, Matriz Computations. The John Hopkins University Press, 1983.
[2] P. Strobach, “Fast recursive eigensubspace adaptive filters,” in Proc. I[CASSP, (Detroit), May 1995.
[3] T. F. Chan and P. C. Hansen, “Some applications of the rank revealing QR factorization,” SIAM J.
Sci. Stat. Comput., vol. 13, pp. 727 741, 1992.
[4] R. D. Fierro and J. R. Bunch, “Bounding the subspaces from rank revealing two-sided orthogonal
decompositions.” Preprint (to appear in STAM Matrix Anal. Appl.).
[5] C.E. Davila, “Recursive total least squares algorithm for adaptive filtering,” in Proc. [CASSP, pp. 1853—
1856, May 1991.
[6] K. B. Yu, “Recursive updating the eigenvalue decomposition of a covariance matrix,” IEEE Trans.
Signal Processing, vol. 39, pp. 1136 1145, 1991.
[7] E. M. Dowling and R. D. DeGroat, “Recursive total least squares adaptive filtering,” in Proceedings of
the SPIE Conf. on Adaptive Signal Proc., vol. 1565, pp. 35 46, SPIE, July 1991.
[8] R. D. DeGroat, “Noniterative subspace tracking,” IEEE Trans. Signal Processing, vol. 40, pp. 571-577,
1992.
[9] D. L. Boley and K. T. Sutherland, “Recursive total least squares : An alternative to the discrete kalman
filter,” Tech. Rep. TR 93-92, Dept. of Comp. Sci., Univ. of Minn., 1993.
[10] G. W. Stewart, “An updating algorithm for subspace tracking,” IFEE Trans. Signal Processing, vol. 40,
pp. 1535-1541, June 1992.
[11] R. D. Fierro, “Perturbation analysis for two-sided (or complete) orthogonal decompositions.” Preprint.
[12] S. Haykin, Adaptive Filter Theory. Engelwood Cliffs, N.J.: Prentice Hall, 1991.
[13] D. F. Marshall, W. K. Jenkins, and J. J. Murphy, “The use of orthogonal transforms for improving
performance of adaptive filters,” IEEE Trans. Circuits Syst., vol. 36, pp. 474 483, April 1989.
[14] G. H. Golub and C. F. Van Loan, Matriz Computations. Baltimore, MD: Johns Hopkins University
Press, 2nd ed., 1989.
[15] N. J. Higham, “A survey of condition number estimators for triangular matrices,” SIAM Rev, pp. 575—

996, 1987.

28

MSE

|
1
|
!
\

A

A LA i
W N S
Y Y A VAV AV AYATRYE

n

\
oy
EY s

i\

"
RTINS N

iy
]
iy

e

T T
— GULV-LMS
— - ULV-LMS
- - RLS

LMS

VAR e
| |

I I
50 100 150

I
200

I I
250 300

Iterations

I I
350 400

I
450

500

| — ULV-RLS
1 QRD-RLS]
— - Schur-RLS

.
50 100 150 200 250 300 350 400 450 500
Iterations

Figure 3: Learning curves illustrating performance. Noise at -60 dB. Curves are averages of 20 runs.

[16] G. W. Stewart, “Updating a rank revealing ULV decomposition,” Tech. Rep. UMIACS-TR-91-39 and

CS-TR 2627, Department of Computer Science and Institute for Advanced Computer Studies, Univer-

sity of Maryland, College Park, MD 20742, March 1991.

[17] P. A. Wedin, “Perturbation bounds in connection with singular value decomposition,” BIT, vol. 12,

pp. 99 111, 1973,

[18] R. D. Fierro and P. C. Hansen, “Accuracy of TSVD solutions computed from rank revealing decompo-

sitions.” Preprint.

[19] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Engelwood Cliffs, N.J.: Prentice Hall, 1985.

[20] G. Ungerboeck, “Theory on the speed of convergence in adaptive equalizers for digital communication,”

IBM Journal of Research and Development, vol. 16, pp. 546555, 1972.

[21] G. W. Stewart and J. Sun, Matriz Perturbation Theory. San Diego, USA: Academic Press Inc., 1990.

[22] S. Hosur, Recursive Matriz Factorization Algorithms in Adaptive Filtering and Mobile Communications.

PhD thesis, University of Minnesota, October 1995.

[23] J.S.Goldstein, M.A.Ingram, E.J.Holder, and R. Smith, “Adaptive subspace selection using subband

decompositions for sensor array processing,” in Proc. ICASSP, vol. IV, pp. 281 284, April 1994.

29

10
107 b — GULV-LMs]
1
B gllw —-- ULV-RLS | i
107) - ORD-RLS ‘ ; | ‘I 1
i}
-6 || u.‘l\ -~ RLS) : | i:
107y ;"l'\“” -+ schur-RLS } j! i
:W\h ||!"\ ‘l‘ﬁ | }ﬂ | ‘ M ”Wl
| I ™
10° [l H‘n 1 I |‘4'\"N' : il l i “; ‘”“ ‘:‘T:h‘i |
w i M h I i “ ‘] U\
2 |u i n‘ 1 i f 1“.. b m /i
10| pio ‘\Eu} I n] ‘n’ i W\
10 '?‘“‘l i " | "N' Wf m il g i ! i
I MR
10 M‘“ ‘!"15‘ Mum:‘ M"'N' W \;Wr ! M R
) M I‘MI} ! W ?\ﬁ M ””V “ ?*:‘g ﬂﬂl\”"‘;ni l
10714 \W\]‘“‘!\MH' E‘me WN i \ | lp | u. i T\ﬁ“ ol W
o Ty it . ! i [
i, 8 e
107" Fyiidbel «ﬂmm' (T
10‘15 L L
0 500 1000 1500

Iterations

Figure 4: Learning curves illustrating behavior when input correlation matrix is extremely ill conditioned.

Noise at -160 dB. Curves are averages of 20 runs.

10°
07 — GULV-LMS 1
—-ULV-RLS
-2
107 QRD-RLS :
. - - RLS
107 ~ - Schur-RLS E
|
af
10 ki il i it
0] ¥ ‘ M “""'M«"WW" i ‘”“ i ‘“”J' Wy ml MJ""M IJ'”“”
g 5 ‘\ le . |!|l£}1b‘i“?"ﬂ}n|é‘{f ! lv W \ i q"l?ﬂ l\]hwt ﬂlﬁl qﬁ‘”@'
10 ¢! i q mumwﬂ\ \;Wll"w [M‘P‘
; H “ I||||I ,”“" IHI,'
o | ! :H‘M”MWH"H"H pH:H‘ﬂ
107, \‘\MHHH‘H\“‘H\‘
|
oy
10 Ej
|
[}
8| b
10 *f‘b(:,
|
10°

0 100 200 300 400 500 600 700 800 900 1000
lterations

Figure 5: Learning curves illustrating rank tracking performance. Curves are averages of 20 runs.

30

