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Abstract

In this study, we present an application paradigm in
which an unsupervised machine learning approach
is applied to the high dimensional influenza genetic
sequences in order to investigate whether vaccine is
a driving force to the evolution of influenza virus.
We first used a visualization approach to visual-
ize the evolutionary paths of vaccine-controlled and
non-vaccine controlled influenza viruses in low di-
mensional space. We then quantified the evolution-
ary differences between their evolutionary trajecto-
ries through the use of within and between scatter
matrices computation in order to provide the sta-
tistical confidence to support the visualization re-
sults. We used the influenza surface Hemagglu-
tinin (HA) gene for this study as the HA gene is the
major target of the immune system. The visualiza-
tion is achieved without using any clustering meth-
ods or prior information about the influenza se-
quences. Our results clearly showed that the evolu-
tionary trajectories between vaccine-controlled and
non-vaccine controlled influenza viruses are differ-
ent and vaccine as an evolution driving force cannot
be completely eliminated.

1 Introduction

The rapid growth of the influenza genome sequence data due
to the advanced development of sequencing technology in re-
cent years has provided the opportunity for a more compre-
hensive sequence analysis of the influenza virus. The diffi-
culty in sieving through and making sense of this mountain
of data relying solely on phylogenetic approaches has be-
come increasingly limited in part due to the poor scalability of
the relevant algorithms [Nicholas, 2007]. Therefore, a differ-
ent methodology needs to be utilized in order to take advan-
tage of the massive amount of available data but at the same
time be able to expose important information or structure
within the data. Here, we present an application paradigm
in which an unsupervised machine learning approach is ap-
plied to the high dimensional influenza genetic sequences so
that the evolution of the vaccine controlled and non-vaccine
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controlled influenza viruses in the past century can be visu-
alized. The main objectives of this study are twofold: (1)
to visualize the evolution trajectories of influenza under vac-
cine pressure and in the wild without using any prior infor-
mation about the viruses and (2) to provide statistical con-
fidence to support the visualization results. Influenza virus
is thought to have originated from a natural reservoir con-
sisting of wild aquatic birds[Taubenberger and Kash, 2010;
Webster et al., 1992].

The influenza A virus is divided into subtypes based on
differences in the surface proteins hemagglutinin (HA) and
neuraminidase (NA), which are targets of the human im-
mune system. Antigenic variants or immunologically distinct
strains of A/H1N1, A/H3N2, and Type B have continued to
emerge since its introduction into humans [Schweiger et al.,
2002]. Vaccination is the main strategy in stopping the in-
fection and transmission of the virus in humans[Hannoun,
2013]. There are three components in a seasonal flu vaccine:
(1) A/H1N1, (2) A/H3N2 and (3) Type B influenza. Each
component is designed to fight the specific strain in each sub-
type that is predicted to be the dominant circulating strain in
the upcoming flu season. Over the years, there have been
over 20 vaccine updates for the A/H3N2 strain, over 16 up-
dates for the Type B strain and 10 updates for the A/H1N1
strain. Each vaccine update is designed to provide immunity
to the new antigenic variant that has emerged from the previ-
ous flu season. However, the long term effects of vaccination
on the evolution of the virus itself is not clear. In order to
shed light on this seemingly unsuspected problem, we used
the nucleotide sequences from seasonal human A/H3N2 in-
fluenza virus from 1971 to 2009 as an example to demon-
strate the evolutionary progress of this influenza virus against
each successive vaccine introductions from 1971 to 2009.
Figure 1 shows progression of influenza evolution based on
the nonsynonymous substitutions (dN ) and synonymous sub-
stitutions (dS) ratio analysis using the HA1 domain of the
HA gene from A/H3N2 virus. The HA1 domain is a hyper-
variable domain of the HA gene where constant mutational
changes can be observed due to the immune pressure gen-
erated from the host. A dN/dS ratio greater than 1 indi-
cates the site is under positive selection pressure and is un-
dergoing molecular adaption. In Figure 1, a constant shift
of positively selected sites (blue color: dN/dS ratio greater
1) could be observed whenever a new vaccine (green square)
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Figure 1: Seasonal human A/H3N2 influenza dN/dS ratio
analysis against time of vaccine introduction. A constant shift
of positively selected site location when a new vaccine was
introduced. Horizontal axis represents the position of HA1
domain of the HA gene. Vertical axis represents time pro-
gression from 1971 (bottom) to 2009 (top) when each new
(green square) and repeated (black square) vaccine was in-
troduced. Red color bars denote the range of positions with
dN/dS ratio from 0.8 − 1. Blue color bars denote the range
of positions with dN/dS ratio greater than 1.

was introduced which indicated that a new antigenic variant
had emerged. When a repeated vaccine was introduced, the
positively selected sites identified from the previous season
remain unchanged. Given the results from the dN/dS ra-
tio analysis, we compared the evolution trajectories of vac-
cine controlled to non-vaccine controlled influenza viruses
and sought to better understand the effect of vaccination has
on the evolution of influenza virus. In the present study, we
used the human A/H3N2, A/H1N1, Type B, and avian H5 HA
sequences as the vaccine-controlled samples. We used the hu-
man H5N1 and avian H5N1 HA sequences as the non-vaccine
controlled samples.

2 Background

Influenza viruses have the ability to infect a very broad range
of avian and mammalian hosts. Their genomic diversity is
acquired through two biological mechanisms: antigenic drift
and antigenic shift [Webster et al., 1992]. Antigenic drift con-
sists of the accumulated and continual mutations on surface
proteins, resulting in the generation of antigenic variants. Of
these surface proteins, we are focused on the hemagglutinin
protein. Antigenic shift occurs when complete gene segments
are exchanged among different subtypes of influenza viruses
within a host cell, resulting in what effectively amounts to a
whole new influenza virus genome. Both antigenic drift and
antigenic shift allow for the virus to evade the host’s immune
response and rapidly adapt to new hosts [Caron et al., 2009;
Suzuki, 2006]. The evolution of influenza A virus is driven by
the high rate of mutations and the ability to reassort gene seg-
ments. Because of its high rate of mutation combined with
the lack of error correcting mechanisms during replication,

influenza virus can easily generate different phenotypes that
have the ability to survive within its host and infect others.
To keep track of the evolution of the virus, annual update to
the influenza vaccine composition is needed in order to pro-
vide a vaccine induced immunity to the general public [Boni,
2008]. The main process in influenza vaccine strain selec-
tion is to assess the match between the vaccine strain and the
currently circulating strains and the potential new antigenic
variant [Russell et al., 2008]. If the vaccine strain does not
match the currently circulating strains or the new antigenic
variant that is likely to be the major variant in the upcoming
influenza season, the vaccine composition is updated to con-
tain a representative of the new variant [Russell et al., 2008].
Each vaccine update is designed to provide immunity to the
new antigenic variant that has emerged from the previous flu
season. The seasonal influenza vaccine is used to prevent the
infection and transmission of the virus, but its effect on the
evolution of the virus itself is not clear.

3 Materials and Methods

In this study, utilizing the online NCBI influenza
database[Bao et al., 2008], we collected HA sequences
from human A/H3N2, A/H1N1, Type B, and avian H5 HA
sequences that represent the vaccine-controlled samples. We
also collected human H5N1 and avian H5 HA sequences that
represent the non-vaccine controlled samples. Table 1 lists
the year range and number of HA nucleotide sequences from
each sample.

Table 1: Vaccine controlled and non-vaccine* controlled hu-
man and avian sequences.

Samples Year Seqs

Human A/H1N1 1918-13 2140

Human A/H3N2 1968-09 175

Human Type B (Vic/Yam) 1970-13 818
*Human H5N1 1997-12 127

Avian H5 (Mexico) 1994-02 32

*Avian H5 (China) 1997-02 32

3.1 Influenza evolution visualization

All genetic sequences were first converted into binary strings
according to the method outlined in [Lam et al., 2012]. Nu-
cleotide sequences are represented by strings of characters
out of an alphabet of four letters: A, C, G, T. To obtain the
binary string, each letter is replaced by a code of 4 bits: 1000,
0100, 0010, 0001, respectively. All binary strings were col-
lected into a matrix to which Principal Component Analysis
(PCA) [Jolliffe, 2002] was applied to extract the dominant
variation from the dataset. Here, we briefly outline the se-
quence of steps involved in the PCA analysis. Consider a data
matrix Xm,n of dimensions m by n with m being the num-
ber of strains and n being the number of sites or positions (in
this case, n = 987 × 4 = 3948 for nucleotide sequences).
Each row of X corresponds to a strain of virus and each col-
umn of X corresponds to a particular position. We first center

the columns of the data matrix X with X̂ = X − 1
m
eeTX



where e is a column vector of all ones, and then obtain the

sample covariance matrix C from X̂ by C = 1
(m−1)X̂

T X̂ .

C is a square symmetric n × n matrix whose diagonal en-
tries are the variances of the individual sites across strains
and the off-diagonal terms are the covariances between dif-
ferent sites. The PCA algorithm is then applied to matrix
C. The result is then visualized by plotting the top two or
three principal components of the projected data. Since each
strain is encoded as a binary string and PCA works at the
binary data level, the pairwise distance relationship between
the strains in a reduced space can be understood as follows:
Let ‖s− t‖H denote the pairwise Hamming distance between
two strains s, t (number of differences in genetic sequences).
Let ‖s − t‖bin 1, ‖s − t‖bin 2 denote the distance between
the binary encodings of the two sequences (1-norm and 2-
norm, respectively), and let ‖s − t‖proj denote the 2-norm
distance in lower dimensional space after projection onto the
leading principal components. Every single change in the ge-
netic sequence alphabet corresponds to changes to 2 bits in
the binary encoding. Hence we have the relation between the
distance in the lower dimensional space shown on the plots
with the Hamming distance among the original sequences:
‖s− t‖2proj ≤ ‖s− t‖2bin 2 = ‖s− t‖bin 1 = 2‖s− t‖H .

3.2 Quantification

In order to provide statistical support to the graphical re-
sults obtained, we performed a statistical analysis based on a
method that combined a multi-class scatter matrix computa-
tion and class labels randomization. The projected data points
served as the viruses’ 2-D coordinates and the year of isola-
tion of each virus served as the class label. The multiclass
scatter matrix involves the computation of Between-class ma-
trix (B) and Within-class matrix (W) (Box 1). These com-
puted matrices were not used explicitly as we only sought the
trace of B and W. These are just the scalar scatter values: sum
of squared distances between points and their respective cen-
ters. The class separateness measure λo is the ratio of trace
B over trace W. A large λo indicates that the classes or clus-
ters are well separated between each other and that elements
within a cluster are strongly related or share the same prop-
erty. This is basically an estimate on how well a multi-class
Fisher’s linear discriminant could separate the classes [Al-
paydin, 2010]. A class label randomization algorithm (Alg I)
provided the ”distance measure” as a surrogate for the proba-
bility of observing the observedλo by chance. This is because
the area under the tail of the randomized λ distributions be-
yond the observed separateness values was below rounding
error of 10−16 which made the computation of p-value not
possible. The larger the ’distance’, the less likely the observed
λo is generated by chance.

Box 1:
Virus isolation year as class label
C: Number of Classes
Ni number of data points in class i = 1, 2, ...C

• λ = tr(B)
tr(W )

• B : Between Class scatter matrix

–
∑C

i (ui −M)(ui −M)T

– M = 1
c

∑C

i ui ”global mean of dataset”

• W : Within Class scatter matrix

–
∑C

i

∑Ni

j (xj − ui)(xj − ui)
T

– ui: mean of class i.

Alg. I: Estimate Separateness Measures

Let λo = tr(Bo)
tr(Wo)

be the observed separateness value.

Repeat j = 1 : K2
Repeat i = 1 : K1

generate a randomization of the class labels
compute the within-cluster scatter W

compute the ratio λi =
tr(B)
tr(W ) =

tr(T )−tr(W )
tr(W )

compute the mean µ and std σ for all λi=1,..K1

compute the distance dj =
µ−λ0

σ

Compute the mean d̄ and std d̂ of all dj=1..K2

Report the distance of λo from the mean in the form of

d̄± d̂

4 Results

The application of high-throughput unsupervised method to
the high dimensional influenza virus genetic sequence data
has made possible the visualization of the evolution of the
influenza virus in the span of almost half a century. In
this study, we present the graphical results from visualiza-
tion of vaccine and non-vaccine controlled influenza viruses
based on their genetic sequences alone. The human influenza
A/H3N2 has the highest number of vaccine updates among
the three vaccine controlled influenza viruses circulating in
humans. Given the observation that constant shifting of posi-
tively selected sites whenever a new vaccine was introduced,
we sought to visualize the evolution trajectories of vaccine
and non-vaccine controlled influenza samples. We also set
out to compute the class or clusters separateness values for
both vaccine and non-vaccine controlled samples using the
multi-class scatter matrix computation method for both the
before and after class labels randomization process. We per-
formed 1000 runs of Alg I on these samples and listed the re-
sults in Table 2. The observed separateness values λo of vac-
cine controlled samples are consistently higher than the non-
vaccine controlled samples. This suggested that the vacci-
nated samples have very good separability by isolation years.

In Figure 2, we observed that the human A/H3N2 viruses
clustered around vaccine seed strains chronologically since
their introduction into humans in 1968. The evolution tra-
jectory is directional going from lower left to lower right in
the figure. In Figure 3, two separate lineages of human Type
B influenza are co-circulating and that each lineage shows



the same observational characteristics as the A/H3N2, Type B
viruses are also clustered around vaccine seed strains. For the
human H1N1 influenza virus, a single lineage (black) can be
seen that corresponds to the pre-2009 swine H1N1 pandemic.
A sudden jump or gap is illustrated in the visualization due to
the fact that the pandemic swine H1N1 strain had replaced the
classical A/H1N1 and began to evolve (directional trajectory)
as it circulated among humans. A vaccinated avian sample
was used (avian H5) to further understand the evolution char-
acteristic of vaccine controlled influenza.

In late 1993, an outbreak of avian H5 influenza in poul-
try in Mexico was detected and a long term vaccination pro-
gram was implemented in hope to bring the outbreak un-
der control and to eradicate the virus [Lee et al., 2004;
Escorcia et al., 2008]. The vaccination program was in ef-
fect for over 13 years but an increase in respiratory signs of
disease was observed in vaccinated chickens [Escorcia et al.,
2008]. In other words, the vaccine strain used in the vacci-
nation program no longer matched the circulating strain in
the field. The vaccine strain (A/Ck/Mexico/CPA-232/1994)
was isolated in 1993 and has been in used for the duration of
the program for over a decade. Using the available genetic
HA sequences from these vaccinated chicken, we produced
a 3 dimensional PCA plot (Figure 5) to show the evolution
of the field isolates from 1994 to 2002. The first observa-
tion from Figure 5 is that a directional evolutionary trend
similar to other vaccinated samples can be seen in this fig-
ure. Second, a chronological pattern is obvious indicating
that the virus had undergone constant evolution or antigenic
drifted away from the early strains. A split in the evolution-
ary path can be seen occurring in the 1990s. This split or
divergence has been reported in studies by [Lee et al., 2004;
Escorcia et al., 2008] based on phylogenetic analyses con-
ducted on the same sequence sample.

Figure 6 illustrates the evolution trajectory of the non-
vaccine controlled human H5N1 influenza from 1997 to
2002. We included the human H5N1 virus as the ’control’
since this subtype is not currently being vaccinated against in
humans but is under active research due to its high mortality
rate in infected humans. Figure 6 suggests that this subtype
has evolved into a few dominant clusters since 1997. Three
major evolutionary trends or clustering patterns can be seen
originating from the center cluster which contains viruses
from 1997. This also implies this influenza subtype has un-
dergone HA gene diversification. Although it has diversified
since 1997, the specific H5 HA gene identified in 1997 has
remained present in these days [Wei et al., 2012].

Figure 7 shows the evolution of non-vaccine controlled
avian H5 influenza virus. The overall observation that arises
from this figure is that rather than forming a restricted direc-
tional trend, the evolution of the virus is characterized by a
collection of clusters scattered on the plot. The collection of
clusters suggests a diverse pool of the genetic diversity of the
virus. For the avian H5 subtype, a less focused evolution-
ary trend than vaccine controlled influenza viruses can be ob-
served. The increased genetic diversity since 2000 has been
observed by [Garcia et al., 1997] and is captured in this fig-
ure with clusters scattered to the left and extended to upper
and lower corner at almost the same time. This clearly sug-

gests the co-circulation of multiple clades or sublineages of
the avian H5 subtype. The diverse genetic diversity of the
avian H5 represented by multiple clusters across a long time
period indicated that the avian subtype in the wild evolves
much slower than seasonal human influenza viruses.

Figure 2: Seasonal human A/H3N2 influenza virus evolution
trajectory. Each arrow points to a vaccine seed strain (red
dot). The directional evolution can be seen as traveling from
lower left to the top and then coming down to the lower right.
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Figure 3: Seasonal human Type B influenza virus evolution
trajectory. Two separate lineages (Victoria and Yamagata) are
evolving simultaneously (top to lower left and to lower right).
Vaccine introductions are indicated by year labels.

5 Discussions and Conclusions

Vaccination is the principal measure for preventing influenza
and reducing its impact [Webby et al., 2004; Wood et al.,
2001]. Almost a century ago after the isolation of the
first influenza virus, influenza vaccines have been persis-



Figure 4: Seasonal human H1N1 influenza virus evolution
trajectory in 3 dimensions. Pre-2009 pandemic viruses are in
black. A clear separation can be seen after pandemic09 re-
placed the classic A/H1N1 strain. Separate lineages emerged
indicating different genetic diversity.

Table 2: Class separateness results: Vaccine and non-
vaccine* controlled human and avian samples

Sample (Human) λo Distance

A/H3N2 (1968-2009) 30.5 978.3± .031
Type B:Victoria (1970-2013 26.3 1310± .02

Type B:Yamagata (1970-2013) 25.3 1327.8± .019
A/H1N1 (1918-2013) 24.7 617.2± .04
*H5N1 (1997-2002) 1.01 34.8± .029

Sample (Avian) λo Distance

Avian H5 Mexico (1994-2002) 1.7 12.23± .11
*Avian H5N1 China (1997-2002) 0.268 3.16± .0.6

tent and have evolved to respond to the evolution of the in-
fluenza viruses evolving in humans. [Gunn et al., 2010;
Hannoun, 2013]. Antigenic drift of influenza viruses occurs
frequently among circulating strains that leads to new anti-
genic variants. However, whether the drift mechanism occurs
with the presence of vaccine pressure is an important question
that needs to be addressed at different level as vaccination is
the primary method in prevention and protection for humans
against influenza virus. Two studies [Hensley et al., 2009;
Lee et al., 2004] have shown that vaccination forces muta-
tions on the HA protein of the influenza virus. These muta-
tions changed the way in which the virus gradually evolved
and adapted to a new vaccine protected environment. Here,
we extended the spectrum of analysis to include vaccine con-
trolled human and avian samples and non-vaccine controlled
human and avian samples to better compare and contrast and
understand the evolutionary dynamic of influenza viruses un-
der vaccine pressure. Using vaccinated and non-vaccinated
samples from both human and avian hosts, we hope to mini-
mize potential data selection bias and at the same time to pro-
vide a fair comparison across hosts under vaccination pres-

Figure 5: Vaccine controlled avian H5 influenza virus evo-
lution trajectory in 3 dimensions. Vaccine was introduced in
early 1990s and the virus slowly evolved away from the vac-
cine strain and established two separate lineages.

Figure 6: Non-vaccine controlled human H5N1 influenza
virus evolution trajectory in 3 dimensions. The virus has
evolved into a few dominant lineages since 1997. Three ma-
jor evolutionary lineages can be seen originating from the
center cluster which contains viruses from 1997. However,
the specific H5 HA gene identified in 1997 has remained
present in these days.

sure. Our method utilized only the genetic composition of
the HA sequences alone without using any specific clustering
algorithms. As mentioned above and shown in Figure 1, ge-
netic sequences contain important signals to detect evolution-
ary trends between different influenza subtypes under vac-
cination pressure. The genetic composition combined with
the implicit positional information of the HA gene is enough
to provide clues that the vaccine-controlled influenza viruses
are under pressure to mutate in order to escape immune re-
sponses. Our method takes advantage of the binary coding
of each sequence that preserves the positional information of
each HA gene.

In this study, we have demonstrated that the evolutionary
trajectories for vaccine controlled influenza are directional
and restricted. The restricted directional evolutionary trends
and clusters formation around the vaccine strains along the
evolutionary paths exhibited by the vaccine controlled in-



Figure 7: Non-vaccine controlled avian H5 influenza virus
evolution trajectory in 3 dimensions. Multiple clusters scat-
tered throughout sharing almost the same time periods sug-
gesting the co-circulation of multiple clades or sublineages
of the avian H5 subtype.

fluenza viruses are in sharp contrast to the non-vaccine con-
trolled influenza viruses. Apart from this distinction, the nat-
urally emerged chronological ordering of vaccine controlled
influenza viruses in both two and three dimensional visual-
izations are much more noticeable than the non-vaccine con-
trolled viruses. This natural chronological ordering reflects
the active adaptation of the viruses to their changing environ-
ment. The class separateness measure exposes the fact that
vaccine controlled influenza viruses that share the same iso-
lation year have the tendency to cluster tightly together with
good separateability. Each separate cluster or group repre-
sents a distinct genetic diversity of the virus group. In con-
trast, non-vaccine controlled influenza viruses isolated within
the same time period appeared to be more scattered and the
clusters exhibited much larger within cluster distance with no
narrow restricted bands being observed. These observations
suggested that the mutations on the HA gene were not re-
stricted to certain sites alone and that the majority of these
mutations most likely were synonymous nucleotide substitu-
tions on the HA gene.

Also, the number of clusters observed are almost identi-
cal to the number of vaccine updates for the seasonal human
A/H3N2 and influenza B viruses. The number of clusters
observed in the seasonal human A/H1N1 is not the same as
the number of vaccine updates but it does show the fact that
this virus has been gradually evolving away from the vaccine
strains as time passes. Since the A/H1N1pdm09 pandemic
strain replaced the A/H1N1 strains in 2009 as the H1N1 vac-
cine component, the virus can be seen as slowly evolving
but has not changed to a new antigenic variant. The very
low value of λo computed from non-vaccine controlled in-
fluenza viruses has clearly captured the fact that non-vaccine
controlled viruses are not actively evolving by the year. In
contrast, the vaccine controlled influenza viruses have been
actively evolving and adapting to the changing environment
constantly as new vaccine composition is being introduced
year after year. This is clearly reflected in the very high λo

value for vaccine controlled influenza viruses. Although our

analysis was based on genetic sequences alone, the results
suggested that a clear difference existed among influenza
viruses evolving in a vaccine protected environment than in
the wild. This difference is shown through the multi-class
scatter computation of their evolutionary paths. This quan-
titative measurement also serves as a basic statistical sup-
port to the observed differences in the evolution dynamics
between vaccine controlled and non-vaccine controlled in-
fluenza viruses.

There are other potential factors besides vaccination that
can affect the evolution of influenza viruses, such as host spe-
cific immune response, the large difference in life expectancy
between humans and avian species, vaccine efficacy and ef-
fectiveness, the transmission channel of the virus in differ-
ence environment, and geographical regions. These factors
have not been considered in this present study because our
overall objective is to present a genetic sequence only ap-
proach as the first step in understanding the evolution of in-
fluenza viruses in a protected environment. Our approach
works directly at the sequence level with no prior assump-
tion about the evolution of the virus. It is a departure from
traditional one dimensional phylogenetic approach in that we
visualize influenza evolution in 2D and 3D space. All phylo-
genetic methods make or rely heavily upon the assumptions
about underlying evolutionary process [Jenkins et al., 2002].
By using methods that avoid making assumptions about the
parentage relations among the strains, we can avoid possi-
ble misinterpretation of the results. As has been shown in
this paper, a data driven approach with no prior assumptions
about the evolution of the influenza virus affords us a differ-
ent perspective in directly visualizing how the virus evolves
in a span of over half a century. This perspective has given us
insight into the way we think about the driving forces behind
the emergence of human seasonal influenza antigenic variant
strains season after season. Perhaps, vaccination did play a
role in forcing the virus to undergo a different evolutionary
path in order to continue to establish itself in its occupied
host. A definitively scientific conclusion cannot be drawn
without a thorough study of the virus in a controlled exper-
iment for an extended period of time which should no less to
include multiple influenza epidemics in humans.
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