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Abstract
Estimating the inverse covariance matrix of p vari-
ables from n observations is challenging when
n � p, since the sample covariance matrix is sin-
gular and cannot be inverted. A popular solution is
to optimize for the `1 penalized estimator; however,
this does not incorporate structure domain knowl-
edge and can be expensive to optimize. We consider
finding inverse covariance matrices with group struc-
ture, defined as potentially overlapping principal
submatrices, determined from domain knowledge
(e.g. categories or graph cliques). We propose a new
estimator for this problem setting that can be derived
efficiently via the conditional gradient method, lever-
aging chordal decomposition theory for scalability.
Simulation results show significant improvement in
sample complexity when the correct group structure
is known. We also apply these estimators to 14, 910
stock closing prices, with noticeable improvement
when group sparsity is exploited.

1 Introduction
The inverse covariance matrix is of interest to statisticians in
biology, finance, machine learning, etc. In finance, it is a key
ingredient for computing value-at-risk, a factor in portfolio
optimization. In graphical models, for p random variables with
true covariance matrix C, the sparsity pattern of C−1 gives
the conditional independence between each pair of variables.
However, if n � p, then the sample covariance matrix Ĉ is
invertible, and the pseudoinverse Ĉ† is inaccurately dense. The
most popular alternative is the graphical LASSO (G-LASSO)
estimator [Yuan and Lin, 2007; Banerjee et al., 2008], the
solution to

minimize
X

−logdet(X) + tr(ĈX) + ρ‖X‖1
subject to X � 0

(1)
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for some regularization parameter ρ > 0. By adding a sparsity-
inducing regularizer, the effective degrees of freedom are re-
duced, and as these works show, the resulting estimator has
a much lower sample complexity than inverting Ĉ. How-
ever, this estimator does not incorporate any prior structural
knowledge from the problem domain. Additionally, in general
solving (1) is computationally challenging if p is large.

Most existing methods for solving (1) require a sequence
of eigenvalue decompositions (EDs) [Banerjee et al., 2006;
Friedman et al., 2008; d’Aspremont et al., 2008; Yuan, 2009;
Rolfs et al., 2012]. This is expensive if p is large; a dense ED
requires O(p3) computations, and sparse EDs (like Lanczos
type methods) can be even slower when the full eigenvalue
spectrum is needed. There are some exceptions, for example
[Scheinberg and Rish, 2009] at each step updates a row in
a block coordinate descent fashion, and maintains inverses
using only rank-2 updates; [Dahl et al., 2008] uses chordal
decomposition to compute Newton steps efficiently in an in-
terior point solver; and [Meinshausen and Bühlmann, 2006]
uses neighborhood selection, which enforces the conditional
independence condition one variable at a time. These methods
are more or less intuitive, relying on general convex optimiza-
tion principles; however, their scalability is limited. On the
other end of the spectrum is BIG-QUIC [Hsieh et al., 2013]
which can solve up to 1 million variables. This breakthrough
method simultaneously makes estimates of the matrix sparsity
while also optimizing for it, and updating via block coordinate
descent with carefully chosen (non-principle) submatrices.
However, it demonstrates the tradeoff between simplicity and
scalability; there are many intricate details for a successful
implementation.

At the same time, there has been growing interest in the
statistics community to exploit group structure in the estima-
tors [Bach et al., 2011; Negahban et al., 2009; Chandrasekaran
et al., 2012; Obozinski et al., 2011]. For example, [Dana-
her et al., 2014] proposes a group graphical LASSO, but
where groups are defined as membership in K classes. And,
[Mazumder and Hastie, 2012] proposes thresholding the sam-
ple covariance matrix in order to identify fully-connected com-
ponents of the graphical model, effectively decomposing (1).
More recently, [Hosseini and Lee, 2016] learns overlapping
submatrix groups probablistically and penalizes accordingly.
To our knowledge, this is the only work that addresses over-
lapping group sparsity in matrices; however, iterative full



eigenvalue decompositions are still needed to find the inverse
covariance estimate.

We propose an estimator that exploits group structure,
where a matrix group is described as either a principal sub-
matrix or the matrix diagonal in Section 2. The solution X is
then described as a sum of these possibly overlapping com-
ponents. We then apply the Frank-Wolfe method to derive
the estimator in Section 3. The algorithm at each iteration de-
composes into parallelizable eigenvalue computations on the
submatrices. In this way, unlike [Mazumder and Hastie, 2012;
Hosseini and Lee, 2016], this estimator explicitly uses the
predetermined groups as components for decomposition, thus
using group structure to improve both performance and com-
putation time. In Section 4 we give simulation results, which
demonstrate that knowing and exploiting group structure sig-
nificantly improves sample complexity. Finally, Section 5, we
show the performance of our model on the stock datasets.

2 Group Norm Constrained Estimator
For an index set γ ⊂ {1, . . . , p} and a vector u ∈ Rp, define
γ as the subvector of u indexed by γ; for the reverse, define
the augmenting linear map γ : R|γ| → Rp such that

(Aγu)γ = u, (Aγu)i = 0 if i 6∈ γ.
In [Obozinski et al., 2011], the overlapping group norm is
defined as the solution to

‖x‖G,∗ = min
u1,...,ul

{
l∑

k=1

wk‖uk‖ : x =

l∑
k=1

Aγkuk

}
(2)

for some proper norm ‖·‖ and nonnegative weightsw1, . . . , wl.
(A common choice is wk = |γk|−1.) Used as a penalty term or
in a constraint, this norm is shown to promote group structure;
a small subset of index sets γk are “active", and xi = 0
whenever i is not in an active set.

We extend this concept to matrices, by defining groups
implicitly through index sets β ⊂ {1, . . . , p}, where Xβ,β is
the submatrix ofX selected by the rows and columns indicated
by β. Let Sp denote the set of p × p matrices. We define
Aβ : S|β| → Sp such that

(Aβ(U))β,β = U, Aβ(U)i,j = 0 if i 6∈ β or j 6∈ β
and extend the overlapping group norm as the solution

‖X‖G :=


min .

v,U1,...,Ul
w0‖v‖2 +

l∑
k=1

wk‖Uk‖F

subj. to X = diag(v) +

l∑
k=1

Aβk(Uk).

(3)
for nonnegative weights w0, . . . , wl. Note that the affine con-
straint imposes a sparsity pattern on X; if X does not adhere
to this pattern (e.g. Xij 6= 0 for some i, j 6∈ βk,∀k) then we
define ‖X‖G =∞.

2.1 Our estimator
For p random variables Y1, Y2, . . . , Yp, define C ∈ Sp and
Ĉ ∈ Sp as the true and sample covariance matrices. The group

norm regularized graphical LASSO estimator (NG-LASSO) is
the solution to

min
X

−logdet(X) + tr(ĈX)

s.t. X =

l∑
k=1

Aβk(Uk) + diag(v)

w0‖v‖2 +
l∑

k=1

wk‖Uk‖F ≤ α

Uk � 0, k = 1, . . . , l,
vi ≥ 0, i = 1, . . . , p.

(4)

We note that the first two constraints in (4) can be equivalently
written as ‖X‖G ≤ α with G-norm defined in (3). As defined,
this constraint restricts X to be implicitly within the sparsity
pattern defined by the groups βk.

Problem (4) is a computationally tractable approximation
of

minimize
X

−logdet(X) + tr(ĈX)

subject to X � 0, ‖X‖G ≤ α
(5)

a natural group norm penalized version of the G-LASSO prob-
lem. Specifically, in (5), ‖X‖G can be written in terms of
smaller matrices Wk ∈ S|βk| and z ∈ Rp. If additionally the
sparsity pattern is chordal (i.e. if the intersection graph of the
groups βk is a tree) then the positive semidefinite (PSD) matrix
constraintX � 0 can be decomposed to several smaller matrix
constraints, via the equivalence in the following theorem.
Theorem 2.1 [Agler et al., 1988; Griewank and Toint, 1984]
([Grone et al., 1984] dual) If X ∈ Sp has chordal sparsity,
corresponding to groups β1, . . . , βl, then

X � 0 ⇐⇒ X =

l∑
k=1

Aβk(Uk), Uk � 0, k = 1, . . . l.

In this case X � 0 can be decomposed into smaller matrices
Uk ∈ S|βk|+ and a positive diagonal v ∈ Rp+ (where Sp+ and
Rp+ are the PSD cone and nonnegative orthant, both of order
p). Then (4) is equivalent to (5) if and only if at optimality,
Wk = Uk for all k, and v = z.

3 Optimization
The Frank-Wolfe algorithm has regained much attention in
minimizing sparse problems [Jaggi, 2013], mimicking greedy
approaches yet having guaranteed optimality for convex prob-
lems. We first describe the method for a generalized vector
version of problem (4)

min
x
{f(x) : x ∈ D} (6)

where

D = {x =

l∑
k=1

wkAγkuk} :
l∑

k=1

wk‖uk‖2 ≤ α, uk ∈ Ck}.

(7)
Here, the vector variable is x ∈ Rm, f(x) is a differentiable
convex function, and C1, . . . , Cl are proper convex cones. The
Frank-Wolfe algorithm for solving minx{f(x) : x ∈ D} is
described in Alg. 1. It is known that the iterates of algorithm 1
converge as f(x[t]) − f(x∗) ≤ O(1/t) with step size η[t] =
2/(t+ 2)



Algorithm 1 One step of Frank-Wolfe algorithm

Input: x[t] ∈ D: t-th iteration; η: step size;
1: Compute gradient ∇f(x[t])
2: Compute forward step : s = argmins∈D〈s,∇f(x[t])〉;
3: Update primal variable : x[t+1] = (1− η[t])x[t] + η[t]s

Output: optimal x[t+1]

Forward step [Frank and Wolfe, 1956; Dunn and Harsh-
barger, 1978]. At each iteration, the forward step consists of l
parallelizable projections on cone C1, . . . , Cl. Specifically, at
each forward step, we compute

U∗j =
α

wj‖Zj‖2
Zj , Uk = 0, ∀k 6= j.

where index j = argmaxk w
−1
k ‖Zk‖2 and Zj =

projCj (−∇f(x)βj ,βj ). Then s =
∑
k wkAβk,βk(uk). The

derivations are given in appendix A.

Gradient computation In general, to compute the gradi-
ent∇(log det(X)) = X−1 requires matrix inversion, which
completely negates the computational complexity gain by de-
composing the PSD cone. However, of the groups βk form
a chordal pattern, fast inversion methods exist [Liu, 1992;
Andersen et al., 2013] which require at each step l inversions
of matrices at most of order |βk|.

Applying both techniques, Alg. 4.1 describes the procedure
for one iteration to find the NG-LASSO estimator (4).

Algorithm 2 One step of Frank-Wolfe algorithm for (4)

Input: X [t] ∈ D t-th iteration; η := 2
t+2 step size;

1: Find ∇f(X) = X−1 + C
2: Find the forward direction U+:

Z0 = projRp+(−diag(∇f(X)))

Zk = projS|βk|+

(−∇f(X)βk,βk)

j = argmaxk w
−1
k ‖Zk‖F

U+
j = α

wj‖Zj‖F Zj , U+
k = 0, ∀k 6= j

3: Update X [t+1] = X [t] + 2
t+2U

+

Output: X [t+1].

The main computational bottleneck at each step is a se-
quence of ED of the submatrices∇f(X)βk,βk , both for invert-
ingX and for projecting on the PSD cone. For both operations,
the complexity is O(|βk|3) per group. If |βk| < p/l excluding
the diagonal group, then the total per-iteration complexity of
the proposed optimization procedure has a per-iteration com-
plexity of O(p3/l2 + p), and much smaller than O(p3) for
G-LASSO.

4 Numerical Simulations
Here we present simulations of sparse inverse covariance ma-
trix. We show two simulation results of the banded sparsity
and then another simulation result on the general group spar-
sity. Numerically, when group structure is assumed, our group
structured estimator outperforms G-LASSO.

In all of the following experiments, to pick α and ρ,
we swept powers of two ρ ∈ {2−10, . . . , 1} and α ∈
{2−3, . . . , 210} and then picked the best performing ρ or α
for each test. In all cases, the best parameter was not on the
boundary.

4.1 Baselines
As a baseline, we solve (1); however, since group structure
also reveals matrix sparsity, for fair comparison we also solve
(1) restricted to the sparsity pattern induced by the groups:

minimize
X

−logdet(X) + tr(ĈX) + ρ‖X‖1
subject to X � 0

X ∈ B := {X | Xij = 0 if i, j 6∈ βk ∀k},
(8)

which we call restricted group LASSO (RG-LASSO). We
solve these baselines using the Douglas-Rachford method
[Lions and Mercier, 1979; Combettes and Pesquet, 2011] for
minimizing the sum of m convex functions (Alg. 4.1, also
[Combettes and Pesquet, 2011], Alg 10.27), with

f1(X) = −logdet(X) + tr(ĈX), f2(X) = ρ‖X‖1
and f3, f4 as indicator functions for constraints

f3(X) =

{
0 X � 0

∞ else.
, f4(X) =

{
0 X ∈ B

∞ else.
.

The proximal operator [Moreau, 1962] for a convex function
f(X) is defined as

proxf (Z) = argmin
X

f(X) + (1/2)‖X − Z‖2F

and is defined for all Z, even if Z is not in the domain of f .
(This is especially useful for f = log det and Z 6� 0.) From
optimality conditions, it can be shown that

proxtf1(Z) := V diag(q)V T , 2qi = (d2i ) +
√
d2i + 4t

where V diag(d)V T is the eigenvalue decomposition of
tĈ−Z. Similarly, proxtf2 is the well-known shrinkage oper-
ator, and proxtf3 , proxtf4 are projections on their respective
constraint spaces.

Algorithm 3 Douglas-Rachford for f =
∑m
i=1 fi

Input: initial {Zi}m1 in Sp, t1 > 0, 0 < t2 < 2.
1: while not converged do
2: Xi = proxt1fi(Zi) for i = 1, . . . ,m
3: Yi = 2Xi − Zi for i = 1, . . . ,m
4: Y = m−1

∑
i Yi

5: Zi = t2(Y −Xi) for i = 1, . . . ,m
6: end while

Output: Any X1 = . . . = Xm

4.2 Random sparsity
For X ∈ Sp, we randomly select l groups βk ⊂ {1, . . . p}
of size b, and assume that this is the known group structure.
Additionally, select σG · l “active" groups (for 0 < σG < 1)–
the identity of these groups are not known in training. In this



Figure 1: Random pattern sparse inverse covariance estimation
for p = 100. F-measure (left) and AUC (right). Sample size
range from 2 to 200. missing x-y labels, don’t need title (title
should be y label). Also, change legend?

simulation, we investigate the sample size required to recover
the active groups, comparing G-LASSO, RG-LASSO, and
NG-LASSO. Figure 4.2 shows the AUC as a function number
of observations, where p = 100, l = 100, b = 5 and σG = 0.1.
From figure 4.2 we see that all methods recover the correct
sparsity pattern given enough observations, and the sample
complexity of G-LASSO is improved in RG-LASSO and even
moreso with NG-LASSO.

4.3 Banded sparsity
For X ∈ Sp, we assume that the true sparsity pattern consists
of a nonzero diagonal and some active diagonal blocks of size
b, where b is known but the true sparsity pattern is not. This
gives in total l = p−b+1 candidate groups βk = {k, · · · , k+
b} for k = 1, · · · , l. Among l groups, we assume σGl groups
are active (where 0 < σG < 1). Denote the set of active
groups as IA ⊂ {β1, . . . βk} with |IA| = dσG · le. Moreover,
we simulate in-group sparsity; that is, for 0 < σI ≤ 1, we
fix Pr(Xij 6= 0|i, j ∈ βk) = σI . Note that using only known
information, we must assume the sparsity pattern is banded
with bandwidth b.

We construct C with the true sparsity pattern, and form
a sample covariance matrix Ĉ sampling from a multivariate
Gaussian with 0 mean and covariance C. The goal is to use
the estimators to correctly recover the sparsity pattern of C
using Ĉ where the number of observations n is as small as
possible.

Figure 2 shows a small example when p = 50, n = 100
and σI = 0.25. There are in total 90 groups in the banded
sparsity pattern, where the 9 active groups (true sparsity) are
in blue. We pick the estimator nonzeros by thresholding on
the absolute value, choosing the threshold to, in each case,
maximize min{# true positives, # true negatives}. It is clear
that, for this small example, G-LASSO (left) yields many
spurious nonzeros. By simply restricting the sparsity pattern to
B, the performance of RG-LASSO (center) already improves
significantly, but NG-LASSO is still the best, since it accounts
for sparsity in group selection as well.

Table 1 gives the result of a more extensive experiment,
where the threshold, α, and γ are picked to maximize AUC
(Area Under the true-positive false-positive Curve), which is
given for several p, n and σI . Here, we see that NG-LASSO is
comparable with RG-LASSO when p ≈ n, but is consistently

better for p� n; both, however, are considerably improved
over G-LASSO.

Table 2 gives the per-iteration and total runtime of the three
methods. In all cases, the per-iteration runtime depends only
on p and b, and for larger p, NG-LASSO enjoys a much smaller
per-iteration runtime. Of course, the number of iterations to
convergence is also important; we notice that more iterations
are usually required in all methods when p� n.

p n σI C Ĉ† G RG NG
100 10 0.1 0.43 0.44 0.50 0.57 0.65
100 10 0.25 0.39 0.40 0.48 0.58 0.64
100 100 0.1 0.59 0.60 0.89 0.88 0.88
100 100 0.25 0.52 0.69 0.83 0.80 0.85
1000 10 0.1 0.45 0.4 0.49 0.54 0.70
1000 10 0.25 0.40 0.41 0.56 0.58 0.72
1000 100 0.1 0.46 0.50 0.52 0.55 0.74
1000 100 0.25 0.40 0.55 0.60 0.62 0.82

Table 1: Best AUC scores for p× p matrices with n samples,
bandwidth p/10, and block sparsity σI .* on boundary, α =
210. G = G-LASSO. RG = RG-LASSO. NG = NG-LASSO.

Per Iteration Overall
p n G RG NG G RG NG

100 10 1.2e-2 3.1e-2 4.7e-2 1.7 8.7 4.3e1
100 100 1.9e-2 1.7e-2 3.8e-2 3.7e-1 1.7e-1 1.4
1000 10 2.7 8.1 4.8 1.9e2 8.9e2 8.5e1
1000 100 2.6 8.2 4.3 1.8e2 5.7e2 5.8e1*
2500 10 x x x x x x
2500 100 3.8e1 1.0e2 x 2.7e3 7.3e3 x

Table 2: Runtimes in seconds for p×pmatrices with n samples,
bandwidth p/10, and block sparsity σI = 0.1. G = G-LASSO.
RG = RG-LASSO. NG = NG-LASSO. For p ≤ 100, γ and
α are the same as those used in Table 1. For p = 2500,
γ = 0.125 and α = 1, which was observed to work well for
smaller p. 0 = unmeasurably small.* not accurate, rerun

5 Financial application
We examine the performance of G-LASSO, RG-LASSO, and
NG-LASSO on daily closing stock prices, obtained from Ya-
hoo! Finance. Details on the data scraping are given in ap-
pendix B. Define ui as the 1,005 length observation vector
for stock i, and Si as the set of indices of ui where that stock
price observation is available. Define V = {1, 2, . . . , 100},
T = {101, 102, . . . , 200}, and R = {201, 202, . . . , 200 + n
as the indices of a validation, test, and train set respectively,
and for all stocks i, Vi = V ∩ Si, Ti = T ∩ Si, Ri = R ∩ Si.
1 The sample covariance is then calculated as

Ĉij =
1

|Ri ∩Rj |
∑

k∈Ri∩Rj

ui[k]uj [k].

We solve (1), (??), and (4) sweeping ρ and γ for powers of
2 from 2−15 to 25, using cross validation to pick ρ and γ.

1This extra detail is needed because not every day’s value is
provided for every stock.



Figure 2: Banded pattern sparse inverse covariance estimation for p = n = 100. From left to right are G-LASSO (1), RG-LASSO
(??) and NG-LASSO (5). TP = true positive, FP = false positive.

The performance is measured as the test negative log of the
maximum likelihood estimate (NLL) for precision matrix X
and samples {ui}i∈T :

NLL = − log det(X) +
Xij

|Ti ∩ Tj |
∑

k∈Ti∩Tj

ui[k]uj [k].

Table 5 gives the test NLL for various p and n. The benefit of
NG-LASSO is most obvious when n/p is very small. However,
unlike in the banded example, the RG-LASSO test NLL values
are not very low. We also experiment on arbitrary groups, to
confirm that it is this specific group structure that is helping
us. (todo)

Table 5 gives the runtime of each experiment for the best
set of parameters. Since in this application all groups are
nonoverlapping (all stocks are assigned a single sector and
industry) in fact RG-LASSO is fully decomposable, and can
run at the same per-iteration speed as NG-LASSO. so there’d
better be some advantage in performace! ... showing 1) the
time to do one set of eigenvalue decompositions (p × p for
LASSO and sum of |βk| × |βk|, k = 1, . . . l for group meth-
ods), 2) the average per-iteration runtime (which can result
in multiple eigenvalue decomposition sweeps if line search is
used) and 3) the total runtime. Here, the performance benefits
of both RG-LASSO and NG-LASSO is very clear; for large
p (on order of 1000s and 10000s) it is very difficult to solve
G-LASSO without any decomposition.

A Forward step derivation
The following is the derivation the Frank-Wolfe forward step
in solving (6). To compute the forward step, we reformulate
into a more generalized vector optimization problem.

minimize
uk

〈∇f(x),
l∑

k=1

Aγkuk〉

subject to
l∑

k=1

wk‖uk‖2 ≤ α

uk ∈ Ck.

(9)

sectors industry
p n G RG NG RG NG

100 10 2.2e2 2.5e2 2.7e2 7.0e2 5.5e2
500 10 4.9e4 1.8e3 1.3e3 3.7e3 3.5e3
500 100 1.3e3 9.2e2 9.3e2 4.1e3 3.1e3

1000 10 2.5e3 2.6e3 2.8e3 7.9e3 6.1e3
1000 100 x 2.9e9 2.6e97 7.1e3 7.4e3
2500 10 x 4.2e9 x x x
2500 100
5000 10
5000 100
14910 10
14910 100

Table 3: Best test negative log likelihood for different methods,
varying the number of stocks (p) and observations (n). G =
G-LASSO. RG = RG-LASSO. NG = NG-LASSO.

p 500 1000 2500 5000 14910
p× p ED 6.2e-2 3.4e-1 5.2 4.3e1 1.1e3

S-ED 0 1.6e-2 1.4e-1 6.4e-1 1.5e1
I-ED 0 0 0 6.2e-2 1.0

G 1 it. 3.84e-1 8.0e1 x
RG (S) 1 it. 6.07e-2 3.2e-1 x
RG (I) 1 it. 3.65e-2 8.9e-2 x
NG (S) 1 it. 4.46e-2 2.0e-1 x
NG (I) 1 it. 8.02e-2 1.8e-1 x

G all 2.0e1 7.5e2 x
RG (S) all 3.0 1.9e2 x
RG (I) all 2.5 5.9e1 x
NG (S) all 2.5 2.9e1 x
NG (I) all 4.6 2.6e1 x

Table 4: Runtimes (in seconds) of various algorithms for dif-
ferent matrix sizes (Ĉ is p×p). ED=eigenvalue decomposition.
S = sectors. I = industries. S-ED (I-ED) = time to compute
pi × pi ED where p1, . . . , pl are the sizes of the l sector (in-
dustry) groups. G = G-LASSO. RG = RG-LASSO. NG =
NG-LASSO.



Here, the vector variable is x ∈ Rm, f(x) is a differentiable
convex function, and C1, . . . , Cl are proper convex cones. As
before, the parameters w1, . . . , wl > 0 are weights. The index
γ1, . . . , γl define the groups. To match βk with the sets γk ,
the equivalence is such that vec(Aβk,βk) = vec(A)γk , k =
1, . . . , l.

For notational convenience, define ck = ∇f(x)γk for k =
1, . . . , l. Then we can rewrite the forward step as

maximize
xk

∑
k

(−ck)Txk

subject to
l∑

k=1

wk‖xk‖2 ≤ α

xk ∈ Ck
From Moreau’s decomposition, any vector a can be written
as the sum of its projection on a closed convex cone C and its
polar cone C◦, of which are orthogonal. If we then expand

cTk xk = projCk(ck)
Txk + projC◦k (ck)

Txk

then since feasible xk ∈ C∗k , by definition of polar cone
projC◦k (ck)

Txk ≤ 0, and = 0 only if xk = skprojC◦k (ck).
This is the optimal choice of direction for xk, since it also
maximizes the first term projCk(ck)

Txk, and does not affect
the norm constraint. If we additionally define scalars

ak = ‖PCk(−ck)‖22, bk = wk‖PCk(−ck)‖2
then an even simpler equivalent formulation is

maximize
sk

aT s

subject to bT s ≤ α
s ≥ 0

which is a linear program with a known optimal solution of

si =

{
α/bi if i = argmax

i
ai/bi

0 else.
Substituting gives the closed form solution in the text.

B Yahoo! Finance data scraping details
Using the Yahoo! ticker downloader 2 we downloaded 27684
tickers for different stocks. We then used the Yahoo! finance
API 3 to gather daily open, high, low, close, volume, and
adjusted closing prices. We chose to monitor daily closing
prices. We define groups as industries or sectors, as described
in https://biz.yahoo.com/p/.

Any stock that we could not identify with an industry and
sector was removed. We then prune the data to make sure it is
as dense as possible; first, any day in which fewer than 14,000
stocks reported values are removed. Then, any stock with
fewer than 90% of entries filled was removed. This resulted
in 14,910 stocks and 1,005 daily closing prices. In total there
are 9 sectors and 214 industries. with an average sector size
1656.7 and industry size 69.3. All stock vectors were then
demeaned.

2https://pypi.python.org/pypi/
Yahoo-ticker-downloader

3http://chart.finance.yahoo.com/table.csv?
s=TICKERNAMEHERE&a=400&b=23&c=2016&d=0&e=
23&f=2017&g=d&ignore=.csv
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