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Abstract

In this study, we present an application paradigm in which an unsupervised ma-

chine learning approach is applied to the high dimensional influenza genetic se-

quences in order to investigate whether vaccine is a driving force to the evolution

of influenza virus. We first used a visualization approach to visualize the evolu-

tionary paths of vaccine-controlled and non-vaccine controlled influenza viruses

in low dimensional space. We then quantified the evolutionary differences be-

tween their evolutionary trajectories through the use of within and between scatter

matrices computation in order to provide the statistical confidence to support the

visualization results. We used the influenza surface Hemagglutinin (HA) gene for

this study as the HA gene is the major target of the immune system. The visualiza-

tion is achieved without using any clustering methods or prior information about

the influenza sequences. Our results clearly showed that the evolutionary trajecto-

ries between vaccine-controlled and non-vaccine controlled influenza viruses are

different and vaccine as an evolution driving force cannot be completely elimi-

nated.
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Introduction

The rapid growth of the influenza genome sequence data due to the advanced de-

velopment of sequencing technology in recent years has provided the opportunity

for a more comprehensive sequence analysis of the influenza virus. The diffi-

culty in sieving through and making sense of this mountain of data relying solely

on phylogenetic approaches has become increasingly limited in part due to the

poor scalability of the relevant algorithms [Nicholas, 2007]. Therefore, a differ-

ent methodology needs to be utilized in order to take advantage of the massive

amount of available data but at the same time be able to expose important infor-

mation or structure within the data. Here, we present an application paradigm in

which an unsupervised machine learning approach is applied to the high dimen-

sional influenza genetic sequences so that the evolution of the vaccine controlled

and non-vaccine controlled influenza viruses in the past century can be visual-

ized. The main objectives of this study are twofold: (1) to visualize the evolution

trajectories of influenza under vaccine pressure and in the wild without using any

prior information about the viruses and (2) to provide statistical confidence to sup-

port the visualization results. Influenza virus is thought to have originated from a

natural reservoir consisting of wild aquatic birds[Taubenberger and Kash, 2010;

Webster et al., 1992].

The influenza A virus is divided into subtypes based on differences in the sur-

face proteins hemagglutinin (HA) and neuraminidase (NA), which are targets of

the human immune system. Antigenic variants or immunologically distinct strains
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of A/H1N1, A/H3N2, and Type B have continued to emerge since its introduction

into humans [Schweiger et al., 2002]. Vaccination is the main strategy in stopping

the infection and transmission of the virus in humans[Hannoun, 2013]. There are

three components in a seasonal flu vaccine: (1) A/H1N1, (2) A/H3N2 and (3)

Type B influenza. Each component is designed to fight the specific strain in each

subtype that is predicted to be the dominant circulating strain in the upcoming flu

season. Over the years, there have been over 24 vaccine updates for the A/H3N2

strain, over 17 updates for the Type B strain and 10 updates for the A/H1N1 strain.

Each vaccine update is designed to provide immunity to the new antigenic variant

that has emerged from the previous flu season. However, the long term effects

of vaccination on the evolution of the virus itself is not clear. In order to shed

light on this seemingly unsuspected problem, we used the nucleotide sequences

from seasonal human A/H3N2 influenza virus from 1971 to 2016 as an exam-

ple to demonstrate the evolutionary progress of this influenza virus against each

successive vaccine introductions from 1971 to 2016. Figure 1 shows progression

of influenza evolution based on the nonsynonymous substitutions (dN ) and syn-

onymous substitutions (dS) ratio analysis using the HA1 domain of the HA gene

from A/H3N2 virus. However, some flu seasons did not provide sufficient infor-

mation of vaccine strain accession number so the actual plot does not ascend at

2016. The HA1 domain is a hypervariable domain of the HA gene where constant

mutational changes can be observed due to the immune pressure generated from

the host. A dN/dS ratio greater than 1 indicates the site is under positive selec-

tion pressure and is undergoing molecular adaptation. In Figure 1, a constant shift
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of positively selected sites (blue color: dN/dS ratio greater 1) could be observed

whenever a new vaccine (green square) was introduced which indicated that a new

antigenic variant had emerged. When a repeated vaccine was introduced, the posi-

tively selected sites identified from the previous season tend to remain unchanged;

even though there were some years that blue sites changed, red regions indicated

possible region the the actual positively selected sites might have settled. Yet, If

multiple vaccines are recommended and at least one of which is recommended in

the previous year, one still regards the current year has updated the vaccine rec-

ommendation; if the same multiple vaccines are recommended for two successive

years, it will be regarded as repeated strains, and different strains of this set will be

run in program for these two years. Given the results from the dN/dS ratio anal-

ysis, we compared the evolution trajectories of vaccine controlled to non-vaccine

controlled influenza viruses and sought to better understand the effect of vacci-

nation has on the evolution of influenza virus. In the present study, we used the

human A/H3N2, A/H1N1, Type B, and avian H5 HA sequences as the vaccine-

controlled samples. We used the human H5N1 and avian H5N1 HA sequences as

the non-vaccine controlled samples.
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Background

Influenza viruses have the ability to infect a very broad range of avian and mam-

malian hosts. Their genomic diversity is acquired through two biological mech-

anisms: antigenic drift and antigenic shift [Webster et al., 1992]. Antigenic drift

consists of the accumulated and continual mutations on surface proteins, result-

ing in the generation of antigenic variants. Of these surface proteins, we are fo-

cused on the hemagglutinin protein. Antigenic shift occurs when complete gene

segments are exchanged among different subtypes of influenza viruses within a

host cell, resulting in what effectively amounts to a whole new influenza virus

genome. Both antigenic drift and antigenic shift allow for the virus to evade

the host’s immune response and rapidly adapt to new hosts [Caron et al., 2009;

Suzuki, 2006]. The evolution of influenza A virus is driven by the high rate of

mutations and the ability to reassort gene segments. Because of its high rate of

mutation combined with the lack of error correcting mechanisms during replica-

tion, influenza virus can easily generate different phenotypes that have the ability

to survive within its host and infect others. To keep track of the evolution of the

virus, annual update to the influenza vaccine composition is needed in order to

provide a vaccine induced immunity to the general public [Boni, 2008]. The main

process in influenza vaccine strain selection is to assess the match between the

vaccine strain and the currently circulating strains and the potential new antigenic

variant [Russell et al., 2008]. If the vaccine strain does not match the currently

circulating strains or the new antigenic variant that is likely to be the major variant
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in the upcoming influenza season, the vaccine composition is updated to contain

a representative of the new variant [Russell et al., 2008]. Each vaccine update is

designed to provide immunity to the new antigenic variant that has emerged from

the previous flu season. The seasonal influenza vaccine is used to prevent the in-

fection and transmission of the virus, but its effect on the evolution of the virus

itself is not clear.
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Materials and Methods

In this study, utilizing the online NCBI influenza database[Bao et al., 2008], we

collected HA sequences from human A/H3N2, A/H1N1, Type B, and avian H5

HA sequences that represent the vaccine-controlled samples. We also collected

human H5N1 and avian H5 HA sequences that represent the non-vaccine con-

trolled samples. Table 1 lists the year range and number of HA nucleotide se-

quences from each sample. In order to focus on more recent years evolution

trends, we incorporated recent year data collected from 2007 or 2008 onward

and randomly choosing the same number of samples for each year.

Influenza evolution visualization

All genetic sequences were first converted into binary strings according to the

method outlined in [Lam et al., 2012]. Nucleotide sequences are represented by

strings of characters out of an alphabet of four letters: A, C, G, T. To obtain the

binary string, each letter is replaced by a code of 4 bits: 1000, 0100, 0010, 0001,

respectively. In the meantime, nucleotide sequences have some ”wild cards” for

cases where a single A, C, G, or T cannot be perfectly determined. We thereby re-

garded that they might appear equally possibly. For instance, Y stands for C or T,

we then use 0101 to represent it. All binary strings were collected into a matrix to

which Principal Component Analysis (PCA) [Jolliffe, 2002] was applied to extract

the dominant variation from the dataset. Here, we briefly outline the sequence of

steps involved in the PCA analysis. Consider a data matrix Xm,n of dimensions m
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by n with m being the number of strains and n being the number of sites or posi-

tions (in this case, n = 987× 4 = 3948 for nucleotide sequences). Each row of X

corresponds to a strain of virus and each column of X corresponds to a particular

position. We first center the columns of the data matrix X with X̂ = X− 1
m
eeTX

where e is a column vector of all ones, and then obtain the sample covariance

matrix C from X̂ by C = 1
(m−1)

X̂T X̂ . C is a square symmetric n × n matrix

whose diagonal entries are the variances of the individual sites across strains and

the off-diagonal terms are the covariances between different sites. The PCA al-

gorithm is then applied to matrix C. The result is then visualized by plotting the

top two or three principal components of the projected data. Since each strain is

encoded as a binary string and PCA works at the binary data level, the pairwise

distance relationship between the strains in a reduced space can be understood as

follows: Let ‖s− t‖H denote the pairwise Hamming distance between two strains

s, t (number of differences in genetic sequences). Let ‖s − t‖bin 1, ‖s − t‖bin 2

denote the distance between the binary encodings of the two sequences (1-norm

and 2-norm, respectively), and let ‖s− t‖proj denote the 2-norm distance in lower

dimensional space after projection onto the leading principal components. Every

single change in the genetic sequence alphabet corresponds to changes to 2 bits

in the binary encoding. Hence we have the relation between the distance in the

lower dimensional space shown on the plots with the Hamming distance among

the original sequences: ‖s− t‖2proj ≤ ‖s− t‖2bin 2 = ‖s− t‖bin 1 = 2‖s− t‖H .
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Quantification

In order to provide statistical support to the graphical results obtained, we per-

formed a statistical analysis based on a method that combined a multi-class scat-

ter matrix computation and class labels randomization. The projected data points

served as the viruses’ 2-D coordinates and the year of isolation of each virus

served as the class label. The multiclass scatter matrix involves the computation

of Between-class matrix (B) and Within-class matrix (W) (Box 1). These com-

puted matrices were not used explicitly as we only sought the trace of B and W.

These are just the scalar scatter values: sum of squared distances between points

and their respective centers. The class separateness measure λo is the ratio of trace

B over trace W. A large λo indicates that the classes or clusters are well separated

between each other and that elements within a cluster are strongly related or share

the same property. This is basically an estimate on how well a multi-class Fisher’s

linear discriminant could separate the classes [Alpaydin, 2010]. A class label ran-

domization algorithm (Alg I) provided the ”distance measure” as a surrogate for

the probability of observing the observed λo by chance. This is because the area

under the tail of the randomized λ distributions beyond the observed separateness

values was below rounding error of 10−16 which made the computation of p-value

not possible. The larger the ’distance’, the less likely the observed λo is generated

by chance. We have also computed the λ∗
o using the new data collected from 2007

or 2008 onward.
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Box 1:

Virus isolation year as class label

C: Number of Classes

Ni number of data points in class i = 1, 2, ...C

• λ = tr(B)
tr(W )

• B : Between Class scatter matrix

–
∑C

i (ui −M)(ui −M)T

– M = 1
c

∑C

i ui ”global mean of dataset”

• W : Within Class scatter matrix

–
∑C

i

∑Ni

j (xj − ui)(xj − ui)
T

– ui: mean of class i.
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Alg. I: Estimate Separateness Measures

Let λo =
tr(Bo)
tr(Wo)

be the observed separateness value.

Repeat j = 1 : K2

Repeat i = 1 : K1

generate a randomization of the class labels

compute the within-cluster scatter W

compute the ratio λi =
tr(B)
tr(W )

= tr(T )−tr(W )
tr(W )

compute the mean µ and std σ for all λi=1,..K1

compute the distance dj =
µ−λ0

σ

Compute the mean d̄ and std d̂ of all dj=1..K2

Report the distance of λo from the mean in the form of d̄± d̂
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Results

The application of high-throughput unsupervised method to the high dimensional

influenza virus genetic sequence data has made possible the visualization of the

evolution of the influenza virus in the span of almost half a century. In this study,

we present the graphical results from visualization of vaccine and non-vaccine

controlled influenza viruses based on their genetic sequences alone. The human

influenza A/H3N2 has the highest number of vaccine updates among the three

vaccine controlled influenza viruses circulating in humans. Given the observa-

tion that constant shifting of positively selected sites whenever a new vaccine was

introduced, we sought to visualize the evolution trajectories of vaccine and non-

vaccine controlled influenza samples. We also set out to compute the class or

clusters separateness values for both vaccine and non-vaccine controlled samples

using the multi-class scatter matrix computation method for both the before and

after class labels randomization process. We performed 1000 runs of Alg I on

these samples and listed the results in Table 2. The observed separateness val-

ues λo of vaccine controlled samples are consistently higher than the non-vaccine

controlled samples. This suggested that the vaccinated samples have very good

separability by isolation years.

In Figure 2, we observed that the human A/H3N2 viruses clustered around

vaccine seed strains chronologically since their introduction into humans in 1968.

The evolution trajectory is directional going from lower left to lower right in the

figure. In Figure 3a, two separate lineages of human Type B influenza are co-
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circulating and that each lineage shows the same observational characteristics as

the A/H3N2, Type B viruses are also clustered around vaccine seed strains. Next

to it in Figure 3b shows the trajectories of two lineages (Yamagata and Victoria)

eventually got completely separated. Even though it is only the situation in the

U.S., but separateness is quite clear. Black circles as vaccine strains shown only

in one of lineages because only one virus in the U.S. was chosen for vaccine strain,

which is from Yamagata lineage. Since the classical H1N1 virus was replaced by

pandemic swine H1N1 strain, we focused its evolution trend from 2008 onward.

H1N1 behaved actively as two jumps (or ‘V’ shapes) seen in Figure 4. One was

in 2013 while the other one was in 2015. These two discontinuities indicated

abrupt changes in gene sequences from its correspondingly previous years so the

evolution trends suddenly jumped to a completely different directions. However,

Hamming distance plot shows even the mutation rate between 2008 and 2016 is

considerably low, approximately 3%, let alone mutation rate between two consec-

utive years. There is hence not sufficient evidence to speculate about mutation. A

vaccinated avian sample was used (avian H5) to further understand the evolution

characteristic of vaccine controlled influenza.

In late 1993, an outbreak of avian H5 influenza in poultry in Mexico was de-

tected and a long term vaccination program was implemented in hope to bring

the outbreak under control and to eradicate the virus [Lee et al., 2004; Escorcia

et al., 2008]. The vaccination program was in effect for over 13 years but an

increase in respiratory signs of disease was observed in vaccinated chickens [Es-

corcia et al., 2008]. In other words, the vaccine strain used in the vaccination
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program no longer matched the circulating strain in the field. The vaccine strain

(A/Ck/Mexico/CPA-232/1994) was isolated in 1993 and has been in used for the

duration of the program for over a decade. Using the available genetic HA se-

quences from these vaccinated chicken, we produced a 3 dimensional PCA plot

(Figure 5) to show the evolution of the field isolates from 1994 to 2002. The first

observation from Figure 5 is that a directional evolutionary trend similar to other

vaccinated samples can be seen in this figure. Second, a chronological pattern is

obvious indicating that the virus had undergone constant evolution or antigenic

drifted away from the early strains. A split in the evolutionary path can be seen

occurring in the 1990s. This split or divergence has been reported in studies by

[Lee et al., 2004; Escorcia et al., 2008] based on phylogenetic analyses conducted

on the same sequence sample.

Figure 6 illustrates the evolution trajectory of the non-vaccine controlled hu-

man H5N1 influenza from 1997 to 2002. We included the human H5N1 virus

as the ’control’ since this subtype is not currently being vaccinated against in hu-

mans but is under active research due to its high mortality rate in infected humans.

Figure 6 suggests that this subtype has evolved into a few dominant clusters since

1997. Three major evolutionary trends or clustering patterns can be seen originat-

ing from the center cluster which contains viruses from 1997. This also implies

this influenza subtype has undergone HA gene diversification. Although it has

diversified since 1997, the specific H5 HA gene identified in 1997 has remained

present in these days [Wei et al., 2012].

Figure 7 shows the evolution of non-vaccine controlled avian H5 influenza

16



virus. The overall observation that arises from this figure is that rather than form-

ing a restricted directional trend, the evolution of the virus is characterized by a

collection of clusters scattered on the plot. The collection of clusters suggests a

diverse pool of the genetic diversity of the virus. For the avian H5 subtype, a less

focused evolutionary trend than vaccine controlled influenza viruses can be ob-

served. The increased genetic diversity since 2000 has been observed by [Garcia

et al., 1997] and is captured in this figure with clusters scattered to the left and

extended to upper and lower corner at almost the same time. This clearly suggests

the co-circulation of multiple clades or sublineages of the avian H5 subtype. The

diverse genetic diversity of the avian H5 represented by multiple clusters across a

long time period indicated that the avian subtype in the wild evolves much slower

than seasonal human influenza viruses.
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Discussions and Conclusions

Vaccination is the principal measure for preventing influenza and reducing its

impact [Webby et al., 2004; Wood et al., 2001]. Almost a century ago after

the isolation of the first influenza virus, influenza vaccines have been persis-

tent and have evolved to respond to the evolution of the influenza viruses evolv-

ing in humans. [Gunn et al., 2010; Hannoun, 2013]. Antigenic drift of in-

fluenza viruses occurs frequently among circulating strains that leads to new anti-

genic variants. However, whether the drift mechanism occurs with the pres-

ence of vaccine pressure is an important question that needs to be addressed

at different level as vaccination is the primary method in prevention and pro-

tection for humans against influenza virus. Two studies [Hensley et al., 2009;

Lee et al., 2004] have shown that vaccination forces mutations on the HA pro-

tein of the influenza virus. These mutations changed the way in which the virus

gradually evolved and adapted to a new vaccine protected environment. Here, we

extended the spectrum of analysis to include vaccine controlled human and avian

samples and non-vaccine controlled human and avian samples to better compare

and contrast and understand the evolutionary dynamic of influenza viruses under

vaccine pressure. Using vaccinated and non-vaccinated samples from both hu-

man and avian hosts, we hope to minimize potential data selection bias and at

the same time to provide a fair comparison across hosts under vaccination pres-

sure. Our method utilized only the genetic composition of the HA sequences alone

without using any specific clustering algorithms. As mentioned above and shown
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in Figure 1, genetic sequences contain important signals to detect evolutionary

trends between different influenza subtypes under vaccination pressure. The ge-

netic composition combined with the implicit positional information of the HA

gene is enough to provide clues that the vaccine-controlled influenza viruses are

under pressure to mutate in order to escape immune responses. Our method takes

advantage of the binary coding of each sequence that preserves the positional in-

formation of each HA gene.

In this study, we have demonstrated that the evolutionary trajectories for vac-

cine controlled influenza are directional and restricted. The restricted directional

evolutionary trends and clusters formation around the vaccine strains along the

evolutionary paths exhibited by the vaccine controlled influenza viruses are in

sharp contrast to the non-vaccine controlled influenza viruses. Apart from this

distinction, the naturally emerged chronological ordering of vaccine controlled

influenza viruses in both two and three dimensional visualizations are much more

noticeable than the non-vaccine controlled viruses. This natural chronological

ordering reflects the active adaptation of the viruses to their changing environ-

ment. The class separateness measure exposes the fact that vaccine controlled

influenza viruses that share the same isolation year have the tendency to cluster

tightly together with good separateability. Each separate cluster or group rep-

resents a distinct genetic diversity of the virus group. In contrast, non-vaccine

controlled influenza viruses isolated within the same time period appeared to be

more scattered and the clusters exhibited much larger within cluster distance with

no narrow restricted bands being observed. These observations suggested that the
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mutations on the HA gene were not restricted to certain sites alone and that the

majority of these mutations most likely were synonymous nucleotide substitutions

on the HA gene.

Also, the number of clusters observed are almost identical to the number of

vaccine updates for the seasonal human A/H3N2 and influenza B viruses. The

very low value of λo computed from non-vaccine controlled influenza viruses has

clearly captured the fact that non-vaccine controlled viruses are not actively evolv-

ing by the year. In contrast, the vaccine controlled influenza viruses have been

actively evolving and adapting to the changing environment constantly as new

vaccine composition is being introduced year after year. This is clearly reflected

in the very high λo value for vaccine controlled influenza viruses. Evidently, the

same observation can be drawn from λ∗
o values. The absolute λ∗

o values is notwith-

standing far less than those from longer year spans since λ∗
o describes shorter time,

which makes far less groups. Another consequential observation is that Yamagata

lineage shows far less separateness value than any other λ∗
o. It may confound

one if one looks at Figure 3b because Yamagata lineage, at left, seems to have

a very well spread line. Nonetheless, if one looks carefully, viruses from each

year as a matter of fact bounces back and forth along this line, which explains

them not successfully separated. Although our analysis was based on genetic

sequences alone, the results suggested that a clear difference existed among in-

fluenza viruses evolving in a vaccine protected environment than in the wild. This

difference is shown through the multi-class scatter computation of their evolution-

ary paths. This quantitative measurement also serves as a basic statistical support
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to the observed differences in the evolution dynamics between vaccine controlled

and non-vaccine controlled influenza viruses.

There are other potential factors besides vaccination that can affect the evolu-

tion of influenza viruses, such as host specific immune response, the large differ-

ence in life expectancy between humans and avian species, vaccine efficacy and

effectiveness, the transmission channel of the virus in difference environment,

and geographical regions. These factors have not been considered in this present

study because our overall objective is to present a genetic sequence only approach

as the first step in understanding the evolution of influenza viruses in a protected

environment. Our approach works directly at the sequence level with no prior

assumption about the evolution of the virus. It is a departure from traditional

one dimensional phylogenetic approach in that we visualize influenza evolution

in 2D and 3D space. All phylogenetic methods make or rely heavily upon the as-

sumptions about underlying evolutionary process [Jenkins et al., 2002]. By using

methods that avoid making assumptions about the parentage relations among the

strains, we can avoid possible misinterpretation of the results. As has been shown

in this paper, a data driven approach with no prior assumptions about the evolution

of the influenza virus affords us a different perspective in directly visualizing how

the virus evolves in a span of over half a century. This perspective has given us

insight into the way we think about the driving forces behind the emergence of

human seasonal influenza antigenic variant strains season after season. Perhaps,

vaccination did play a role in forcing the virus to undergo a different evolutionary

path in order to continue to establish itself in its occupied host. A definitively
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scientific conclusion cannot be drawn without a thorough study of the virus in

a controlled experiment for an extended period of time which should no less to

include multiple influenza epidemics in humans.

22



Acknowledgments

This research was supported in part by NSF grants IIS 1319749. Influenza re-

search in Srinand Sreevatsan lab is funded by the National Institute of Allergy

and Infectious Diseases, National Institutes of Health, Department of Health

and Human Services, under Contract No. HHSN266200700007C. Its contents

are solely the responsibility of the authors and do not necessarily represent the

official views of the NIH or NSF. The funders had no role in study design, data

collection and analysis, decision to publish, or preparation of the manuscript.

23



References

[Alpaydin, 2010] E. Alpaydin. Introduction to Machine Learning. MIT Press,

2nd edition, 2010.

[Bao et al., 2008] Yiming Bao, Pavel Bolotov, Dmitry Dernovoy, Boris Kiryutin,

Leonid Zaslavsky, Tatiana Tatusova, Jim Ostell, and David Lipman. The in-

fluenza virus resource at the national center for biotechnology information. J

Virol, 82(2):596–601, Jan 2008.

[Boni, 2008] Maciej F. Boni. Vaccination and antigenic drift in influenza. Vac-

cine, 26 Suppl 3:C8–14, Jul 2008.

[Caron et al., 2009] Alexandre Caron, Nicolas Gaidet, Michel de Garine-

Wichatitsky, Serge Morand, and Elissa Z. Cameron. Evolutionary biology,

community ecology and avian influenza research. Infect Genet Evol, 9(2):298–

303, Mar 2009.

[Escorcia et al., 2008] Magdalena Escorcia, Lourdes Vzquez, Sara T. Mndez,

Andrea Rodrguez-Ropn, Eduardo Lucio, and Gerardo M. Nava. Avian in-

fluenza: genetic evolution under vaccination pressure. Virol J, 5:15, 2008.

[Garcia et al., 1997] M Garcia, DL Suarez, JM Crawford, JW Latimer, RD Sle-

mons, DE Swayne, and ML Perdue. Evolution of h5 subtype avian influenza a

viruses in north america. Virus research, 51(2):115–124, 1997.

24



[Gunn et al., 2010] Jennifer Lee Gunn, Susan Craddock, and Tamara Giles-

Vernick. Influenza and public health: Learning from past pandemics. Earth-

scan, 2010.

[Hannoun, 2013] Claude Hannoun. The evolving history of influenza viruses and

influenza vaccines. 2013.

[Hensley et al., 2009] Scott E. Hensley, Suman R. Das, Adam L. Bailey,

Loren M. Schmidt, Heather D. Hickman, Akila Jayaraman, Karthik

Viswanathan, Rahul Raman, Ram Sasisekharan, Jack R. Bennink, and

Jonathan W. Yewdell. Hemagglutinin receptor binding avidity drives influenza

a virus antigenic drift. Science, 326(5953):734–736, Oct 2009.

[Jenkins et al., 2002] Gareth M Jenkins, Andrew Rambaut, Oliver G Pybus, and

Edward C Holmes. Rates of molecular evolution in rna viruses: a quantitative

phylogenetic analysis. Journal of molecular evolution, 54(2):156–165, 2002.

[Jolliffe, 2002] Ian T Jolliffe. Principal component analysis. Springer verlag,

2002.

[Lam et al., 2012] HamChing Lam, Srinand Sreevatsan, and Daniel Boley. An-

alyzing influenza virus sequences using binary encoding approach. Scientific

Programming, 20:3–13, 2012.

[Lee et al., 2004] Chang-Won Lee, Dennis A. Senne, and David L. Suarez. Effect

of vaccine use in the evolution of mexican lineage h5n2 avian influenza virus.

J Virol, 78(15):8372–8381, Aug 2004.

25



[Nicholas, 2007] Barton Nicholas. Evolution. Cold Spring Harbor Laboratory

Press, 1st edition, 2007.

[Russell et al., 2008] Colin A Russell, Terry C Jones, Ian G Barr, Nancy J Cox,

Rebecca J Garten, Vicky Gregory, Ian D Gust, Alan W Hampson, Alan J Hay,

Aeron C Hurt, et al. Influenza vaccine strain selection and recent studies on the

global migration of seasonal influenza viruses. Vaccine, 26:D31–D34, 2008.

[Schweiger et al., 2002] B. Schweiger, I. Zadow, and R. Heckler. Antigenic drift

and variability of influenza viruses. Med Microbiol Immunol, 191(3-4):133–

138, Dec 2002.

[Suzuki, 2006] Yoshiyuki Suzuki. Natural selection on the influenza virus

genome. Mol Biol Evol, 23(10):1902–1911, Oct 2006.

[Taubenberger and Kash, 2010] Jeffery K Taubenberger and John C Kash. In-

fluenza virus evolution, host adaptation, and pandemic formation. Cell host &

microbe, 7(6):440–451, 2010.

[Webby et al., 2004] RJ Webby, DR Perez, JS Coleman, Y Guan, JH Knight,

EA Govorkova, LR McClain-Moss, JS Peiris, JE Rehg, EI Tuomanen, et al.

Responsiveness to a pandemic alert: use of reverse genetics for rapid develop-

ment of influenza vaccines. the Lancet, 363(9415):1099–1103, 2004.

[Webster et al., 1992] R. G. Webster, W. J. Bean, O. T. Gorman, T. M. Chambers,

and Y. Kawaoka. Evolution and ecology of influenza a viruses. Microbiol Rev,

56(1):152–179, Mar 1992.

26



[Wei et al., 2012] Kaifa Wei, Yanfeng Chen, Juan Chen, Lingjuan Wu, and

Daoxin Xie. Evolution and adaptation of hemagglutinin gene of human h5n1

influenza virus. Virus genes, 44(3):450–458, 2012.

[Wood et al., 2001] John M Wood, KG Nicholson, M Zambon, R Hinton,

DL Major, RW Newman, U Dunleavy, D Melzack, JS Robertson, and

GC Schild. Developing vaccines against potential pandemic influenza viruses.

In International Congress Series, volume 1219, pages 751–759. Elsevier, 2001.

27



0 50 100 150 200 250 300

HA1 domain

0

5

10

15

20

25

30

T
im

e

A/H3N2 dN/dS ratio plot

dN/dS > 1

dN/dS 0.8-1

New Vacc. Introduced

Repeated Vacc.

Figure 1: Seasonal human A/H3N2 influenza dN/dS ratio analysis against time

of vaccine introduction. A constant shift of positively selected site location when

a new vaccine was introduced. Horizontal axis represents the position of HA1

domain of the HA gene. Vertical axis represents time progression from 1971

(bottom) to 2016 (top) when each new (green square) and repeated (black square)

vaccine was introduced. Red color bars denote the range of positions with dN/dS
ratio from 0.8−1. Blue color bars denote the range of positions with dN/dS ratio

greater than 1.
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Figure 2: Seasonal human A/H3N2 influenza virus evolution trajectory. Each

arrow points to a vaccine seed strain (red dot). The directional evolution can be

seen as traveling from lower left to the top and then coming down to the lower

right.

−8−6−4−202468

−6

−5

−4

−3

−2

−1

0

1

2

3

4  

 

1972
1979
1983

1986

1988−Yamagata

1987−Victoria

1990

1993

2001

1999

2004

2002

2012

2008

2006

2010

PC1

P
C

2

Year 1970

Year 1980

Year 1985

Year 1990

Year 2002

Year 2012

Yamagata LineageVictoria Lineage

(a) Type B Influenza

Virus in northern hemi-

sphere since 1970s

-8 -6 -4 -2 0 2 4 6 8

PC1

-3

-2

-1

0

1

2

3

4

5

6

P
C

2

pre

Year pre10

Year 2010

Year 2011

Year 2012

Year 2013

Year 2014

Year 2015

Year 2016

post

(b) Type B Influenza

Virus in the US territory

since 2008

Figure 3: Seasonal human Type B influenza virus evolution trajectory. Two sep-

arate lineages (Victoria and Yamagata) are evolving simultaneously (3a) top to

lower left and to lower right and diverging further (3b). Vaccine introductions are

indicated by year labels in 3a and shown as black circles in 3b.
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Figure 4: Seasonal human H1N1 influenza virus evolution trajectory in 3 dimen-

sions. Vaccine strains are black crosses. Evident veers can be seen in year 2013

and 2015.

Figure 5: Vaccine controlled avian H5 influenza virus evolution trajectory in 3

dimensions. Vaccine was introduced in early 1990s and the virus slowly evolved

away from the vaccine strain and established two separate lineages.
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Figure 6: Non-vaccine controlled human H5N1 influenza virus evolution trajec-

tory in 3 dimensions. The virus has evolved into a few dominant lineages since

1997. Three major evolutionary lineages can be seen originating from the cen-

ter cluster which contains viruses from 1997. However, the specific H5 HA gene

identified in 1997 has remained present in these days.

Figure 7: Non-vaccine controlled avian H5 influenza virus evolution trajectory

in 3 dimensions. Multiple clusters scattered throughout sharing almost the same

time periods suggesting the co-circulation of multiple clades or sublineages of the

avian H5 subtype.
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Table 1: Vaccine controlled and non-vaccine* controlled human and avian se-

quences.

Samples Year Seqs

Human A/H1N1 1918-13 2140

Human A/H1N1† 2008-16 1440

Human A/H3N2 1968-09 175

Human A/H3N2† 2007-16 1168

Human B (Vict/Yam) 1970-13 818

Human B (Vict/Yam)† 2008-16 920

*Human H5N1 1997-12 127

Avian H5 (Mexico) 1994-02 32

*Avian H5 (China) 1997-02 32
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Table 2: Class separateness results: Vaccine and non-vaccine* controlled human

and avian samples.

Sample (Human) λo λ∗
o Distance Distance∗

A/H3N2 (1968-2009/2007-2016†) 30.5 2.72 978.3± .031 1031± .031
B:Victoria (1970-2013/2008-2016†) 26.3 4.09 1310± .02 499.1± .0154

B:Yamagata (1970-2013/2008-2016†) 25.3 0.68 1327.8± .019 105.2± .0029
A/H1N1 (1918-2013/2008-2016†) 24.7 5.74 617.2± .04 2787± .082

*H5N1 (1997-2002) 1.01 — 34.8± .029 —

Sample (Avian) λo λ∗
o Distance Distance∗

Avian H5 Mexico (1994-2002) 1.7 — 12.23± .11 —

*Avian H5N1 China (1997-2002) 0.268 — 3.16± .0.6 —
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