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ULV AND GENERALIZED ULV SUBSPACE TRACKING ADAPTIVEALGORITHMSSrinath Hosur Ahmed H. Tew�k Daniel BoleyDept. of Electrical Engineering and Computer Science,University of Minnesota, Minneapolis, MN 55455EDICS 2.6November, 1995AbstractTraditional adaptive �lters assume that the e�ective rank of the input signal is the same as the inputcovariance matrix or the �lter length N . Therefore, if the input signal lives in a subspace of dimensionless than N , these �lters fail to perform satisfactorily. In this paper we present two new algorithms foradapting only in the dominant signal subspace. The �rst of these is a low-rank recursive-least-squares(RLS) algorithm which uses a ULV decomposition to track and adapt in the signal subspace. The secondadaptive algorithm is a subspace tracking least-mean-squares (LMS) algorithm which uses a generalized ULV(GULV) decomposition, developed in this paper, to track and adapt in subspaces corresponding to severalwell conditioned singular value clusters. The algorithm also has an improved convergence speed comparedto that of the LMS algorithm. Bounds on the quality of subspaces isolated using the GULV decompositionare derived and the performance of the adaptive algorithms are analyzed.1 IntroductionConventional adaptive algorithms assume that the desired signal lives in a space whose dimension isthe same as the input covariance matrix or the length of the �lter. However, in many signal processingapplications, such as interference suppression using the adaptive-line-enhancer (ALE), the input signalsexist in a subspace whose dimension is much lower than the �lter length. In such cases, adaptive �lteringonly in those subspaces which contain dominant signal components results in a performance improvementdue to the exclusion of the noise only modes. In this paper, we develop two new algorithms for adaptive�ltering in the signal subspaces. The �rst of these algorithms is a low rank recursive-least-squares (RLS)algorithm which uses the ULV algorithm to track and adapt only in the signal subspaces. The secondThis work was supported in part by ONR under grant N00014-92-J-1678, AFOSR under grant AF/F49620-93-1-0151DEF,DARPA under grant USDOC6NANB2D1272 and NSF under grant CCR-9405380.1



algorithm is a subspace tracking least-mean-squares (LMS) algorithm which uses a generalization of theULV decomposition developed in this paper.Traditionally the singular value decomposition (SVD) is used to compute the low-rank least squaressolution [1]. However, in real time applications, it is expensive to update the SVD. Recently, a low rank,eigensubspace RLS algorithm has been proposed in [2] using a Schur-type decomposition of the input cor-relation matrix. This algorithm requires O(rN) 
ops, where r is the e�ective rank of the input correlationmatrix. However, the algorithm requires the knowledge of this rank r. Hence, it is not suitable to applica-tions where r varies with time. Rank-revealing QR (RRQR) decompositions may also be used to solve theleast-squares (LS) problem [3]. These algorithms can track the rank and therefore do not su�er from thedisadvantage of [2]. The computational complexity of this approach is O(N2). However, it has been shown[4] that the quality of approximation of the singular value subspaces using RRQR (and hence the closeness ofthe truncated RRQR decomposition to the truncated SVD) depends on the gap between the singular values.The LS problem was also solved by using a truncated ULV decomposition to approximate the data matrix[4]. Although the computational expense, O(N2), of this algorithm is greater than that of [2], this methodo�ers the advantage that it is able to track rank changes. Furthermore, the quality of the approximations tothe singular value subspaces that it produces does not depend on the magnitude of the gap in the singularvalues.In many applications in signal processing and in particular for low rank subspace domain adaptive�ltering, one is not interested in the exact singular vectors but in the subspaces corresponding to clustersof singular values of the same order of magnitude. Recently, some subspace updating techniques havebeen suggested [5]-[9]. A Kalman �lter was used to update the eigenvector corresponding to the smallesteigenvalue in [5]. However it was not suggested how to modify the algorithm in case of multiple eigenvaluescorresponding to noise. In [6], a fast eigen-decomposition algorithm which replaced the noise and signaleigenvalues by their corresponding average values was proposed. This technique could work well if the exacteigenvalues could be grouped together in two tight clusters. In [7] and [8], the averaging technique of [6] isused. However, the SVD is updated instead of the eigenvalue decomposition. This reduces the conditionnumbers to their square roots and increases numerical accuracy. Again the assumption that the singularvalues could be grouped into two tight clusters is made. In normal signal scenarios and in particular for theapplication targeted in this paper, this assumption is generally not valid.The ULV decomposition was �rst introduced by Stewart [10], to break the eigenspace of the inputcorrelation matrix RN , where N is the length of the impulse response of the adaptive �lter, into twosubspaces, one corresponding to the cluster of largest singular values and the other corresponding to thesmaller singular values or noise subspace. This method is easily updated when new data arrives withoutmaking any a priori assumptions about the overall distribution of the singular values. Each ULV updaterequires only O(N2) operations. An analysis of the ULV algorithm was also performed [4, 11]. It was shownin [4] that the \noise" subspace (the subspace corresponding to the cluster of small singular values) is closeto the corresponding SVD subspace. The analysis of [11] also shows that the ULV subspaces are only slightly2



more sensitive to perturbations. These analyses show that the ULV algorithm can be used in many situationswhere SVD was the only available alternative to date.We use the ULV decomposition to develop a low rank recursive-least-squares (RLS) algorithm. Theproposed algorithm tracks the subspace that contains the signal of interest using the ULV decompositionand adapts only in that subspace. Though the ULV decomposition requires O(N2) 
ops, the increase incomputational complexity can be justi�ed by the fact that the ULV decomposition is able to track changesin the numerical rank.We also develop a new subspace tracking least-mean-squares (LMS) algorithm. The ULV decompositiontracks only two subspaces, the dominant signal subspace and the smaller singular value subspace. Eventhough, the dominant subspace contains strong signal components, its condition number might still be large.Now, recall that the convergence speed of the LMS algorithm depends inversely on the condition number ofthe input autocorrelation matrix (the ratio of its maximum to minimum eigenvalue) [12, 13]. Thus, a lowrank LMS algorithm which uses the ULV decomposition would still have a poor convergence performance.We therefore develop a generalization of the ULV algorithm to track several well conditioned subspaces ofthe input correlation matrix. The input is then projected onto these subspaces and LMS adaptive �lteringis performed in these well conditioned subspaces. This improves the convergence speed of the subspacetracking LMS algorithm.This paper is organized as follows. In Section 2 we introduce the rank revealing ULV decomposition andthe idea of tracking subspaces corresponding to clusters of singular values. Readers already familiar with theULV decomposition can skip Section 2.1 and the �rst part of Section 2.2. The concluding part of this sectioncontains a discussion on various heuristics used to decide if a gap exists between the singular values. Thisdiscussion motivates the use of a new heuristic introduced in this paper with the ULV and especially theGULV algorithms. Some of the bounds on the quality of the subspaces are reviewed in Section 2.3. We alsoderive a new bound on the angle between the subspaces generated using the ULV algorithm on a perturbeddata matrix and the corresponding subspaces obtained using a SVD on the true data matrix. Next, wedevelop the ULV-RLS algorithm. The GULV algorithm is presented in Section 5. In this section, we alsoshow that the bounds on the subspace quality derived for the plain ULV decomposition can be recursivelyapplied to estimate the quality of the subspaces obtained using the GULV procedure. Section 6 introducesthe idea of subspace domain LMS adaptive �ltering and Section 7 analyzes its performance. Numericalexamples are discussed in Section 8.2 The ULV decompositionMany signal processing problems require that we isolate the smallest singular values of a matrix. The matrixis typically a covariance matrix or a data matrix that is used to estimate a covariance matrix. The decisionas to how many singular values to isolate is usually based on a threshold value (�nd all the singular valuesbelow the threshold) or on a count (�nd the last r singular values). While extracting the singular values one3



often wants to keep clusters of the singular values together as a unit. In the SVD, this extraction is easysince all the singular values are \displayed". One can therefore easily traverse the entire sequence of singularvalues to isolate the desired set. Therefore, in order to isolate the smallest singular values, one needs tochoose a proper threshold and identify all the singular values which lie below this threshold. As mentionedearlier, the drawback of the SVD is that it requires O(N3) 
ops. Here, we review the ULV decomposition ofStewart [10]. The ULV decomposition can be used to divide the singular values into two groups and computea basis for the space spanned by the corresponding groups of singular vectors.2.1 Data StructureThe ULV decomposition of a real k �N matrix A (where k � N) is a triple of 3 matrices U, L, V plusa rank index r, where A = ULVT ; (2.1)V is a N �N orthogonal matrix, L is a N � N lower triangular matrix and U has the same shape as Awith orthonormal columns. The lower triangular matrix L can be partitioned asL :=  C 0E F! ; (2.2)where, C, the leading r � r part of L has a Frobenius norm approximately equal to the norm of a vector ofthe r leading singular values of A. That is, if the singular values of A satisfy�1(A) � � � ��r(A) > �r+1(A) � � � ��N (A) (2.3)then kCk2F � �21(A) + � � � + �2r (A). This implies that C encapsulates the \large" singular values of L and(E;F) (the trailing N � r rows of L) approximately encapsulate the N � r smallest singular values. The lastN � r columns of V encapsulate the corresponding trailing right singular vectors.In the data structure actually used for computation, L is needed to determine the rank index at eachstage as new rows are appended. However, U is not needed to obtain the right singular vectors. Therefore,a given ULV decomposition can be represented just by the triple [L;V; r]. The ULV decomposition is rankrevealing1 in the sense that the norm of the matrix [E F] is smaller than some speci�ed tolerance.Thus, this decomposition immediately provides us with the sub-spaces corresponding to a group of largestsingular values and another corresponding to the group of smallest singular values.The ULV updating procedure updates the ULV decomposition of the data matrix corresponding to theinput process, as additional data vectors become available. In essence, it updates the subspaces correspondingto the group of large eigenvalues and that of small eigenvalues of the correlation matrix of the input to theadaptive �lter.1term coined by T. F. Chan
4



C . . . .C C . . .C C C . .e e e f .e e e f fR R R R R
rotatefrom =)right

C + . . .C C + . .C C C + .e e e f +e e e f fR . . . .
rotatefrom =)left

C . . . .C C . . .C C C . .E E E F .e e e f f. . . . .
chopawayzeros =)incrementrank index

C . . . .C C . . .C C C . .C C C C .e e e e fFigure 1: Sketch of Absorb One procedure. Upper case letters denote large entries, lower case letters smallentries in the ULV partitioning, R denotes an entry of the new row, + a temporary �ll, and . a zero entry.2.2 Primitive ProceduresThe ULV updating process consists of �ve primitive procedures. The �rst three procedures are designedto allow easy updating of the ULV decomposition as new rows are appended. Each basic procedure costsO(N2) operations and consists of a sequence of plane (Givens) rotations [14]. Pre-multiplication by a planerotation operates on the rows of the matrix while post-multiplication operates on its columns. By using asequence of such rotations in a very special order, we can annihilate desired entries while �lling in as fewzero entries as possible. We then restore the few zeroes that are �lled in. We show the operations on L,partitioned as in (2.2). Each rotation applied from the right is also accumulated in V, to maintain theidentity A = ULVT , where U is not saved. The last two procedures use the �rst three to complete a ULVupdate.� Absorb One: Absorb a new row. The matrix A is augmented by one row, yielding AaT ! =  U 00 1! LaTV!VT :The matrices L, V are then updated to restore the ULV structure, and the rank index r is incrementedby 1. The process is sketched in Fig. (1).� Extract Info: The following information is extracted from the ULV decomposition: (a) an approxi-mation of the last singular value of C (i.e., the leading r�r part of L), and (b) a left singular vector ofC corresponding to this singular value. These are computed using a condition number estimator [15].� Deflate One: De
ate the ULV decomposition by one (i.e., apply transformation and decrement therank index by one so that the smallest singular value in the leading r � r part of L is "moved" to thetrailing rows). Speci�cally, transformations are applied to isolate the smallest singular value in theleading r�r part of L into the last row of this leading part. The transformations are constructed usingitem (c) from Extract Info and applied in a manner similar to Absorb One. Then the rank index isdecremented by 1, e�ectively moving the smallest singular value from the leading part to the trailingpart of L. This operation just moves the singular value without checking whether the singular valuemoved is close to zero or any other singular value.5



� Deflate To Gap: This procedure tries to move the rank boundary, represented by the rank index r,toward a gap among the singular values. Let s be the smallest singular value of C obtained usingExtract Info. The Deflate To Gap procedure essentially decides if the magnitude of this singularvalue is of the same order as that of the singular values in the trailing part of L. This decision ismade using a heuristic. After applying the heuristic, if the procedure decides that s is of the sameorder of magnitude as the trailing singular values, a de
ation is performed using Deflate One. Theprocedure then calls Extract Info with the new rank index. This process is repeated till a gap inthe singular values is found. Various heuristics can be used to try and determine if a gap between thesingular values exists. However some of them are not suitable for use with generalization of the ULV.We examine some of these techniques in Section 2.2.1 and discuss their relative merits and demerits.� Update: This procedure encompasses the entire process. It takes an old ULV decomposition and a newrow to append, and incorporates the row into the ULV decomposition. The new row is absorbed, andthe rank is de
ated if necessary to �nd a gap among the singular values.2.2.1 Choice of heuristics for de
ationVarious heuristics can be used to decide if a gap exists in the singular values. The choice of the heuristicis extremely important as it is used to cluster the singular values and hence obtain the correct singularsubspaces. To our knowledge three heuristics (including the one used in this paper) have been proposed inliterature.The heuristic proposed in [16] estimates the smallest singular value, s of C and compares it with a userspeci�ed tolerance. This tolerance, provided by the user, is usually based on some knowledge of the eigenvaluedistribution. The choice of the tolerance is important. If it is too large, the rank may be underestimatedand if it is too small, it may be overestimated. Also, as we shall see later, the user has to provide severaltolerances to track more than two clusters using the generalized ULV decomposition. In practice all thesetolerances may not be available. Therefore, this heuristic cannot be used in the GULV algorithm that wedescribe next.A second heuristic has been proposed in [9]. This heuristic decides that a gap in the singular valuesexists if s2 > d2(f2 + b2) where f is the Frobenius norm of the trailing part [E;F]. The parameter b, calledZero Tolerance, is selected by the user. It is included to allow for round-o� or other errors. This heuristichas the nice feature that only the Spread d and the Zero Tolerance b need to be speci�ed. The algorithmthen uses this heuristic to cluster all singular values of similar order of magnitude. However, when the rankincrease is greater than one or the algorithm underestimates the numerical rank, this heuristic leads to someproblems. In particular if one of the larger singular values lies within the trailing part, the heuristic mightdecide that no gap exists. De
ation is then repeatedly applied till the rank index becomes zero. As thealgorithm is limited to growing the rank boundary by no more than one for each iteration, the algorithm hasto be reinitialized by arti�cially moving the rank boundary all the way down to the smallest eigenvalue of L6
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Figure 2: Tracking performance of ULV using di�erent heuristics for �nding a gap in singular valuesand searching for the rank boundary (using de
ations). Though it is a reasonable assumption that the rankusually does not change by more than one, the problem still exists if the rank is underestimated. Figure 2shows the rank tracking behavior of the ULV algorithm using the heuristics of [10], [9] and that proposedin this paper. The input initially consisted of two complex sinusoids each having an amplitude of 0.1. Thebackground noise was white with a variance of 10�12. Therefore, there are initially two large singular valueswith magnitudes on the order of 0.01 each. The ULV algorithms using all the heuristics converge to a rankestimate of two. Next a complex exponential of unit amplitude is added to the input. Now the larger groupof singular values is f1; 0:01; 0:01g. The �gure shows that after some time, the ULV algorithm using theproposed heuristic and that of [10] converged to a rank of three. However, the ULV algorithm using theheuristic of [9] converges to one. This is because, the heuristic initially under estimated the rank as two.Thus, a singular value of magnitude 0:01 is isolated into the trailing part of L, making the Frobenius normof this part of the same order as the smallest singular value of the leading part and forcing a de
ation.We will see later that even though the outermost rank boundary in a generalized ULV decompositioncannot change by more than one, the inner rank boundaries can change by more than one. As the rankincrease of each boundary is limited to one per iteration, a large singular value would be isolated into thenext group of small singular values. Thus, the situation described above might occur frequently and theinner rank boundary might be erroneously estimated. Therefore, this heuristic also cannot be used with theGULV decomposition.The heuristic proposed in this paper tries to combine the advantages of the two heuristics that wediscussed above. By using the heuristic proposed in this paper, we can automatically isolate clusters ofsingular values of similar order of magnitude i.e., the condition number of each cluster lies within the user7



de�ned Spread. Also, it does not su�er from the disadvantage of the second heuristic. If the estimate ofthe rank boundary is too low, the heuristic allows the rank to grow until it attains the correct value. Thisheuristic estimates the smallest singular value, f , of L in addition to that of C (s). The heuristic then decidesthat a gap between the singular values exists if s > df , where d is the Spread chosen by the user. Thus,this heuristic does not require a user speci�ed tolerance. In case of the GULV decomposition, f is simplythe smallest value of the small singular value group adjacent to the group on which Deflate To Gap is beingapplied. We shall see later that this heuristic can be used with the GULV decomposition with minimumadditional computations. The tracking performance of the ULV decomposition using this heuristic is shownin Fig. 2. Note that if we replace df by the user speci�ed tolerance in our heuristic, we obtain the heuristicof [10].2.3 Quality of SubspacesConsider the orthogonal projector onto a subspace S, PS . For two equi-dimensional subspaces S1 and S2,the distance between subspaces is characterized bysin �(S1;S2) := k(I�PS1)PS2k = k(I�PS2)PS1k: (2.4)Bounds have been derived for the ULV algorithm to assess the distance between the ULV subspaces and thecorresponding singular subspaces and to measure sensitivity of the subspaces to perturbations.Let the ULV decomposition of A be represented asA = hUrU0U?i26664 Lr 0H E0 0 37775hVrV0iT (2.5)and the SVD of A be given by A = hU1U2U?i26664 �r 00 �n�r0 0 37775hV1V2iT : (2.6)The following theorem due to Fierro and Bunch [4] shows that as the o�-diagonal block H decreases, theULV subspaces converge to their SVD counterparts.Theorem 1 (Fierro & Bunch) Let A have the ULV in (2.5) and the SVD in (2.6). Assume k � k = k � k2.If kEk < �min(Lr) then sin �(R(Vr);R(V1)) � kHkkEk�2min(Lr)� kEk2sin�(R(Ur);R(U1)) � kHk�min(Lr)� kEkkHkkLrk+ kEk � sin�(R(Ur);R(U1)):8



These bounds also reveal that there is a limit on how close some subspaces can be.In most applications, we will have access to the perturbed matrix ~A = A+ �A rather than A itself. Let~A have the ULV decomposition ~A = h ~Ur ~U0 ~U?i26664 ~Lr 0~H ~E0 0 37775h ~Vr ~V0iT : (2.7)Further, let ~Xr and ~Yr form an orthogonal basis for R( ~Vr) and R( ~Ur) respectively. De�ne� := max (k�A ~Xrk; k ~YTr �Ak): (2.8)Then, the following theorem bounds the sensitivity of the ULV subspaces.Theorem 2 (Fierro) Let A and ~A have the ULV decompositions (2.5) and (2.7) respectively. If �max(E) <�min(~Lr) then for � as de�ned in (2.8) we havesin �(R( ~Vr);R(Vr)) � (kHk+ k ~Hk)�max(E)�2min(~Lr)� kEk22 + ��min(~Lr)� kEk2sin�(R( ~Ur);R(Ur)) � kHk+ k ~Hk�min(~Lr)� kEk2 + ��min(~Lr)� kEk2 :These results indicate that the ULV subspaces are only slightly more sensitive to perturbations than thesingular subspaces [11].The above theorems provide us with bounds on the distance between ULV subspaces and the SVDsubspaces. They also provide us with bounds on the angle between the subspaces obtained by performing aULV decomposition on the actual data matrix and a perturbed data matrix. However, they do not provideany bounds on the distance between the subspaces obtained using the ULV decomposition on a perturbedmatrix and those obtained using the SVD on the actual matrix. In many signal processing applications, theULV decomposition is preferred to the SVD due to its lower computational complexity. One such application,adaptive �ltering in subspaces, is discussed in this paper. Here, the input data is projected onto several wellconditioned subspaces containing the input signal energy. The projected data in these signal subspaces isthen adaptively combined to generate an estimate of the desired response. In applications such as these, thedata matrix is usually corrupted by noise. We therefore need to provide bounds on the angle between thesubspaces obtained using the ULV decomposition on a perturbed matrix and those obtained using the SVDon the actual matrix as a measure of the quality of the subspaces isolated using the ULV decomposition.Such bounds may be obtained directly from Theorem 2 by noting that the SVD of A may be viewed as aULV decomposition with H = 0, Lr = �r, E = �n�r and Vr = V1. Hence, we have the following newtheorem.Theorem 3 Let A and ~A have the SVD and ULV decompositions (2.6) and (2.7) respectively. If �max(E) <�min(~Lr) then for � as de�ned in (2.8) we havesin �(R( ~Vr);R(V1)) � k ~Hk�r+1�2min(~Lr)� �2r+1 + ��min(~Lr)� �r+1 :9



The above theorem indicates that as the norm of the o�-diagonal block ~H decreases, the error between theULV subspace and the corresponding true SVD subspace is dominated by the magnitude of the perturbationin the data matrix. Note that by setting the matrix ~H = 0 in the ULV decomposition, we decouple the �rstsingular value group from the second singular value cluster. In particular, we e�ectively have obtained thesingular subspaces for the matrix. If, furthermore, there exist � and � such that�min(~L) � �+ � and �r+1 � �; (2.9)the above theorem reduces to the perturbation bounds for singular subspaces obtained by Wedin [17]. Wetherefore, obtain the perturbation bound for singular subspaces as a special case of the ULV bound. Notealso that this discussion implies that by using re�nement strategies (at extra computational cost), we canincrease the accuracy of the ULV estimates of the SVD subspaces by reducing the norm of ~H. Therefore,the perturbation �A yields the ultimate limit on the accuracy of the subspaces obtained using the ULVdecomposition.3 Low Rank RLS AlgorithmIn this section we use the ULV decomposition to develop a subspace tracking RLS algorithm. Let the inputsignal vector at time n be given byx(n) = [x0(n); x1(n); : : : ; xN�1(n)]T : (3.1)Note that in case of �ltering xk(n) = x(n � k). Also, let the adaptive �lter weight vector at this time beh(n). The corresponding �lter output is the obtained asd̂(n) = xT (n)h(n): (3.2)The error between the desired response d(n) and that estimated by the adaptive �lter d̂(n) can be writtenas e(n) = d(n)� d̂(n) = d(n)� xT (n)h(n): (3.3)The RLS algorithm tries to recursively solve the weighted LS problemminh(n) nXi=1 �n�ije(i)j2: (3.4)By rewriting (3.4), we �nd that the RLS algorithm solves the following problem [12].minh k�1=2(n)(X(n)h(n) � d(n))k2: (3.5)In (3.5), d(n) = [d(1); d(2); � � � ; d(n)]T is the desired response vector, X(n) is the input data matrix givenby X(n) = hx(1);x(2); : : : ;x(n)iT ; (3.6)10



and �(n) is the n� n diagonal exponential weighting matrix given by�(n) = diag��n�1; �n�2; : : : ; 1�: (3.7)When � = I, the LS solution can be expressed in terms of the SVD ashLS(n) = Xy(n)d(n) = V(n)�y(n)UT (n)d(n): (3.8)Here, (�)y denotes the pseudoinverse [1].When X(n) is close to rank de�cient, the least squares solution is ill conditioned due to the inversionof the small singular values in �y(n). In such cases, a rank r approximant Xr(n) of the matrix X(n) isconstructed by setting the N � r small singular values of X(n) to zero in its singular value decomposition.Thus, if the singular value decomposition of X(n) is given by (2.6), its low rank approximate is given byXr(n) = hU1(n)U2(n)U?(n)i26664 �r(n) 00 0n�k0 0 37775 hV1(n)V2(n)iT = U1(n)�r(n)VT1 (n): (3.9)The solution to the modi�ed LS problem is then obtained ashMLS(n) = Xyr(n)d(n) = V1(n)��1r (n)UT1 (n)d(n): (3.10)It has been recently suggested, [18], that the rank r approximate of X(n), discussed above, be replacedby a matrix obtained using a truncated ULV decomposition. The main motivations behind the use of theULV decomposition is its lower computational expense, O(N2) as compared to the SVD O(N3). Thus, themodi�ed minimum norm solution can be computed as [18]hULV�LS(n) = Vr(n)L�1r (n)UTr (n)d(n): (3.11)It was however not suggested how the algorithm is to be modi�ed in case the data matrix X(n) grows asnew data becomes available. Clearly, in such a case storing U(n) is not a viable option. In this section, wesuggest a method to obtain a recursive solution to the modi�ed LS problem (3.10).The LS minimization problem discussed above is invariant under any unitary transformation. For somen � N , let the ULV decomposition of the weighted data matrix be given as�1=2(n)X(n) = U(n)26664 Lr(n) 0H(n) E(n)0 0 37775VT (n); (3.12)where the columns of U(n) and V(n) can again be clustered as in (2.5). Then,UT (n)�1=2(n)(d(n)�X(n)h(n)) = 26664 p(n)� 24 Lr(n) 0H(n) E(n) 35VT (n)h(n)v(n) 37775 ; (3.13)11



where UT (n)�1=2(n)d(n) = 24 p(n)v(n) 35 : (3.14)Thus the RLS problem is equivalent to solving for h(n) the system of linear equations24 Lr(n) 0H(n) E(n) 35VT (n)h(n) = p(n): (3.15)Note that V(n) = [Vr(n)V0(n)]. Therefore, the above equation can be rewritten as24 Lr(n) 0H(n) E(n) 3524 VTr (n)h(n)VT0 (n)h(n) 35 = 24 pr(n)pN�r(n) 35 ; (3.16)where pr(n) are the �rst r elements of p(n). Thus, the low rank RLS solution can be obtained in two stepsas g(n) = L�1r (n)pr(n) (3.17)hULV�LS(n) = Vr(n)g(n): (3.18)The computation of the ULV-LS solution using Eqs. (3.17)-(3.18) requires only O(Nr) 
ops.Note that the ULV algorithm updates U(n), L(n) and V(n) from previously computed values. To dothis, it appends the new input vector x(n) as a row to �1=2L(n � 1) and applies Givens rotations from theright and the left in a special order to compute L(n). This operation can be written as24 L(n)0 35 = TT (n)24 �1=2L(n� 1)xT (n) 35G(n): (3.19)The ULV algorithm discards all the rotations applied from the left. The right rotations are absorbed intoV(n). However, the vector p(n) can be easily updated from p(n� 1) as24 p(n)v(n) 35 = TT (n)24 �1=2p(n� 1)d(n) 35 : (3.20)Since each Givens rotation a�ects only two elements of the vector, we must perform O(N) 
ops to updatep(n). Thus, the low rank RLS requires O(N2) 
ops per iteration.4 ULV-RLS Performance AnalysisIn this section we perform a simple convergence analysis of the ULV-RLS algorithm. The ULV subspacesare in general perturbed from their SVD counterparts. Therefore, the main purpose of this section is toanalyze these e�ects on the convergence behavior of the ULV-RLS algorithm. For the rest of this section,we assume that the algorithm operates in a stationary environment. Therefore, we set the exponentialweighting factor � = 1 to get the optimal steady-state result. This assumption implies that the environment12



is stationary and allows us to draw some general conclusions about the ULV-RLS algorithm. The expressionscan be easily modi�ed for a non-unit �.In order to analyze the behavior of the ULV-RLS algorithm, we consider the following multiple linearregression model. Assume that the input is in a low rank subspace of dimension r where r < N . The N � 1input vector x(n), at time n, is projected into the r dimensional subspace using a r�N transformation matrix,Sr. The columns of STr are the r eigenvectors of the covariance matrix R = E[x(n)xT (n)] corresponding toits r non-zero eigenvalues. The resulting r � 1 vector y(n) = Srx(n) is weighted by go, a r � 1 regressionparameter vector in the transform domain. The desired output d(n) is then generated, according to thismodel, as d(n) = yT (n)go + eo(n) = xT (n)ho + eo(n); (4.21)where eo(n) is called the measurement error and ho is the corresponding time domain N � 1 regressionparameter vector, ho = STr go: (4.22)The process feo(n)g is assumed to be white with zero mean and variance �2. Since algorithm operates in astationary environment, the vector ho is constant.4.1 Weight vector behaviorThe rank-r ULV-RLS weight vector at time n, hULV�LS(n), satis�es (see (3.11)),Ur(n)Lr(n)VTr (n)hULV�LS(n) = d(n): (4.23)From (4.21), we see that the regression vector satis�esX(n)ho = d(n)� eo(n); (4.24)where eo(n) = [eo(1); eo(2); : : : ; eo(n)]T is the vector of the measurement errors up to time n. As the rankof X(n) is r, we can rewrite (4.24), using the SVD of X(n) de�ned in (2.6), asU1(n)�r(n)VT1 (n)ho = d(n)� eo(n): (4.25)Subtracting (4.25) from (4.23), multiplying both sides of the result byXT (n) and performing some simplemathematical manipulations, we obtainVr(n)LTr (n)Lr(n)VTr (n)hULV�LS(n)�V1(n)�2r(n)VT1 (n)ho = XT (n)eo(n): (4.26)Notice that �̂(n) = Vr(n)LTr (n)Lr(n)VTr (n) is an approximation to the matrix, �(n) = V1(n)�2r(n)VT1 (n).Therefore, Vr(n)LTr (n)Lr(n)VTr (n) = V1(n)�2r(n)VT1 (n) +F(n); or (4.27)�̂(n) = �(n) +F(n); (4.28)13



where F(n) is the error in the approximation. Thus, from (4.26) and (4.28), we obtain�̂(n) (hULV�LS(n)� ho) = F(n)ho +XT (n)eo(n): (4.29)Taking the expectation of both sides of (4.29) for a given realization x(k); 1 � k � n, and noting that themeasurement error eo(n) has zero mean, we obtainE[hULV�LSjx(k); 1 � k � n] = ho + �̂y(n)F(n)ho: (4.30)Assuming the stochastic process represented by x(n) is ergodic, we can approximate the ensemble averagedcovariance matrix R of x(n) as, R � 1n�(n) large n: (4.31)Thus, (4.30) can be rewritten as,E[hULV�LS(n)jx(k); 1 � k � n] � ho + 1n (R+ 1nF(n))yF(n)ho: (4.32)In the above expression, as n tends to in�nity, the perturbation 1nF(n) tends to a �nite value due to theinaccuracy in the subspaces estimated by the ULV decomposition. In fact, it has been shown that [18]kU1�rVT1 �UrLrVTr kkU1�rVT1 k � sin �(R(Vr);R(V1)): (4.33)Thus, unlike traditional RLS algorithm, which is asymptotically unbiased [12], the ULV-RLS algorithm hasa small bias. However, the magnitude of this bias depends on the closeness of the ULV subspace, Vr, toits corresponding singular subspace. This closeness, in turn, depends on the magnitude of the o� diagonalmatrix H (See Theorem 1). Therefore, using extra re�nements, it is possible to reduce the norm of H toclose to zero and make the bias negligible.4.2 Mean squared errorLet us now perform a convergence analysis of the RLS algorithm based on the mean squared value of the apriori estimation error of the RLS algorithm.The a priori estimation error �(n) is given by�(n) = d(n)� hTULV�LS(n� 1)x(n): (4.34)Eliminating d(n) between (4.34) and (4.21), we obtain�(n) = eo(n)� (hULV�LS(n� 1)� ho)Tx(n) = eo(n)� �T (n� 1)x(n): (4.35)Now note that it follows from (4.29) thatK(n) = E[�(n)�T (n)jx(k); 1 � k � n] = �̂y(n)F(n)hohTo F(n)�̂y(n) + �2�̂y(n)�(n)�̂y(n): (4.36)14



De�ne, J 0(n) = �2(n). We then haveE[J 0(n)jx(k); 1 � k � n] = E[�2(n)jx(k); 1 � k � n]= E[e2o(n)jx(k); 1 � k � n]+E[xT (n)�(n� 1)�T (n� 1)x(n)jx(k); 1 � k � n]�E[�T (n� 1)x(n)eo(n)jx(k); 1 � k � n]�E[eo(n)xT (n)�(n� 1)jx(k); 1 � k � n] (4.37)= �2 +Tr[x(n)xT (n)K(n� 1)]; (4.38)where we used the fact that �(n� 1) is independent of eo(n) given x(k); 1 � k � n.We therefore haveE[J 0(n)jx(k); 1 � k � n] = �2+Tr[x(n)xT (n)�̂y(n)F(n)hohTo F(n)�̂y(n)]+�2Tr[x(n)xT (n)�̂y(n)�(n)�̂y(n)]:(4.39)Notice that the second term in the above equation depends on the distance between the ULV and the SVDsubspaces. Now, the magnitude of 1nF(n) depends on the norm of the o� diagonal matrix H (see [18],(4.33) and Theorem 1). This norm can be made arbitrarily small using extra re�nements. Furthermore,themagnitude of the third term in the RHS of (4.39) is O( 1n ). Therefore, for small perturbations the a prioriMSE isE[J 0(n)jx(k); 1 � k � n] � �2 + �2Tr[x(n)xT (n)�y(n)�(n)�y(n)] = �2 + �2Tr[x(n)xT (n)�y(n)]: (4.40)If we now take the expectation of both sides of the above equation with respect to x(�) and use (4.31) andthe de�nition of �(n), we obtain for large nE[J 0(n)] � �2 + r�2n : (4.41)Based on (4.41), we can make the following observations about the ULV-RLS algorithm: 1) the ULV-RLSalgorithm converges in the mean square in about r+N iterations, i.e., its rate of convergence is of the sameorder as that of the traditional RLS algorithm, and 2) if the quality of the subspaces approximated arehigh, e.g., in a stationary environment, the a priori MSE of the ULV-RLS approaches the variance of themeasurement error. Therefore, in theory, in such an environment it has a zero excess MSE. Thus, its MSEperformance is similar to that of the traditional RLS algorithm.5 Generalized ULV UpdateAs mentioned in the introduction, the ULV decomposition tracks only two subspaces, the dominantsignal subspace and the smaller singular value subspace. Even though, the dominant subspace containsstrong signal components, its condition number might still be large. Thus, a low rank LMS algorithm whichuses the ULV decomposition would still have a poor convergence performance. We therefore generalize the15



ULV decomposition in this section to track subspaces corresponding to more than two clusters of singularvalues. Each iteration of the GULV decomposition can be thought of as a recursive application of the ULVdecomposition on the larger singular value cluster, i.e., the ULV decomposition is applied to obtain twosingular value clusters. The ULV decomposition is applied to the larger singular value cluster to decomposeit into two clusters. The ULV decomposition is again applied to the larger of these clusters and so on.The following GULV decomposition primitive procedures are implemented by calling the ordinary ULVdecomposition procedures.� Generalized Absorb One. Add a new row and update all the rank boundaries. This procedure justcalls Absorb One using the outermost boundary, i.e., with the data structure [L;V; rk ] (assuming thatthere are k + 1 clusters). This has the e�ect of incrementing rk. The resulting rotations have thee�ect of expanding the top group of singular values by one extra row, hence all the inner boundaries,r1; � � � rk�1 are incremented by one.� Generalized Deflate One. This procedure de
ates the lowest (outermost) singular value boundaryprovided to it. Thus if rl is the boundary provided to this procedure, Deflate One is applied to[L;V; rl]. As in Generalized Absorb One, the upper boundaries must be incremented by one. Inorder to restore the separation that existed between all the singular value clusters before applicationof these update procedures, the upper boundaries must be de
ated. Therefore, de
ation of the rl�1boundary necessitates that all boundaries inner to rl�1 be incremented by one. In particular, rl�2has to be de
ated twice. This further implies that all boundaries inner to rl�2 have to be once againincremented by two and so on. However, while incrementing the inner boundaries, care should betaken so that any inner boundary value is never greater than its next outer boundary i.e., the ithboundary ri � ri+1. Thus the number of de
ations at any boundary, ri, turns out to be the separationbetween ri and ri+1 that existed before Generalized Absorb One. As the de
ations on any boundaryri are performed using Deflate One on [L;V; ri], all rank boundaries outer to ri, i.e., ri+1; � � � rk arenot modi�ed. In other words, the Generalized Deflate One procedure just de
ates the outer mostboundary by one and restores all the existing separations between inner boundaries.� Generalized Deflate To Gap. This procedure is similar to the Deflate To Gap procedure of the ULV.When applied on the ith rank boundary, represented by the rank index ri, it uses the heuristic used byDeflate To Gap to try to move the boundary toward a gap among the singular values. The smallestsingular value of the current cluster, sri , is compared with the smallest singular value of the next clusteri.e., sri+1 . Note that for the outermost cluster sri+1 is the same as �N . The procedure then uses theheuristic that a gap exists if sri > dsri+1 , where d > 1 is the user chosen Spread. If this condition fails,Generalized Deflate One is called repeatedly until this condition is satis�ed. Note that we need tocompute sri+1 for only the outermost rank boundary (for this boundary, sri+1 is the smallest singularvalue of L). The update algorithm follows a \bottom-up" approach, i.e., outer rank boundaries areupdated before the inner ones are. Thus, when updating an inner rank boundary, the value sri+1 of16



the minimum singular value of the next cluster is available at no extra cost. Therefore this approachwould require only O(N2) 
ops more than the heuristic given in [16] in order to obtain the smallestsingular value of L. This extra complexity can be avoided if an estimate of this singular value (e.g., anestimate of the noise power) is provided by the user. The main advantage of this heuristic over thatproposed in [16] is that it avoids the need for the user to provide the di�erent tolerances needed tocheck if a gap exists at each rank boundary.� Generalized Update: This procedure encompasses the entire process. It takes an old GULV decom-position and a new row to append, and incorporates the row into the GULV decomposition. The newrow is absorbed, and the new rank boundaries are found using the procedures described above.5.1 Performance BoundsThe bounds derived for the quality of the subspaces obtained using the ULV algorithm can be directlyapplied to determine the bounds on the quality of subspaces using the GULV algorithm. Consider the casewhere there are four clusters of singular values. The GULV decomposition for this case is given byA = (Uk1 Uk2 Uk3 U? )0BBBB@Lk1 0 0 0H1 Lk2 0 0H2 H3 Lk3 0H4 H5 H6 E1CCCCA (Vk1 Vk2 Vk3 V0 )T : (5.1)In the above decomposition, any lower triangular portion of the L matrix together with the correspondingtrailing part is a valid ULV decomposition. For example  Lk1 0H1 Lk2 ! corresponds to the leading lowertriangular portion while the rest of the matrix,  H2 H3 Lk3 0H4 H5 H6 E! corresponds to the trailing part of avalid ULV decomposition. In such a case, the subspace spanned by (Vk1 Vk2 ) would correspond to thelarge singular value subspace and the remaining columns of V would span the subspace corresponding to thesmaller singular values. Thus, for these subspaces, the bounds discussed in the previous section are valid.Consider the orthonormal matrix Z = (Z1 Z2 Z3 Z4 ) where the sub-matrices Zk are mutuallyorthogonal. Let its perturbed counterpart be ~Z = ( ~Z1 ~Z2 ~Z3 ~Z4 ) where the sub-matrices ~Zk are againmutually orthogonal. Consider the product ZT ~ZZT ~Z = 0BBBB@ZT1 ~Z1 ZT1 ~Z2 ZT1 ~Z3 ZT1 ~Z4ZT2 ~Z1 ZT2 ~Z2 ZT2 ~Z3 ZT2 ~Z4ZT3 ~Z1 ZT3 ~Z2 ZT3 ~Z3 ZT3 ~Z4ZT4 ~Z1 ZT4 ~Z2 ZT4 ~Z3 ZT4 ~Z4
1CCCCA : (5.2)The distance between the subspacesR(Z1) andR(~Z1) is bounded by the norm of the matrix (ZT1 ~Z2 ZT1 ~Z3 ZT1 ~Z4 ).Similarly, the distance between the subspaces R((Z1 Z2 )) and R(( ~Z1 ~Z2 )) is bounded by the norm ofthe matrix  ZT1 ~Z3 ZT1 ~Z4ZT2 ~Z3 ZT2 ~Z4!. A bound on the distance between the subspaces R(Z2) and R(~Z2) can be ob-tained by noting that elements of the matrix (ZT2 ~Z1 ZT2 ~Z3 ZT2 ~Z4 ) are elements of the matrices required17



to characterize the distances between the subspaces R(Z1) and R(~Z1) and R((Z1 Z2 )) and R(( ~Z1 ~Z2 )).Thus, a bound on the quality of the subspaces, ~Z2, i.e., the distance between R(Z2) and R(~Z2), is the squareroot of the sum of squares of the bounds on the distance betweenR(Z1) andR(~Z1), and the distance betweenR((Z1 Z2 )) and R(( ~Z1 ~Z2 )).In general if the matrix Z (correspondingly ~Z) is partitioned into L groups, for the subspace spanned bythe lth group R(Zl) we havesin �(R(Zl);R(~Zl)) � �(upper bound on sin �(R((Z1 � � � Zl�1 ));R(( ~Z1 � � � ~Zl�1 ))))2+ (upper bound on sin �(R((Zl+1 � � � ZL ));R(( ~Zl+1 � � � ~ZL ))))2� 12� upper bound on sin �(R((Z1 � � � Zl�1 ));R(( ~Z1 � � � ~Zl�1 )))+ upper bound on sin �(R((Zl+1 � � � ZL ));R(( ~Zl+1 � � � ~ZL ))) (5.3)In order to generalize the bounds of Theorem 1 for the kth GULV subspace, we �rst replace ~Z by the matricesV or U, obtained using the GULV decomposition, and Z by the corresponding matrix obtained using theSVD in (5.3). We now note that the upper bounds in the RHS of (5.3) are bounds on valid ULV subspacesand can be obtained from Theorem 1. Substituting these bounds into (5.3) generalizes Theorem 1.Again, to generalize Theorem 2, we replace ~Z by ~V or ~U, obtained using the GULV decomposition on ~Aand the corresponding matrix obtained using the GULV decomposition on A, in (5.3). The upper boundsin the RHS of (5.3) are obtained by noting that these are bounds on valid ULV subspaces and applyingTheorem 2. Theorem 3 can also be generalized in a similar fashion.6 Generalized ULV-LMS AlgorithmThe LMS algorithm tries to minimize the mean squared value of the error e(n), given by (3.3) byupdating the weight vector h(n) with each new data sample received ash(n+ 1) = h(n) + �x(n)e(n) (6.1)where the step size � is a positive constant.As noted in the introduction, the convergence of the LMS algorithm depends on the condition number ofthe input autocorrelation matrix, �(Rx) [19, 12], where E�Rx� := E�x(n)xT (n)�. When all the eigenvaluesof the input correlation matrix are equal, i.e., the condition number �(Rx) = 1, the algorithm convergesfastest. As the condition number increases (i.e., as the eigenvalue spread increases or the input correlationmatrix becomes more ill-conditioned), the algorithm converges more slowly.Instead of using a Newton-LMS or a transform domain LMS algorithm to improve the convergence speedof the LMS algorithm, we will develop here a GULV based LMS procedure. The GULV decompositiongroups the singular values of any matrix into an arbitrary number of groups. The number of groups orclusters is determined automatically by the largest condition number that can be tolerated in each cluster.This condition number in turn is determined by each cluster has singular values of nearly the same order18



of magnitude, i.e., the condition number in each cluster is improved. If we now apply an LMS algorithmto a projection of the �lter weights in each subspace, the projected weights will have faster convergence.The convergence of the overall adaptive procedure will depend on the most ill-conditioned subspace, i.e., themaximum of the ratio of the largest singular value in each cluster to its smallest singular value.Let us transform the input using the unitary matrix V(n) obtained by the GULV decomposition. Asthe GULV decomposition is updated at relatively low cost, this would imply a savings in the computationalexpense. We note that V almost block diagonalizes Rx in the sense that it exactly block diagonalizes asmall perturbation of it. In particular, let the input data matrix, X = [x(1); : : : ;x(n)]T = ULVT with Lde�ned by (2.2). Since Rx = VLTLVT ; V exactly block diagonalizes Rx �� as follows:V(Rx ��)VT =  CTC 00 FTF!where � = VT  ETE ETFFTE 0 !V:Here, k�kF � f2 is small, with f = k[E;F]kF .Let the input data vector x(n) be transformed using V(n) asy(n) = VT (n)x(n): (6.2)The �rst r1 coe�cients of y(n) belong to the subspace corresponding to the �rst singular value cluster, thenext r2 coe�cients to the second singular value cluster and so on. The variance of coe�cients of y(n) ineach such cluster is nearly the same. This is due to the fact that each subspace is selected to cluster thesingular values to minimize the condition number in that subspace. This implies that the adaptive �ltercoe�cients in the transform domain can also be similarly clustered.The GULV-LMS update equations for updating the transform domain adaptive �lter vector g(n) aregiven as ~g(n+ 1) = g(n) +Me(n)y(n) (6.3)g(n+ 1) = QT (n+ 1)~g(n+ 1) (6.4)where M is a diagonal matrix of step sizes used and Q(n + 1) is an orthogonal matrix indicating thecumulative e�ect of Givens rotations performed to update V(n+ 1) from V(n), i.e.,V(n+ 1) = V(n)Q(n+ 1): (6.5)It is easy to deduce, from the fact that the output of the transform domain adaptive �lter should be thesame as that of the tapped delay line adaptive �lter, thatg(n) = VT (n)h(n); (6.6)and ~g(n+ 1) = VT (n)h(n+ 1): (6.7)19



As the transformed coe�cients belonging to a single cluster have nearly the same variance, the corre-sponding coe�cients of g(n) can be adapted using the same step size. In other words, the diagonal elementsof M are clustered into values of equal step sizes. The size of each cluster depends on the size of the corre-sponding subspace. The adaptation within each subspace therefore has nearly optimal convergence speed.Thus, for the subspace tracking LMS �lter to have a fast convergence, it should converge with the same speedin each subspace. This implies that the slow converging subspace projections (usually the ones with lowersignal energy) should be assigned large step sizes. Note that the average time constant �av of the learningcurve [12] is �av � 12��av , where �av is the average eigenvalue of the input correlation matrix or the averageinput power. Therefore, the step size for coe�cients in a subspace should be made inversely proportionalto the average energy in that subspace. Now note that the diagonal values of the lower triangular matrix Lgenerated by the GULV decomposition re
ect the average magnitude of the singular values in each cluster.This information can therefore be directly used to select the step sizes.As the slowly converging subspace projections are usually those subspaces with lower signal energy, alarge step size for these subspaces implies that the noise in these subspaces is boosted. By not adapting inthese subspaces, we can reduce the excess MSE. This can be done by setting the corresponding diagonalentries of M to zero. Also, in case the autocorrelation matrix is close to singular, the projections of the tapweights onto the subspaces corresponding to zero singular values need not be updated. This results in stableadaptation.7 GULV-LMS Performance AnalysisSeveral analyses of the LMS and Newton-LMS algorithm have appeared in literature. The GULV-LMSalgorithm di�ers from traditional LMS and Newton-LMS type algorithms in that the subspaces estimated bythe GULV algorithm are perturbed from the true subspaces by a small amount. The goal of this section is toanalyze the e�ect of this perturbation on the performance of the algorithm. Speci�cally, we will consider itse�ect on the mean and mean-squared behavior of the weight vectors in our algorithm. We also study its e�ecton the steady-state mean square error of the proposed algorithm. Our analyses are approximate in that theyrely on the standard simplifying assumptions that have been used in the literature to analyze the variousvariants of the LMS algorithm. They nevertheless provide guide lines for selectingM and an understandingof the performance of the algorithms that is con�rmed by simulations (cf. Section 8). Speci�cally, we makethe following standard assumptions1. Each sample vector x(n) is statistically independent of all previous vectors x(k), k = 0; : : : ; n� 1,E[x(n)xT (k)] = 0; k = 0; : : : ; n� 1: (7.1)2. Each sample vector x(n) is statistically independent of all previous samples of the desired response,d(k), k = 0; : : : ; n� 1 E[x(n)d(k)] = 0; k = 0; : : : ; n� 1: (7.2)20



3. The desired response at the nth instance, d(n) depends on the corresponding input vector x(n).4. The desired response d(n) and the input vector x(n) are jointly Gaussian.7.1 Weight vector behaviorThe LMS algorithm tries to minimize the output MSE, E[J(n)], given asE[J(n)] = E[e2(n)] = E[d2(n)� 2d(n)gT (n)y(n) + gT (n)y(n)yT (n)g(n)]: (7.3)As the transformation is a unitary transformation, the above equation is equivalent toE[J(n)] = E[d2(n)� 2d(n)hT (n)x(n) + hT (n)x(n)xT (n)h(n)] = �2d + hT (n)Rxh(n)� 2hT (n)rdx; (7.4)where �2d is the variance of the desired signal and rdx is the cross-correlation of the input vector x(n) andthe desired output d(n) rdx = E[x(n)d(n)]: (7.5)The MSE is a quadratic function of the weight vector h(n), and the optimum solution corresponding toits minimum, h� is the solution of he Wiener equationRxh� = rdx: (7.6)In particular, the optimum weight vector, is given byh� = R�1x rdx: (7.7)Now consider a low rank solution to the Wiener equation (7.6). Assume that the eigenvalues of Rx can beclustered into p groups. Let the rank l low rank approximate for Rx be the matrix constructed by replacingthe p� l smallest eigenvalue clusters of Rx in its eigendecomposition by zeros, i.e.,Rx;l = lXk=1 pkXi=1 �iksiksTik ; (7.8)where pk is the number of eigenvalues in the kth cluster. The l-order solution, hl, is then obtained by solvingthe modi�ed Wiener equation Rx;lhl = rdx: (7.9)Note that when l = p, hl = h�.Suppose now that we use a GULV-LMS algorithm that adapts only in the dominant l subspaces producedby the GULV decomposition. Let h(n) be the time domain weight vector that it produces. We now proceedto show that under the simplifying assumptions listed above, h(n) converges to hl with a very small bias.This bias depends on the quality of the estimated subspaces i.e., how close they are to the true eigenvectorsubspaces. We also show that when l = p, h(n) converges to h� with a zero bias as n tends to in�nity.21



Let the unitary transformation matrix V(n) be partitioned into p blocks, each block corresponding tothe subspace of a cluster eigenvalues having the same order of magnitude. i.e.,V(n) = [V1(n)jV2(n)j � � � jVp(n)] : (7.10)The orthogonal projection matrix, Pk(n) in the subspace corresponding to the kth cluster of eigenvaluesis obtained by the GULV algorithm at the nth asPk(n) = Vk(n)VTk (n): (7.11)The GULV-LMS update equation (6.3) can therefore be rewritten asVT (n)h(n+ 1) = VT (n)h(n) +Me(n)VT (n)x(n): (7.12)Note that step size matrixM is chosen to be a block diagonal matrix, with each block being a scalar multipleof the identity of appropriate dimension. This is due to the fact that we have a single step size for the modesbelonging to a single cluster of eigenvalues. Pre-multiplying the above equation by V(n), we obtainh(n+ 1) = h(n) + lXk=1mkPk(n)e(n)x(n) (7.13)= h(n) + lXk=1mke(n)xk(n); (7.14)where xk(n) = Pk(n)x(n) denotes the projection of the input vector x(n) onto the subspace estimatecorresponding to the kth cluster of eigenvalues.We de�ne the weight error vector as �(n) = h(n)� hl; (7.15)where hl is the modi�ed Wiener solution as discussed above.Subtracting hl from both sides of Eq. (7.14), and using (7.15) and the de�nitions of e(n) and d(n), weobtain �(n+ 1) = (I� lXk=1mkxk(n)xT (n))�(n) + lXk=1mk(d(n)xk(n)� xk(n)xT (n)hl): (7.16)From Theorems 2 and 3, it can be seen that the distance between the perturbed ULV subspaces and thecorresponding true subspaces depends on the amount of perturbation, �. The input correlation matrix isestimated as a sample average, R̂x = 1=nXT (n)X(n). Therefore, the perturbation � tends to 0 as n tendsto in�nity. This implies that for large n, we can assume that Pk(n) converges to its steady state value Pk,which is independent of x(n). Taking the expectation of both sides of Eq. (7.16), for large n, we obtainE[�(n+ 1)] = E[(I� lXk=1mkxk(n)xT (n))�(n)] + lXk=1mkE[xk(n)d(n) � xk(n)xT (n)hl)]= (I� lXk=1mkPkRx)E[�(n)] + lXk=1mkPk(rdx �Rxhl); (7.17)22



where we have made use of the independence assumptions. Noting thathl = h� � pXj=l+1Pjh�; (7.18)and using Eq (7.6) we obtain,E[�(n+ 1)] = (I� lXk=1mkPkRx)E[�(n)] + lXk=1mk pXj=l+1PkRxPjh�: (7.19)Rewrite Rx, in terms of its eigenvalues and eigenvectors,Rx = pXk=1 pkXi=1 �iksiksTik : (7.20)If the subspaces estimated by the GULV algorithm have converged exactly to the subspaces spanned by thecorresponding clusters of eigenvectors, PkRx is given byPkRx = pkXi=1 �iksiksTik : (7.21)This is due to the fact that sik 's lie in the subspace spanned by the columns of Pk and thereforePksij = �kjsij ;where �kj is the Kronecker-delta, �kj = 1, k = j and �kj = 0 otherwise. Thus whenever l = p or theestimated subspaces converge to the exact subspaces, the second term in Eq. (7.19) is zero.However, the subspaces estimated by the GULV algorithm will in general be perturbed from the truesubspaces by a small amount. Therefore we havePkRx = pkXi=1 �iksiksTik +Ek; (7.22)and PkRxPj = Ek;j : (7.23)Using (7.23) in (7.19), the weight error update equation can be rewritten as,E[�(n+ 1)] = (I� lXk=1mk( pkXi=1 �iksiksTik +Ek))E[�(n)] + lXk=1mk pXj=l+1Ek;jh� (7.24)= S(I�M(�+E))STE[�(n)] + lXk=1mk pXj=l+1Ek;jh�; (7.25)whereRx = S�ST is the eigendecomposition ofRx. By making the transformation ~� = ST � and ~h� = STh�,we can rewrite Eq. (7.25) as, E[~�(n+ 1)] = (I�M(�+E))E[~�(n)] +Flh�; (7.26)where Fl = Plk=1mkPpj=l+1 Ek;j . This error equation is of the form derived for the LMS algorithm [12]and can be rewritten asE[~�(n+ 1)] = (I�M(�+E))n+1E[~�0] + (I� (M(�+E))n)(I�M(�+E))�1Flh�: (7.27)23



Thus, if the step-size for each cluster mk satis�es the condition [19], [20]0 < mk < 1max (�ik + �ik ) ; (7.28)where �ik is the perturbation in the corresponding eigenvalue due to the perturbation matrix E, we getE[~�1] = (I�M(�+E))�1Flh�: (7.29)In particular, note that unlike the LMS algorithm, E[~�1] 6= 0. It follows from Theorem 3, that if the normof the o� diagonal matrix ~H is reduced close to zero using re�nement strategies, then for large n the ULVsubspaces converge to the true SVD subspaces. Therefore, the norms kEk;jkF and kFlkF are usually small.Also as pointed out earlier, in case l = p, Fl = 0. Thus, E[~�1] = 0. Therefore, for this case, the algorithmconverges in mean to the optimum weight vector h�.Using the inequality (Weyl's Thm., p. 203 of [21]),�i(A+B) � �i(A) + kBk2; (7.30)we get, max (�ik + �ik ) � max (�ik ) + kEk2: (7.31)Thus for convergence it is su�cient to choose mk as,0 < mk � 1max (�ik ) + kEk2 : (7.32)7.2 Mean squared ErrorThe MSE, E[J(n)] of the LMS algorithm is given byE[J(n)] = E[e2(n)] = E[(d(n) � gT (n)y(n))2]: (7.33)However, as the transformation is unitary, it can be written as,E[J(n)] = E[(d(n)� hT (n)x(n))2] = �2d + hT (n)Rxh(n)� 2hT (n)rdx: (7.34)The above equation can be re-written in terms of the weight error vector �(n) as [12]E[J(n)] = Jmin +E[�T (n)R�(n)]: (7.35)In the above equation, Jmin denotes the minimum MSE achieved by the optimum weight vector. The excessMSE is then given by E[Jex(n)] = E[�T (n)R�(n)] = Tr[RK(n)]; (7.36)where Tr[�] denotes the trace operator and K(n) = E[�(n)�T (n)] is the weight error correlation matrix. Themisadjustment error is the excess MSE after the adaptive �lter has converged, E[Jex(1)].It is show in [22] that E[Jex(1)] is given byE[Jex(1)] � Tr(M�)Jmin2�Tr(M�) (7.37)where � is the diagonal eigenvalue matrix of the input correlation matrix Rx. The proof of (7.37) isstraightforward and we omit it for lack of space. 24



7.3 DiscussionThe condition on mk for convergence, (7.32), is similar to that obtained in [19], [20]. Speci�cally, whenthe matrix M is replaced by a multiple of the identity matrix, �I and E = 0, the convergence conditionbecomes 0 < � � 1�max : (7.38)Note also that if the subspaces estimated using the GULV algorithm were the true subspaces and thecondition number of each cluster is 1, then E = 0, and by choosingM such thatM� = �I; (7.39)the convergence condition becomes 0 < � < 1: (7.40)This is equivalent to whitening the input process by preconditioning with the appropriate M. In practice,the elements of E are negligible and �max(E) is very small. Further, the step size for each cluster mk ischosen to be the inverse of the estimate of the variance of the component of the input signal that lies inthe cluster (i.e., the inverse of the average of the eigenvalues in the cluster). This implies that the conditionfor convergence (7.32) is almost always satis�ed in practice. Choosing the step sizes as the inverse of theestimated power in each cluster also matches the speeds of adaptation across the clusters.The step sizes for modes/subspaces which contain essentially noise and little signal components can bechosen to be very small. As the subspaces have been decoupled on the basis of signal strengths, adaptingvery slowly or not at all in the noise only subspaces leads to little loss of information which is con�rmedby simulations (cf. Sec. 8). As discussed above, adapting only in the l dominant subspaces correspondsto adaptively estimating the solution to the modi�ed Wiener equation (7.9). This implies that there is aninherent \noise cleaning" associated with such an approach. It is noted [23] that as we slowly increase thenumber of nonzero mk's corresponding to the subspaces containing signi�cant signal strengths, the MSEdecreases until the desired signals are contained in these spaces. A further increase would only increase theMSE due to the inclusion of the noise eigenvalues. Also note that the solution to the unmodi�ed normalequations (7.6) involve inverting the input correlation matrix. Therefore, the contribution of the noiseeigenvalues to the MSE using this solution is inversely proportional to their magnitudes. Hence, if the noiseeigenvalues are small (high SNR), this amounts to noise boosting, resulting in a larger MSE. As conventionaladaptive �lters recursively estimate this solution their MSE at convergence is also high.Eqs. (7.25) and (7.26) give a recursive update equation for the weight error vector. The speed with whichthis weight error vector tends to zero determines the speed of convergence of the algorithm. Assume theGULV projections have converged at step K. Also assume that we can cluster the eigenvalues of Rx into p
25



clusters, i.e., the diagonal eigenvalue matrix, �, of Rx can be written as,� = 26666664 �1 � � � 0�2... . . . ...0 � � � �p
37777775 ; (7.41)where �k is the diagonal matrix of eigenvalues corresponding to the kth cluster. Rewriting (7.26) in termsof some weight error vector ~�K , we obtain for n > K,E[~�(n+ 1)] = (I�M(�+E))n+1�KE[~�K ]= (I� diag(m1I; � � � ;mpI)[diag(�1; � � � ;�p) +E]n+1�KE[~�K ]: (7.42)For su�ciently small E, Eq. (7.42) indicates that the convergence speed in each subspace depends on thestep size matrix mkI and the condition number of �k. For the same step size, the modes corresponding tosmaller eigenvalues of �k converge more slowly than those corresponding to its larger eigenvalues. Also notethat to achieve minimum MSE, one needs to adapt only in the signal subspaces. Therefore, the convergenceof the GULV-LMS adaptive �lter to the required solution depends only on the condition number of thecluster identi�ed by the GULV decomposition corresponding to each of the �k.For the k'th subspace identi�ed by the GULV algorithm, the condition number is given as�(kth subspace) = max (�ik + �ik )min (�ik + �ik ) � max (�ik ) + �max(E)min (�ik )� �max(E) : (7.43)However, as noted above, in steady state the perturbation is very small and the condition number of thesubspace identi�ed by the GULV decomposition is close to the condition number of the corresponding clusterof eigenvalues. The speed of the adaptive algorithm therefore depends on the speed of convergence in thatsubspace which has the maximum condition number. By proper application of the GULV algorithm andchoice of the subspaces, this condition number can be made to be close to unity for fast convergence.The misadjustment error expression given by Eq. (7.37) is approximate. In deriving this result, we havemade use of the fact that E is a very small perturbation, and can be neglected. Now if the step size mk forthe kth dominant cluster is chosen such that mk = �=Tr(�k);where Tr(�k) is the total input power in that cluster, then it can be easily veri�ed that Tr(M�) = � �(size of the input signal subspace). Thus, for small �, the misadjustment error depends linearly on the stepsize and the e�ective rank of the input signal.We therefore conclude that for a step size leading to the same misadjustment error, the GULV-LMSalgorithm would converge at least as fast as the LMS algorithm. It would converge faster than the LMSalgorithm, when the condition number of the input correlation matrix �(Rx) is large.26



8 Simulation ResultsAn Adaptive Line Enhancer (ALE) experiment was conducted to illustrate the performance of the algo-rithm when the adaptation is done only in the signal subspaces. The input to the ALE was chosen tobe 0:01 cos ( �15n) + cos ( 5�16n). White Gaussian noise with a variance of -60 dB and -160 dB was addedto obtain the learning curves of Fig. 3 and Fig. 4 respectively. The �gures show the performance of theGULV-LMS algorithm, the plain ULV-LMS, plain LMS, traditional RLS, QRD-RLS, GULV-RLS and theSchur pseudoinverse based least squares method discussed in [2]. The learning curves show the improvedperformance of the GULV-LMS algorithm. It can be seen from these �gures that breaking up the subspacescorresponding to the larger singular values into sub clusters using the GULV algorithm further reduces thecondition numbers of these clusters. This in turn yields an improvement in the convergence performance ofthe GULV-LMS algorithm.Fig. 4 also demonstrates the stability of the GULV based RLS and LMS algorithms when the inputmatrix becomes numerically ill-conditioned. As the GULV based algorithms are based on Givens rotations,they enjoy the same stability properties of the QRD-RLS algorithm.Fig. 5 shows the tracking behavior of the GULV based procedures. The input to the ALE in this �gureis initially cos ( �15n). A new signal, 0:01 cos ( 5�16n) was added to the input at the 500th iteration. Thus theinput correlation matrix initially has a rank of 2 which suddenly changes to 4. The GULV algorithm tracksthis change of rank. Also, it divides the larger singular value cluster (which now has 4 singular values) intotwo clusters with two singular values of the same order of magnitude in each cluster. This results in theimproved performance of the GULV based RLS and LMS algorithms. On the other hand, the algorithm of[2] has a starting value of the rank set to 2. Therefore its behavior is similar to that of the GULV basedalgorithms initially. However, as it is not able to track the rank change, its performance worsens.9 ConclusionsIn this paper we developed the GULV algorithm for isolating subspaces corresponding to clusters of sin-gular values of the same order of magnitude. A new heuristic was also suggested for de
ation in the ULVdecomposition. We derived a new bound on the distance between the subspaces obtained using a ULValgorithm on a perturbed data matrix and those obtained using the SVD on an exact data matrix. For thespecial case where the o�-diagonal block is zero, this bound reduces to the perturbation bounds on the SVDsubspaces. The bounds on the accuracy of the ULV subspaces were also extended to those isolated usingthe GULV algorithm. The GULV algorithm was then used to obtain a subspace domain LMS algorithmto improve the convergence rate whenever the input autocorrelation matrix is ill-conditioned. The rate ofconvergence of this algorithm depends on the largest condition number among the clusters of singular valuesisolated using the GULV decomposition. This in turn depends on the user de�ned Spread. However, thereis a tradeo� between the convergence speed and the computational expense of the GULV algorithm. We27



also demonstrated the power of this algorithm, using simulations, by adapting only in subspaces containingstrong signal components. The GULV algorithm was also used to obtain a low-rank GULV-RLS algorithm.Present work involves investigating the tradeo�s between error due to non-adaptation in noisy subspacesand the reduction in the excess MSE. Future work targets reducing the computational complexity of theGULV algorithm.References[1] G. H. Golub and C. F. Van Loan, Matrix Computations. The John Hopkins University Press, 1983.[2] P. Strobach, \Fast recursive eigensubspace adaptive �lters," in Proc. ICASSP, (Detroit), May 1995.[3] T. F. Chan and P. C. Hansen, \Some applications of the rank revealing QR factorization," SIAM J.Sci. Stat. Comput., vol. 13, pp. 727{741, 1992.[4] R. D. Fierro and J. R. Bunch, \Bounding the subspaces from rank revealing two-sided orthogonaldecompositions." Preprint (to appear in SIAM Matrix Anal. Appl.).[5] C. E. Davila, \Recursive total least squares algorithm for adaptive �ltering," in Proc. ICASSP, pp. 1853{1856, May 1991.[6] K. B. Yu, \Recursive updating the eigenvalue decomposition of a covariance matrix," IEEE Trans.Signal Processing, vol. 39, pp. 1136{1145, 1991.[7] E. M. Dowling and R. D. DeGroat, \Recursive total least squares adaptive �ltering," in Proceedings ofthe SPIE Conf. on Adaptive Signal Proc., vol. 1565, pp. 35{46, SPIE, July 1991.[8] R. D. DeGroat, \Noniterative subspace tracking," IEEE Trans. Signal Processing, vol. 40, pp. 571{577,1992.[9] D. L. Boley and K. T. Sutherland, \Recursive total least squares : An alternative to the discrete kalman�lter," Tech. Rep. TR 93-92, Dept. of Comp. Sci., Univ. of Minn., 1993.[10] G. W. Stewart, \An updating algorithm for subspace tracking," IEEE Trans. Signal Processing, vol. 40,pp. 1535{1541, June 1992.[11] R. D. Fierro, \Perturbation analysis for two-sided (or complete) orthogonal decompositions." Preprint.[12] S. Haykin, Adaptive Filter Theory. Engelwood Cli�s, N.J.: Prentice Hall, 1991.[13] D. F. Marshall, W. K. Jenkins, and J. J. Murphy, \The use of orthogonal transforms for improvingperformance of adaptive �lters," IEEE Trans. Circuits Syst., vol. 36, pp. 474{483, April 1989.[14] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore, MD: Johns Hopkins UniversityPress, 2nd ed., 1989.[15] N. J. Higham, \A survey of condition number estimators for triangular matrices," SIAM Rev, pp. 575{596, 1987. 28
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Figure 4: Learning curves illustrating behavior when input correlation matrix is extremely ill conditioned.Noise at -160 dB. Curves are averages of 20 runs.
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Figure 5: Learning curves illustrating rank tracking performance. Curves are averages of 20 runs.30


