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Abstract

We give a concise development of some of the major algebraic properties of ex-
treme pathways (pathways which cannot be the result of combining other pathways)
of metabolic networks, contrasting them to those of elementary flux modes (pathways
involving a minimal set of reactions). In particular, we show that an extreme pathway
can be recognized by a rank test as simple as the existing rank test for elementary
flux modes, without computing all the modes. We make the observation that, unlike
elementary flux modes, the property of being an extreme pathway depends on the pres-
ence or absence of reactions beyond those involved in the pathway itself. Hence the
property of being an extreme pathway is not a local property. As a consequence, we
find that the set of all elementary flux modes for a network includes all the elementary
flux modes for all its subnetworks, but that this property does not hold for the set of
all extreme pathways.
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1 Introduction

The study of metabolic networks by means of their steady-state stoichiometry is by now
a well established research activity, and the analysis of such networks by means of their
elementary flux modes or pathways is recognized as a fundamental part of any study of such
networks (Pfeiffer et al., 1999; Schuster & Hilgetag, 1994; Schuster et al., 1999; Schuster
et al., 2002). The study of so-called extreme pathways has also been used by many researchers
(Schilling et al., 2000; Papin et al., 2004). In this paper, we present mathematical algebraic
properties of extreme pathways and elementary flux modes. We also introduce a new rank
test to distinguish extreme pathways from elementary flux modes, in the form of an algebraic
condition. Finally, we illustrate these properties within real metabolic networks. A formal
definition of elementary modes and extreme pathways follows in the next section, but here
we can remind the reader that an elementary mode is an admissible mode containing a
minimal set of reactions (i.e., no reaction can be removed while maintaining admissibility).
An extreme pathway is one which cannot be obtained by combining two other admissible
pathways. Here admissible means that the pathway maintains internal mass-balances and
satisfies the direction constraints on the reactions arising from thermodynamic conditions.

All algorithms that have been proposed and implemented for the computation of extreme
pathways (Schilling et al., 2000) and elementary modes (Schuster et al., 2002; Schuster et al.,
2000; Schuster et al., 1999; Schuster & Hilgetag, 1994), have been based on convex analysis
and the Double Description Method (Fukuda & Prodon, 1996; Motzkin et al., 1953) for
the computation of the extreme rays of a polyhedral cone. The extreme rays of the cone
correspond to the extreme pathways of a metabolic network. Examples of such algorithms
include the Canonical Basis Algorithm (Schuster et al., 2002) and the Nullspace Algorithm
(von Kamp et al., 2006; Wagner, 2004; Urbanczik & Wagner, 2005b; Klamt et al., 2003;
Gagneur & Klamt, 2004; Klamt et al., 2007; Terzer & Stelling, 2008) for elementary modes
and variations for computing extreme pathways (Bell & Palsson, 2005). The Nullspace
Algorithm has generally been found to be more efficient on most problems.

The Nullspace and Canonical Basis Algorithm were both implemented as software pro-
grams. Expa (Bell & Palsson, 2005) computes extreme pathways, Metatool (Pfeiffer et al.,
1999; von Kamp et al., 2006) is capable of computing both extreme pathways and elementary
flux modes, while a recent more complex software package CellNetAnalyzer (Klamt et al.,
2007), a successor to Metatool, has in addition many other features designated for the anal-
ysis of metabolic and signaling networks. EFM Tool (Terzer & Stelling, 2008) is another
recent implementation of Nullspace Algorithm in Java.

Estimation of the number of elementary modes and extreme pathways has also been
examined (Klamt & Stelling, 2002; Yeung et al., 2007) in order to predict the complexity
of the computational task to find all such metabolic pathways. Being a computationally
demanding task, several approaches to parallel or distributed computation of elementary
modes have been proposed through parallelization techniques (Klamt et al., 2005; Samatova
et al., 2002; Lee et al., 2004), or algorithmic reformulations (Urbanczik & Wagner, 2005a;
Urbanczik, 2007; Poolman et al., 2007; Terzer & Stelling, 2008).

Elementary modes and extreme pathways are used to analyze many aspects of metabolic
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networks. We cite just a few examples. In (Stelling et al., 2002), elementary mode anal-
ysis was applied to examine the metabolic network robustness and cellular regulation of
Escherichia coli central metabolism. The concept of extreme pathways was used to analyze
the human red blood cell metabolism and determine the steady-state solution space under
the given network properties (Wiback & Palsson, 2002). Another field of application of
elementary modes, the use for identification of the most efficient pathway for the produc-
tion of protein, was demonstrated again in the analysis of the metabolic network of E. coli
(Vijayasankaran et al., 2005). In (Carlson & Srienc, 2004a; Carlson & Srienc, 2004b; Trinh
et al., 2006) elementary modes were used to design a more efficient bacterium with a high
yield of biomass. Elimination of five reactions in the metabolic network of metabolism of
E. coli resulted in a collapsed network consisting of a single pathway producing biomass from
glucose under aerobic growth conditions. In vivo implementation of this design in the lab on
a glucose substrate resulted in biomass yields up to 30% higher than wild-type bacteria, close
to theoretical predictions (Trinh et al., 2006). Elimination of two additional reactions re-
sulted in a strain with minimal metabolic functionality that is optimized for efficient ethanol
production anaerobically(Trinh et al., 2008).

The rest of this paper is organized as follows. In section 2 we review some basic theory
regarding elementary modes and give some new simple derivations of a new simple rank test
for the property of being an extreme pathway. In section 3 we give some simple consequences
of the basic theory, including a simple self-contained derivation of a special case of the
Nullspace Algorithm sufficient to show how it can be used to find both extreme pathways
and elementary modes in one pass. In section 4 we give some simple examples to show how
the set of extreme pathways for a network is qualitatively different from the set of elementary
modes. In section 5 we give some further examples and some concluding remarks.
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2 Basic Theory

We discuss the following standard stoichiometry problem. Let N = (Nirr Nrev) be an m× q

stoichiometry matrix for a given metabolic network, where the i, j-th entry is the amount
of metabolite i produced by 1 unit of reaction j (with a negative value if the metabolite
is consumed). The columns denoted ‘irr’ correspond to the irreversible reactions and those
denoted ‘rev’ correspond to the reversible reactions. Let x be a q-vector of reaction fluxes,
partitioned1 as x = (xirr ; xrev) consistent with the partitioning of N .

Definition 1. We say x is an admissible flux mode or pathway if all of the following hold:

1. Nx =
(
Nirr Nrev

)
·

(
xirr

xrev

)
= 0,

2. xirr ≥ 0 (i.e. every entry in xirr is non-negative),

3. x 6= 0.

We remark that the set of all admissible pathways is an open convex cone such that if x

is admissible, so is αx for any α > 0.

Definition 2. Let Z̄(x) denote the indices of the non-zero entries in the vector x. We call
x an elementary [flux] mode if there is no other admissible flux mode y whose indices of
non-zero entries Z̄(y) are a proper subset of Z̄(x).

Definition 3. We call x an extreme pathway if x cannot be written as a convex combination
of two other admissible flux modes, i.e., x cannot be written as α1y1 +α2y2 where α1, α2 > 0
and y1,y2 are two different admissible flux modes (not scalar multiples of each other).

It is easy to see that the set of all admissible flux modes is a convex set, and we will refer
to this set as the flux cone or cone associated with a given stoichiometry matrix N . If a
given admissible flux mode x has a nonzero value for at least one irreversible reaction, then
x is said to be an irreversible flux mode or irreversible pathway, since −x is not admissible.
On the other hand, if xirr = 0, then −x is still admissible and hence is a reversible flux mode
or reversible pathway.

Definition 4. The flux cone is called a pointed cone if it has no admissible reversible pathway.
Otherwise it is called a non-pointed cone.

Definition 5. Let A be an arbitrary m× q matrix. The right nullspace of A is the space of
all vectors v such that Av = 0. The nullity of A, denoted nullity(A) is the dimension of the
right nullspace of A. Hence A has full column rank iff nullity(A) = 0.

Proposition 1. Consider a standard stoichiometry problem as denoted in Def. 1. The
associated cone is pointed if and only if nullity(Nrev) = 0.

1We use a ‘;’ to denote vertical concatenation in column vectors and matrices, and a blank or a comma
to denote horizontal concatenation in matrices, as inspired by Matlab R©.
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Proof. A pathway x = (xirr ; xrev) is both reversible and admissible iff xirr = 0 and Nrevxrev =
0. Such an x exists iff Nrev has a nontrivial nullspace, i.e., nullity(Nrev) > 0.

In the example of Fig. 1, Nrev consists of a single column, hence the cone is pointed.

Proposition 2. Consider a standard stoichiometry problem as denoted in Def. 1. Let x be
an admissible flux mode. We assume without loss of generality that the entries in x and the
columns of N are re-ordered so that x can be partitioned as

x =




xirr

xrev


 =




xa

xb

xc

xd


 =




xa

0

xc

0


 ,

where all elements of xa and xc are non-zero and xa > 0. Partition the stoichiometry matrix
consistent with the partitioning of x:

N =
(
Nirr Nrev

)
=

(
Na Nb Nc Nd

)
.

I. Then x is an extreme pathway if and only if

nullity
(
Na Nc Nd

)
= 1.

II. The mode x is an elementary flux mode if and only if

nullity
(
Na Nc

)
= 1.

Proof. Suppose we are given an admissible flux mode x = (xa ; 0 ; xc ; 0). First we note that
if x = y + z, the sum of two admissible flux modes, then the sign constraints imply that
yb = zb = 0. To prove I, if nullity

(
Na Nc Nd

)
= 1, then any admissible vector z such that

zb = 0 must satisfy (za ; zc ; zd) ∈ nullspace
(
Na Nc Nd

)
, and hence must be a multiple of

x.
If nullity

(
Na Nc Nd

)
≥ 2, then beside x there is a second admissible mode y =

(ya ; 0 ; yc ; yd) not a scalar multiple of x. Let α∗ = maxα subject to z = x − αy is
admissible. In this case, admissible means that za ≥ 0, due to non-negativity constraint for
irreversible reactions corresponding to indices in a. Since xa is entirely nonzero, we have
that α∗ > 0. Hence we have x = α∗y + z, i.e., it is a convex combination of two different
admissible vectors.

To prove II, assume that x is EFM. Consider a possible second admissible mode y =
(ya ; 0 ; yc ; 0), partitioned as x, which is not a scalar multiple of x. One could add a multiple
of y to x to cancel out one nonzero element, while maintaining admissibility, yielding an
admissible vector whose nonzero entries occupy a proper subset of positions ‘a’ and ‘c’.
Therefore, x is not elementary if and only if such a y exists. But such a y exists if and only
if nullity

(
Na Nc

)
≥ 2.
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In the example of Fig. 1, consider the flux mode {r1,r2,r3}. To check that it is an
elementary mode, we check the nullity of the first three columns of N , corresponding to the
reactions with non-zero fluxes:

nullity

(
1 −1 0
0 1 −1

)
= 1.

To check whether it is an extreme pathway for this network, we check the nullity of the same
first three columns of N appended with all columns associated with reversible reactions not
already included:

nullity

(
1 −1 0 0
0 1 −1 −1

)
= 2.

This indicated that {r1,r2,r3} is indeed an elementary mode, but not an extreme pathway.
In fact, this pathway is the sum of the two extreme pathways {r1,r2,r5r} and {r3,–r5r}.

Remark 1. We remark that a, b, c, d could be considered index vectors consisting of the
indices of the entries in x corresponding to nonzero fluxes for irreversible reactions, zero fluxes
for irreversible reactions, nonzero fluxes for reversible reactions, zero fluxes for reversible
reactions, respectively. To simplify the exposition, we assume without loss of generality that
we have reordered the reactions to make these four groups contiguous.

Remark 2. We note that this Proposition implies that if a given flux mode is an extreme
pathway, then it is also elementary, but not vice-versa.
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3 Consequences of Basic Theory

The simple rank tests in the previous section give rise to two simple consequences for pointed
cones. One is that a cone is pointed if and only if the set of extreme pathways is the unique
minimal generating set for a network. A second consequence is a simple derivation for one
special case of the Nullspace algorithm.

Proposition 3. Consider a standard stoichiometry problem as denoted in Def. 1. If the
associated cone is pointed, then the set of all extreme pathways is a minimal generating set
for all possible admissible modes.

Proof. Assume the cone is pointed. Let x = (xa ; 0 ; xc ; 0) be an admissible flux mode.
We wish to show it is a convex combination of extreme pathways which is an indicator that
extreme pathways coincide with minimal generating set. Because the cone is pointed, some
irreversible reaction must have a nonzero flux, i.e., xa must be non-empty. If x were extreme
we would be done, so assume it is not. By part I of Proposition 2, we can find a second
admissible vector y = (ya ; 0 ; yc ; 0).

We can follow the construction similar to that used to prove Proposition 2 to follow the
line joining x and y to the boundary of the admissible region. We call those boundary points
z, w. Being on the boundary, the parts za, wa must have some zero entries (corresponding
to nonzero entries in xa).

Either the resulting vectors w, z are extreme, or we can repeat this construction on each
of them. But this construction can be repeated only a finite number of times because each
construction introduces additional zeros among the “a” fluxes corresponding to irreversible
reactions.

The specific construction of z and w proceeds as follows. Find λ+ = maxλ subject to
the condition that g(λ) = (1 − λ)x + λy is admissible, and let λ− = min λ subject to the
same condition. Then z = g(λ−) and w = g(λ+).

Since the example of Fig. 1 is a pointed cone, the network has a minimal generating set
of the extreme pathways, namely: EP1={r1,r2,r5r}, EP2={r4,r2,r5r}, EP3={r3,–r5r}.

If the cone for a network is not pointed, then the extreme pathways do not form a minimal
generating set for the system, but we can state the following.

Proposition 4. Consider a standard stoichiometry problem as denoted in Def. 1. The
associated cone is pointed if and only if nullity(Nrev) = 0. If nullity(Nrev) = 1, then there
is exactly one reversible admissible flux mode and it is the only extreme pathway (using
Def. 3). If nullity(Nrev) ≥ 2, then there are no extreme pathways, and there are at least 2
reversible elementary flux modes.

Proof. The case nullity(Nrev) = 0 was treated in Proposition 1.
If nullity(Nrev) = 1, then let xc be a nonzero vector in nullspace(Nrev) (unique up to scalar

multiple), and then x = (0 ; xc) is the unique reversible pathway. It cannot be written as
a convex combination of any other different modes, which are all irreversible. On the other
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hand, the sum of an arbitrary multiple of x and any other admissible mode is still admissible,
so no other mode can be extreme.

If nullity(Nrev) ≥ 2, then at least two reversible flux modes of the form x above can
be found, and arbitrary multiples of both of those could be added to any admissible flux
mode with the result remaining admissible, so there cannot be any extreme pathways for
this system.

In order to arrive at the Nullspace Algorithm, we need two lemmas.

Lemma 1. Let Sk denote the standard stoichiometric model of Def. 1, where N = (N1 N2)
is m× q, the matrix N1 of columns corresponding to the irreversible reactions is m× k, and
the part N2 corresponding to the reversible reactions has full column rank q − k. Let Sk+1

denote the same stoichiometric model, but where the k + 1st reaction is irreversible.
Suppose x is an extreme pathway with respect to Sk+1. Then either x is an extreme

pathway with respect to Sk or it is a convex combination of exactly two extreme pathways
of Sk.

Proof. Let x be an extreme pathway for Sk+1. If xk+1 > 0, then test I of Proposition 2
involves the same columns of N for both Sk and Sk+1, and thus x is an extreme pathway for
Sk.

If xk+1 = 0, then let a be the vector of indices of the nonzero entries among (x1, . . . , xk),
and let c = (k+2, . . . , q). Let b denote the indices of the zero entries among (x1, . . . , xk). By
assumption nullity(Na Nc) = 1. Appending one column can increase the nullity by at most
one, hence 1 ≤ nullity(Na Nk+1 Nc) ≤ 2. If nullity(Na Nk+1 Nc) = 1, then x was already
extreme wrt Sk. So suppose nullity(Na Nk+1 Nc) = 2. This means that the space S of
all admissible vectors v with vb = 0 has dimension 2. We find a different admissible vector
y such that yb = 0, and then define the boundary points z = g(λ−), w = g(λ+) where g

is defined as in the proof of Proposition 3. The boundary points cannot be expressed as a
convex sum of any other vector within S (else λ+, λ− could not be extreme points). Since
wb = zb = 0, the two vectors w, z cannot be expressed as a convex combination involving
any admissible vector v not in S (i.e., with vb 6= 0). Hence w, z must be extreme pathways
wrt Sk.

The example of Fig. 1 can be considered as S4 in the notation of this Proposition, since
the first four reactions are irreversible while the fifth reaction is reversible. The system S5

would be the same system with all reactions irreversible (in this case the fifth reaction is
irreversible in the direction Y→O, and hence denoted ‘r5’). The flux mode {r1,r2,r3} is
an extreme pathway within the network S5, but as has been previously noted, it is not an
extreme pathway for S4. According to this Proposition, it is the convex combination of two
extreme pathways of S4, namely {r1,r2,r5r} and {r3,–r5r}.

Lemma 2. Let Sk be the standard stoichiometry problem as in Lemma 1, with m reversible
reactions and k = q −m irreversible reactions, and assume rankN = m and Nrev is square

with full rank m. Then R =

(
I

−N−1
rev

Nirr

)
is the complete set of extreme pathways for Sk.
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Proof. First we check admissibility:

1. NR = (Nirr Nrev)

(
I

−N−1
rev

Nirr

)
= Nirr −Nirr = 0.

2. The entries in each column of R corresponding to Nirr are part of the I part and hence
non-negative, with at least one strictly positive entry.

Next we observe that R is q × n, where n = q −m = nullity(N) and has full column rank.
Hence any admissible flux mode x can be written in a unique way as x = Rλ, and because
of the presence of the I matrix, λ ≥ 0. Hence each column of R is an extreme pathway
according to Def. 3, and there are no others.

The example of Fig. 1 corresponds to the model S4 in the notation of Lemma 1, in which
r5r is the only reversible reaction. The model S3 is the same network in which the last two
reactions are reversible, denoted r4r and r5r. The last two columns of N in Fig. 1 have full
rank 2 and includes all the reversible reactions. In the notation of Lemma 2, we have

N1 =

(
1 −1 0
0 1 −1

)
, N2 =

(
1 0
0 −1

)
, R =




1 0 0
0 1 0
0 0 1
−1 1 0

0 1 −1




.

Each column of this R is an extreme pathway with respect to the system S3 in which r4r
and r5r are the two reversible reactions.

An elementary consequence of the preceding two lemmas is the Nullspace algorithm (von
Kamp et al., 2006; Wagner, 2004; Urbanczik & Wagner, 2005b; Klamt et al., 2003; Gagneur
& Klamt, 2004; Klamt et al., 2007; Terzer & Stelling, 2008) outlined in the following two
Propositions.

Proposition 5. Let Si denote a standard stoichiometry problem with i irreversible and r

reversible reactions, so that i + r = q, and assume Nrev has full column rank r = q − i. The
following procedure computes the complete set of extreme pathways.

1. Preprocess N by eliminating redundant rows, to reduce N to a matrix with full row
rank, and assume the new N is m× q with full row rank m.

2. Select m linearly independent columns, including all of Nrev and order them last, calling
this part N2. Denote N = (N1 N2), where N1 is m × (q − m). Let Sk denote
the standard stoichiometry problem with this N , in which the first k reactions are
irreversible, and the last q − k are comprised of all reversible reactions and remaining
i− (q −m) irreversible reactions, where initially k = q −m.

3. For initial value k = q −m, form initial basis Rk =

(
I

−N−1
2 N1

)
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4. For k = (q −m), . . . , i− 1,

(a) Form convex combinations of every pair of columns of Rk with non-negative co-
efficients set to annihilate the k + 1st entry of each resulting vector.

(b) Collect all the columns of Rk which are admissible and extreme with respect to
Sk+1, together with all the resulting convex combinations from the previous step
which are admissible and extreme with respect to Sk+1. To check if the newly
generated column is extreme we refer to the part I of Proposition 2.

Remark 3. Obviously, the detailed algorithm can be made much more efficient than sketched
above. For example:

• If the sign of the k + 1st entry in one column of a pair agrees with the sign of the
corresponding entry in the other column, then no convex combination can annihilate
the k + 1st entry.

• Admissibility of a column of Rk with respect to Sk+1 depends only on the sign of its
k + 1st entry.

Implementation details have been treated by many authors mentioned in the introduction
and will be treated in a future paper.

We observe that the computation of elementary flux modes and extreme pathways are
equivalent operations. We can compute the elementary flux modes using the same method
used to compute extreme pathways. Thus, instead of computing the set of elementary flux
modes directly, we will define the algorithm to compute the extreme pathways so that in each
iteration the reaction processed corresponds to irreversible reaction. This is accomplished
by introducing the idea of ”temporary reversible reactions”. Unlike in Proposition 5, here
we will have to enforce the reversible reaction to become irreversible and iterate over all
reactions, and not only over those corresponding to irreversibles.

Proposition 6. Let Si denote a standard stoichiometry problem with i irreversible and r

reversible reactions, so that i + r = q, and assume Nrev has full column rank r = q − i. The
procedure sketched below computes all the elementary modes for a stoichiometric system
with a pointed cone:

1. Preprocess N by eliminating redundant rows, to reduce N to a matrix with full row
rank, and assume the new N is m× q with full row rank m.

2. Select m linearly independent columns, including all of Nrev and order them last, calling
this part N2. Denote N = (N1 N2), where N1 is m × (q − m). Let S̃k denote the
standard stoichiometry problem with this N , in which the last q − k reactions are
temporarily considered reversible. Initially k = q −m, and the first k columns are all
irreversible.

3. For initial value k = q −m, form initial basis Rk =

(
I

−N−1
2 N1

)
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4. For k = (q −m), . . . , q − 1,

(a) Form convex combinations of every pair of columns of Rk with non-negative co-
efficients set to annihilate the k + 1st entry of each resulting vector.

(b) Collect all the columns of Rk which are admissible and elementary with respect

to S̃k+1, together with all the resulting convex combinations from the previous
step which are admissible and elementary with respect to S̃k+1. To check if the
newly generated column is elementary we refer to the part II of Proposition 2.

Proof. (informal sketch) This algorithm has been well studied in the literature (Schuster &
Hilgetag, 1994; Schuster et al., 1999; Schuster et al., 2002; Fukuda & Prodon, 1996; Motzkin
et al., 1953) and hence we omit a formal proof. However we give some intuition with the
following. The algorithm of this Proposition applied to the original stoichiometric model
is equivalent to the algorithm of Proposition 5 applied to a modified stoichiometric model
in which every reversible reaction has been split into two irreversible reactions, except for
the futile cycles consisting of each reversible reaction and its inverse. One could replace any
negative coefficient for one of the directions of a reversible reaction with the corresponding
positive coefficient for its opposite reaction, though this will happen naturally during the
course of this algorithm due to the presence of those futile cycles. Except for the futile cycles,
the elementary modes for the two models coincide, and for the model with all irreversible
reactions the condition of being elementary coincides with the condition of being extreme.

The preceding Proposition encompasses the basic idea behind almost all variations of the
Nullspace Algorithm that have been implemented in the literature, but without all the ‘frills’
necessary to make it run efficiently. But this is sufficient to notice that if all the irreversible
reactions are ordered first, the procedures sketched in Propositions 5 and 6 coincide up
to the point where the last irreversible reaction has been reached (k = i − 1, the number
of irreversible reactions). Hence we can conclude that most variations of the Nullspace
Algorithm can be used to compute both the extreme pathways and the elementary modes
in one pass. It is only in passes k ≥ i that the reversible reactions are encountered and
the procedure of Proposition 5 will differ from Proposition 6. We state this formally in the
following.

Proposition 7. When applying the general procedure having the general form sketched in
Proposition 6 to compute all elementary modes for a system Si with a pointed cone and
with i irreversible reactions which are ordered first, the collection of elementary modes Ri

appearing when all the irreversible reactions have been processed (at the start of pass when
k = i) is exactly the set of extreme pathways for the system Si.

Remark 4. The common practice is to treat all internal reversible reactions as two separate
irreversible reactions. This usually has the effect of ensuring the resulting model has a
pointed cone. But even if the original cone were pointed, this cone (and the associated
extreme pathways) will differ from the original cone.
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4 Subnetworks

We illustrate one consquence of the preceding theory. Consider the system of Fig. 1, and
for the sake of exposition let the “O” represent oxygen, so that we may refer to this as
the “aerobic” network. This network has three extreme pathways: EFM1={r1,r2,r5r},
EFM2={r4,r2,r5r}, EFM3={r3,–r5r}. We may consider the “anaerobic” network as the
one where no external “O” is present, with the result that exchange reaction r5r is either
absent or one-way outbound (hence denoted ‘r5’). For this network, the extreme pathways
are EFM4={r1,r2,r3} and EFM5={r4,r2,r3}. If r5 is present as an irreversible pathway out-
bound, then EFM1 and EFM2 are also present as extreme pathways. Observe that the first
two extreme pathways for the anaerobic network, EFM4 & EFM5, do not appear among the
extreme pathways for the aerobic network, but are still elementary flux modes for both net-
works. The property of being an elementary mode depends only on the interconnect among
the reactions present in that mode, corresponding to those specific columns in N , regardless
of the properties of the rest of the network in which this pathway is embedded. The property
of being an extreme pathway depends on the the structure of the rest of the network, and
specifically on the presence or absence of certain reversible reactions not present in the given
mode. For our specific example, whether or not the pathway EFM4={r1,r2,r3} is extreme
or not depends on the presence and reversibility of the exchange reaction r5r, which is not
even part of this pathway.

If one were to compute all the elementary modes for the aerobic network, one would
find these include all the elementary modes for any subnetwork, and in particular these
would include the extreme pathways for the anaerobic network. But computing only the
extreme pathways for a network does not necessarily yield all the extreme pathways for
its subnetworks. On the other hand, it is not surprising to find the number of elementary
modes to be much larger than the number of extreme pathways, since the former includes
all elementary modes for all subnetworks.

We can illustrate a similar effect with the Calvin Cycle given in (Poolman et al., 2007)
and listed in Fig. 2. Within this network, some reactions are inhibited by the presence of
light, while some others are active only in the presence of light. This network has a pointed
cone, as can be verified using Proposition 1, hence it makes mathematical sense to consider
the extreme pathways for this network as is. One can use the Nullspace Algorithm or its
variations to compute the pathways for the entire network, or for the sub-networks active
under light conditions only, or dark conditions only. The entire network has 28 elementary
modes, of which 8 are elementary modes for the “light-only” network and 2 are elementary
modes for the “dark-only” network. The remaining 18 elementary modes for the entire
network are inhibited under either light and dark conditions and hence may be biologically
infeasible, but include all possible feasible modes in one computation. On the other hand, if
one computes only the extreme pathways of the entire network, one will find that these will
include both elementary modes for the “dark-only” network, but only one of the elementary
modes for the “light-only” network. Hence, limiting one’s attention to extreme pathways
will necessitate the computation of pathways for each sub-network of interest separately from
scratch.
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5 Conclusions and Discussion

We conclude with some discussion illustrating what the rank tests show when applied to
some other examples, together with some concluding remarks.

Example 1 (A model of E. coli central metabolism). An example of a metabolic network
usually studied is a model of the central metabolism for E. coli (Trinh et al., 2008), consisting
of 70 reactions (19 reversible) and 68 metabolites (52 internal to the network). In this model
we consider the anapleurotic pathway converting malate to pyruvate to be NADH dependent
only. In addition, the reaction FEM9 catalyzed by pyruvate decarboxylase to convert PYR
to ACA is not native in E. coli but cloned into E. coli through the plasmid pLOI297. For
detailed discussion see (Trinh et al., 2008).

To give an application of elementary mode analysis, we use the Metatool software (von
Kamp et al., 2006) on the E. coli network from (Trinh et al., 2008) to find a total of 38,001
elementary modes using glucose as the carbon source, of which 32,604 produce biomass and
5,010 are anaerobic. Using the theory developed in this paper, we can easily find that 2,739
of these are extreme pathways (1,191 are producing biomass and 978 are anaerobic which
may or may not produce biomass). In (Trinh et al., 2008) the goal was to find pathways
maximizing the production of ethanol as a biofuel for a given amount of glucose, while
producing sufficient biomass to allow the cells to grow by deleting the inefficient pathways.
Maximizing a single linear objective function such as ethanol production subject to the
set of linear constraints in Def. 1 (plus the constraint that glucose consumption rate is 1
mole/L/hr) naturally leads to an extreme point in the polytope defining the feasible region,
corresponding to an extreme pathway. But this pathway does not support cell growth,
hence the need to trade off between the optimal solutions for two or more distinct objective
functions. A resulting semi-optimal solution with a minimal number of reactions will be
an elementary mode, which will generally be a convex combination of at least two extreme
pathways representing the optimal solutions for each individual objective function. Having
all elementary modes available allows one to explore many alternative knockouts to achieve
similar performance objectives. Figure 3 shows the relative ethanol and biomass production
of all the anaerobic modes, both extreme pathways and non-extreme elementary modes.
Biomass yield is low because the result is shown for anaerobic growth conditions only. The
investigation of engineering and biological applications of these modes is beyond the scope
of this paper and will be the subject of separate papers.

Example 2 (Simple Pointed Cone). We illustrate the rank test with the example from
(Klamt & Stelling, 2003) and shown in Fig. 4. The elementary modes for this network are

• EFM1 = {2 R1, R3, 2 R5, –2 R7r, R8}

• EFM2 = {2 R1, R3, 2 R4, R8}

• EFM3 = {2 R1, R3, R5, R6, R9}

• EFM4 = {2 R1, R3, R4, R6, R7r, R9}

• EFM5 = {R1, R2r, R3, R6, R7, R9}
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• EFM6 = {R1, –R2r, R4}

• EFM7 = {R1, –R2r, R5, –R7r}

• EFM8 = {2 R2r, R3, R8}

We remark that in the network of (Klamt & Stelling, 2003), the elementary modes EFM1 =
EFM7+EMF8 and EFM2 = EFM6+EFM8 each yield an overall stoichiometry of 1A = 1P,
while EFM3 = EFM5+EFM7 and EFM4 = EFM5+EFM6 each yield an overall stoichiometry
of 2A = 1P, as previously noted in (Bernhard O. Palsson & Papin, 2003). To eliminate this
discrepancy, we have modified reaction R8 from 1B = 1P to 2B = 1P. This change does not
affect the set of reactions involved in each EFM, nor does it affect the observations we make
here regarding the rank tests and extreme pathways.

We first observe that the two reversible reactions are independent, so Proposition 1
implies this is a pointed cone with extreme pathways. We can then apply Proposition 2
to each EFM to see if it is an extreme pathway with respect to this network. The result
is that EFM5, EFM6, EFM7, EFM8 are extreme, and EFM1, EFM2, EFM3, EFM4 are
not, with respect to this network. We observe that in (Klamt & Stelling, 2003) first the
internal reversible reaction R7r is split into two irreversible reactions (R7f & R7b), obtaining
the extreme pathways EFM3, EFM5, EFM6, EFM7, EFM8, and non-extreme elementary
modes EFM1, EFM2, EFM4, plus the futile cycle {R7f, R7b}. By splitting this reaction, we
have modified the network so that, while the set of elementary flux modes have not changed,
Proposition 2 indicates that EFM3 is now an extreme pathway with respect to the modified
network, consistent with (Klamt & Stelling, 2003). Indeed, one can observe that EFM3 is
the sum of EFM5 and EFM7, by which the internal reversible reaction R7r is cancelled.
Hence the property of being an extreme vs non-extreme pathway depends very much on the
specific treatment of the reversible reactions within a network.

If the exchange flux R2r were removed, we would, of course, lose all the current extreme
pathways EFM5–EFM8, since they involve R2r. But we would also notice that all the
remaining modes EFM1–EFM4 would become extreme pathways regardless of whether R7r
is split or not. That is, the property of EFM1–EFM4 being extreme pathways depends on
the presence or absence of R2r, which is not present in any of these pathways.

We remark that condition II of Proposition 2 indicates that, unlike the extreme pathways,
the set of elementary modes is not affected by splitting the reversible reactions, other than
the futile cycles involving the split reactions themselves.

Example 3 (Human red blood cell metabolism). It is useful to apply the nullity test in the
analysis of the Human Red Blood Cell metabolic network that has been previously analyzed
using extreme pathway analysis and elementary mode analysis and is well documented in
the literature (Papin et al., 2004; Wiback & Palsson, 2002). The published results show
that there exist 6,180 EFMs and 55 ExPas (extreme pathways) (Papin et al., 2004). It is
important to note that the elementary mode analysis has been carried out with the network
containing reversible reactions while the extreme pathways have been identified in a net-
work where the internal reversible reactions have been separated into two distinct reactions
operating in the opposite direction. The two approaches yield very different results and
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the differences are revealed when the nullity test is applied. We analyzed the identically
constructed metabolic network (Wiback & Palsson, 2002) that consists of 58 metabolites
(39 of which are internal) and of 51 reactions (33 of which are reversible reactions). Among
the 33 reversible reactions, 17 are reversible internal reactions; 16 are reversible exchange
reactions. Using Metatool, elementary mode analysis on the network that includes all re-
versible reactions yields 6,180 EFMs as previously reported. The nullity test applied to these
elementary modes identifies only a single extreme pathway that consists only of reversible
reactions. This result is obtained because the flux cone is not pointed, and corresponds to
the condition nullity(Nrev) = 1 using the notation of Proposition 4. To perform the analysis
on the exactly identical network as previously published, we have split each of the 17 re-
versible internal reactions into two irreversible reactions. This guarantees also that the flux
cone is pointed. Elementary mode analysis on the modified network identifies 6,198 EFMs.
The nullity test applied to these EFMs identifies 55 ExPas, the same number as previously
published.

Inspection of the 18 additional EFMs in the network case with separated internal re-
versible reactions reveals that 17 of these pathways are the futile cycles consisting of the two
separate reactions derived from each reversible reaction. Out of these 17 futile cycles, 16
are also extreme pathways classified as Type III extreme pathways (Schilling et al., 2000).
The 18th pathway is a pathway consisting only of reversible reactions matching the single
extreme pathway from the unmodified network, but opposite in direction. Thus, these 18
additional EFMs will not be calculated if the internal reversible reactions are not split into
two separate reactions.

These examples demonstrate that the nullity test can accurately identify ExPas from
calculated EFMs, and that the obtained results are consistent with previous reports. The
differences in extreme pathways identified in the two types of networks emphasize the impor-
tance of the type of network that is subjected to the analysis. Therefore, the type of network
(reversible reactions present or with reversible reactions split into two separate reactions) on
which the analysis is performed should always be mentioned when the number of elementary
modes or the number of extreme pathways is listed.

We have given a concise development of the basic theory regarding algebraic properties
of elementary and extreme pathways and how to distinguish them. We have shown how this
theory implies that the computation of only extreme pathways for a given network may not
be applicable to subnetworks where some parts of the network are removed or inhibited.
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r1 : A −→ X
r2 : X −→ Y
r3 : Y −→ P
r4 : B −→ X
r5r : Y ←→ O

B O
r4↓ lr5r

A→X→Y→P
r1 r2 r3

N =

(
1 −1 0 1 0 X
0 1 −1 0 −1 Y

)

︸ ︷︷ ︸
Nirr

︸︷︷︸
Nrev

Figure 1: Small illustrative example, with its stoichiometry matrix N .
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light Rubisco : RuBP + co2 −→ 2 PGA
light PGK : PGA + ATP −→ BPGA + ADP
light G3Pdh : BPGA + nadph ←→ GAP + Pi + nadp
light FBPase : FBP −→ F6P + Pi
light SBPase : SBP −→ S7P + Pi
light Ru5PK : Ru5P + ATP −→ RuBP + ADP
both StarchSynth : G1P + ATP −→ ADP + 2 Pi + starch
light light : ADP + Pi −→ ATP
both TPI : GAP ←→ DHAP
both Aldo : DHAP + GAP ←→ FBP
both TKL1 : GAP + F6P ←→ E4P + X5P
both Aldo2 : DHAP + E4P ←→ SBP
both TKL2 : GAP + S7P ←→ R5P + X5P
both R5Piso : R5P ←→ Ru5P
both X5epi : X5P ←→ Ru5P
both PGI : F6P ←→ G6P
both PGM : G6P ←→ G1P
both StPase : Pi + starch −→ G1P
both GAP:TPT : GAP + pi-cyt −→ Pi + gap-cyt
dark Oxid : G6P + 2 nadp −→ R5P + 2 nadph + co2
both PGA:TPT : PGA + pi-cyt −→ Pi + pga-cyt
both DHAP:TPT : DHAP + pi-cyt −→ Pi + dhap-cyt
dark TAL : F6P + E4P ←→ GAP + S7P

Figure 2: Sample Calvin Cycle from (Poolman et al., 2007). External metabolites are those
starting with a lower case letter.
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Figure 3: Relationship of ethanol and biomass yields corresponding to anaerobic elementary
modes (EFMs, circles) and extreme pathways (ExPas, triangles).
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Figure 4: Example from (Klamt & Stelling, 2003) to illustrate the distinction between ex-
treme pathways and elementary modes.
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