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Abstract

Background: Metabolic pathway analysis is a powerful tool to study the metabolic structure of a cellular

metabolism that comprises an intricate network for transforming metabolites through enzyme-catalyzed

reactions. The approach is based on convex analysis to solve a homogeneous system of linear equations and

inequality constraints derived from the steady state operation of mass conservation of metabolites. The

solutions constitute the admissible flux space known as the convex polyhedral cone. Elementary Mode and

Extreme Pathway Analysis are two closely related techniques that have been developed to identify pathways

spanning the admissible flux space. Both elementary modes and extreme pathways are genetically independent

pathways that can support steady state operation of cellular metabolism. However, the set of extreme pathways

is often a subset of elementary modes, and under certain conditions only extreme pathways are the generating

edges of the polyhedral cone. Because the two techniques are closely related, it is important to develop a

theoretical framework to distinguish extreme pathways from elementary modes.

Results: We have found a simple algebraic test to distinguish extreme pathways from elementary modes which

requires only the stoichiometry matrix. The method has been tested with published metabolic networks that

have been characterized with Elementary Mode Analysis and Extreme Pathway Analysis. The identity and

number of elementary modes are not altered in networks subjected to splitting every reversible reaction into two

different irreversible reactions, other than the spurious futile cycles involving the new reactions themselves.

However, the set of extreme pathways depends strongly on the specific treatment of the reversible reactions of

the network. The application of this algebraic test for efficient computation of elementary modes in very large

networks is discussed.

Conclusions: Elementary modes are the complete set of genetically independent pathways of a cellular

metabolism that supports steady state operation. With the simple algebraic test, we can easily identify whether

a given pathway is an elementary mode or an extreme pathway before computing the complete set of pathways.

This test provides a convenient way to analyze and interpret network topology with Metabolic Pathway Analysis.

The algebraic test is also useful for improving the efficiency of computing elementary modes in very large

metabolic networks.
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Background

Methods for the analysis of metabolic networks have become one of the major tools in systems biology,
biotechnology and metabolic engineering for elucidation of metabolic properties. With the advances in
genomic science, and especially in the sequencing of genomes, it has become possible to reconstruct
complete metabolic networks of various organisms [1–4]. In order to explain the metabolic networks, it is
necessary to develop an analytical framework which will help in the description of cell function including
growth and regulation [5,6], as well as in predicting properties like product yield [7], network robustness [6]
and rational strain design [8, 9]. In this analysis metabolic networks are described in terms of their
structure and topology, neglecting kinetic effects. Metabolic pathway analysis is a method which explains
pathways inherent in metabolic networks and proposes algorithms to compute and analyze them.

An admissible pathway through a metabolic network is a vector of reaction fluxes such that (a) the
concentration of internal metabolites remains constant under steady-state conditions, and (b) the
irreversible reactions (if present) are active in the admissible direction. Condition (a) means that the
reaction fluxes are such that the net consumption and production of each internal metabolite add up to
zero. A pathway can be represented by a vector x of reaction fluxes or rates. A admissible pathway is
reversible if all the individual reactions with non-zero fluxes are reversible.

If a given pathway has the property that no other admissible pathway involves a set of reactions which are
a proper subset of the set of reactions in the given pathway, then the pathway is said to be an elementary
[flux] mode [10–12]. Furthermore, if the corresponding flux or rate vector is not a convex combination of
any other admissible rate vectors, then the given pathway is said to be extreme [13, 14], in the case where
no admissible pathway is reversible. This paper presents conditions to distinguish elementary modes and
extreme pathways.

History and Related Work

All algorithms that have been proposed and implemented for the computation of extreme pathways [13]
and elementary modes [7, 11, 12, 15], were based on convex analysis and the Double Description
Method [16,17] for the computation of the extreme rays of a polyhedral cone. The extreme rays of the cone
correspond to the extreme pathways of a metabolic network. Examples of such algorithms include the
Canonical Basis Algorithm [12] and the Nullspace Algorithm [18–20]. The latter has generally been found
to be more efficient on most problems.

Several implementations of the algorithms have been proposed, most based on the Nullspace Algorithm:
Expa [21] implements the algorithm of [13] for computation of extreme pathways; Metatool [10, 22], and its
successors FluxAnalyzer and CellNetAnalyzer [23, 24] compute the elementary modes. The Nullspace
Algorithm was improved using a binary approach [20] reducing memory requirements by up to 96%,
storing zero and non-zero values of the current matrix as bit values of 1 and 0.

The set of extreme pathways is often insufficient for the analysis of biochemical networks, since some of the
elementary modes which are not extreme pathways may be as equally important as extreme pathways in
their biological significance, even though they may be represented as a non-negative linear combination of a
few extreme pathways [12]. Therefore, there is often a need to compute elementary modes, and not only
extreme pathways [25]. One can also split all reversible reactions into two irreversible reactions, and
compute the set of elementary modes for such metabolic network, in which the set of extreme pathways
coincides with the set of elementary modes. Hence it is desirable to compute elementary modes directly, a
task which corresponds only indirectly to the Double Description method. The resulting methods also
avoid the need to eliminate the spurious cycles formed by the two associated irreversible reactions [18, 19].

We have observed that the Nullspace Algorithm and its Metatool implementation, in the case where
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metabolic network corresponds to the pointed polyhedral cone, can also be used to compute only the
extreme pathways by simply examining only the rows corresponding to irreversible reactions. This takes
much less time and space compared to that needed to compute all elementary modes [19].

A concept related to the elementary modes, is the one of minimal cut sets of biochemical networks [20, 26].
A minimal cut set is a minimal set of reactions whose removal from the network blocks the operation of an
objective reaction, or in general impedes feasible steady state flux distribution in which the objective
reaction is active.

Estimation of the number of elementary modes and extreme pathways was also examined [27, 28] in order
to predict the complexity of the computational task to find all such metabolic pathways. Being a
computationally demanding task, several approaches to parallel or distributed computation of elementary
modes have been proposed through parallelization techniques [13, 29–31], or algorithmic
reformulations [32–34].

Elementary modes and extreme pathways are used to analyze many aspects of metabolic networks. In [6],
elementary mode analysis was applied to examine the metabolic network robustness and cellular regulation
of Escherichia coli central metabolism. The concept of extreme pathways was used to analyze the human
red blood cell metabolism and determine the steady-state solution space under the given network
properties [35]. Another field of application of elementary modes, the use for identification of the most
efficient pathway for the production of protein, was demonstrated again in the analysis of the metabolic
network of E. coli [36]. In [8, 37, 38] elementary modes were used to design a more efficient bacterium with
a high yield of biomass. Elimination of five reactions in the metabolic network of metabolism of E. coli
resulted in a collapsed network consisting of a single pathway producing biomass from glucose. In vivo
implementation of this design in the lab on a glucose substrate resulted in biomass yields up to 30% higher
than wild-type bacteria, close to theoretical predictions [8]. Elimination of two additional reactions resulted
in a strain with minimal metabolic functionality that is optimized for efficient ethanol production [9].

In this paper we pay special attention to variations to the rank test as used within the Nullspace
algorithm. It is known that the combinatorial test can also be used within this algorithm [20,39, 40], in
some cases with greater efficiency. But the rank tests proposed here are also usable as free-standing tests
given only the individual pathway being tested, together with the stoichiometry matrix.

Methods

A network of metabolic pathways consists of a set of metabolites connected by reactions. Formally, we
represent the network with a stoichiometry matrix Nfull whose (i, j) element is the amount of metabolite i
produced (consumed if negative) by reaction j. If x is a rate vector, then Nfullx is a vector of net
production (consumption if negative) rates for each metabolite in the system. If we let N and Next consist
of the rows of Nfull corresponding to the internal and external metabolites, respectively, then the mass
balance condition gives Nx = 0, and the vector Nextx gives the net consumption and production of the
metabolites external to the system. The above informal definitions lead to the following formal definitions.

Definition 1 (Elementary Mode and Extreme Pathway). Let N be the m× q stoichiometry matrix
representing the internal metabolites and the reactions connecting those metabolites. A flux vector or
pathway is a q-vector x of reaction fluxes or rates. The vector x is said to be an elementary mode or
elementary flux mode if it satisfies three conditions [10–12,25]:

1. pseudo steady-state: Nx = 0 . Metabolites are not accumulating within the metabolic network.

2. thermodynamics: xi ≥ 0 if the ith reaction is irreversible.
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3. non-decomposability: there is no vector v (v 6= x and v 6= 0) fulfilling (1) and (2) such that the set of
indices of non-zero elements in v is a proper subset of set of indices of non-zero elements in x.

We call a pathway or flux mode admissible if it satisfies conditions 1 and 2. In [13], an extreme pathway is
defined as a member of a set of admissible and non-decomposable pathways which are obtained when the
internal reversible reactions of the metabolic network are split into irreversible reactions, and which cannot
be written as a convex combination of any other admissible pathways.

However, if sufficient number of internal reversible reactions are split then the metabolic network may be
represented as a pointed polyhedral cone, and in that case set of extreme pathways would coincide with the
“minimal generating set” [13]. Mathematically, this set represents a convex basis of the network if the
metabolic network observed corresponds to pointed polyhedral cone. We will instead use the following
definition [14], which corresponds to the property of being an extreme ray in the polyhedral cone of
admissible pathways.

4. independence: x is said to be an extreme pathway if it cannot be written as a convex combination of
any other admissible pathways.

In other words, a given flux distribution is an elementary mode if and only if it involves no net production
or consumption of the internal metabolites at steady-state, it is thermodynamically feasible, and there is
no other non-null flux distribution that satisfies these constraints and involves a proper subset of its
participating reactions. The mode is also extreme pathway if it cannot itself be expressed as an admissible
convex combination of other elementary modes.

It turns out that in the case that there are no reversible admissible pathways, the polyhedral cone of
admissible pathways is pointed, and in this case the set of extreme pathways forms the unique minimal
generating set for the network. Often this condition is made to be satisfied almost automatically by
splitting all the internal reversible reactions into separate irreversible reactions, leaving only reversible
exchange fluxes unsplit. In the case there is a reversible admissible pathway in the network, the minimal
generating set is not unique. An extreme pathway may not even exist, but is reversible if does exist. This
occurs, for example, in Example 3 (below) of human red blood cell metabolism [35].

Double Description Pairs

All state of the art methods for computing elementary modes are derived from the classical theory of
double description pairs [16], which we now briefly highlight.

Definition 2 (Double Description Pair [16]). Given a d× q matrix A with full column rank q, and a q × n
matrix R, A and R form a Double Description Pair (DD pair) iff

{x : Ax ≥ 0} = {x : x = Rλ,λ ≥ 0} (1)

The DD pair is called minimal if there is no other R̃ forming a DD pair with A with fewer than n columns.

Here, the columns of R form a set of generators for all the x that satisfy Ax ≥ 0, where all such x are to be
expressed as convex combinations of the columns of R. The vectors x such that Ax ≥ 0 are called “rays,”
due to the fact that they coincide with the edges of an infinite polyhedral cone in IRq anchored at the
origin. If R is minimal, the columns of R are called the extreme rays, because these are exactly the rays
that cannot be expressed as a convex combination of any other admissible rays. As a result, the R forming
a DD pair with A is unique up to ordering and scaling of the columns.
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If A has rank less than q, then one can still define a minimal DD pair, but in this case, not all of the
columns of R are extreme rays and the minimal R is no longer unique. In this case, there exists at least
one ray x such that −x is also a valid ray within the cone, namely any nonzero vector in the right
nullspace of A. This corresponds to a non-pointed cone.

Notation. In the following development, we use the notation adapted from [20,40]:

Z(x) = {i : xi = 0} and Z(x) = {i : xi 6= 0}

denote the sets of indices of elements of a given vector x which are zero and non-zero, respectively. When
the context is clear, we simplify this to Z and Z. If N is a matrix, then N∗,Z denotes the submatrix
consisting of all the rows, and only those columns indexed by the index set Z, and NZ,∗ denotes the

submatrix consisting of the rows indexed by Z and all columns, also adapted from the notation used
in [20, 40]. The right nullspace of a matrix N is the set {x : Nx = 0}, and its dimension is denoted
nullity(N). It is well known from linear algebra that if N has dimensions m× q, then
rank(N) + nullity(N) = q.

The following theorem gives a way to check if a given individual ray is extreme when a complete set of
extreme rays is not available.

Theorem 1 (Extreme Ray Theorem [16]). Let A be d× q with rank q. A q-vector x is an extreme ray for
A if and only if the rank of AZ(Ax),∗ is q − 1 (where Z(Ax) is the set of indices of the zero entries in the
vector Ax) or equivalently, the nullity of AZ(Ax),∗ is 1. Hence the set of extreme rays are uniquely defined
up to scale factors.

Double Description Pairs and Stoichiometry

We now discuss rank tests for various properties of admissible pathways in a stoichiometric network, which
can be derived from the related theory of double description pairs [16, 20]. We begin with the well known
theorem stating how the nullity of certain submatrices of the stoichiometry matrix N indicates whether a
given vector representing a pathway is elementary mode [19]. We then introduce a similar rank test for the
extreme pathways.

We begin with the well-known theorem giving the rank test for being an elementary mode.

Theorem 2 (Nullity Test for Elementary Modes [19]). Let N be the stoichiometry matrix for a given
metabolic network and let Z = Z(x) denote the indices of the

non-zero entries in a given vector x: Z(x) = {i : xi 6= 0}. If x is is an admissible pathway for network
represented by N (in the sense of Definition 1), then x is an elementary [flux] mode if and only if

nullity(N∗,Z) = 1.

Any admissible pathway can be written as a linear combination of elementary modes, where the coefficients
corresponding to all flux vectors with at least one non-zero irreversible flux are non-negative.

Standard Stoichiometry Problem as a Double Description Pair. Our new rank test for the
property of a vector being an extreme pathway depends on the close connection between the stoichiometry
problem (Def. 1) and the double description pair (Def. 2), which we sketch here. Given an m× q
stoichiometry matrix N , let

A =



N

−N
E


 (2)
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where E = I1,...,qi,∗ consists of the first qi rows of a q × q identity matrix, corresponding to the irreversible
reactions (ρ1, . . . , ρqi

), where qi is the number of irreversible reactions. Then the stoichiometry problem is
equivalent to finding a matrix R with minimal number of columns such that

{x : Ax ≥ 0}= {x : Nx = 0,x1,...,qi
≥ 0}

= {x : x = Rλ,λ ≥ 0}.
(3)

In the case that A has full column rank q, R should consist of all the possible extreme rays with respect to
matrix A, which correspond to the extreme pathways of the matrix N . In the case that all reactions are
irreversible, then the set of extreme pathways (or “rays” in the context of a double description pair)
coincides with the set of elementary modes. But if there is at least one reversible reaction, then there may
be elementary modes which are not extreme pathways, i.e. which are the convex combination of two or
more other admissible pathways. We call these non-extreme elementary modes.

Irreversible Extreme Pathways. The concept of extreme pathways depends on whether a polyhedral
cone corresponding to metabolic network is pointed. Hence it is useful to state a simple rank test that can
be applied to a stoichiometry matrix to indicate whether a given network corresponds to a pointed cone or
not. In terms of the stoichiometric network, a pointed cone corresponds to the absence of any reversible
admissible pathways. In the case of a pointed cone, the matrix A of eqn. (2) will have full column rank and
hence will have a unique minimal R of extreme rays forming the double description pair (A,R). Following
this argument to its logical conclusion yields the following simple test for “pointed cone.”

Theorem 3. Let a metabolic network have m metabolites and q reactions, represented by an m× q
stoichiometry matrix N . Let Nrev denote the submatrix of N consisting of the columns of N corresponding
to all the reversible reactions. The metabolic network has a unique set of extreme pathways, equivalent to
the minimal generating set of all pathways, if and only if nullity(Nrev) = 0.

Proof:

Consider the matrix Nrev consisting of the columns of the stoichiometry matrix N corresponding to all the
reversible reactions and Nirrev consist of the remaining columns. A column reordering of the corresponding
matrix (2) gives the partitioning as 


Nirr Nrev

−Nirr −Nrev

I 0




where the I is an identity matrix with dimension equal to the number of irreversible reactions. This matrix
has full column rank if and only if the block Nrev has full column rank. Hence we can apply Theorem 1.

But independently of Theorem 1, we can observe the following. If the submatrix Nrev has a non-trivial
right nullspace (i.e. nullity(Nrev) ≥ 1), then any non-zero vector in this nullspace corresponds to an
admissible reversible pathway. On the other hand, any admissible reversible pathway must lie in the
nullspace of this submatrix, since only reversible reactions can have non-zero fluxes. Hence the metabolic
network admits a reversible pathway if and only if nullity(Nrev) ≥ 1.

If an admissible reversible pathway exists, then arbitrary multiples of it could be added to any member of a
given minimal generating set to obtain a new minimal generating set, which is therefore not unique.

On the other hand, suppose we had at least two different minimal generating sets X = {x1,x2, . . .} and
Y = {y1,y2, . . .}, where we assume without loss of generality (WLOG) that γ1x1 6∈ Y for any scalar γ. We
wish to show that there must be a reversible pathway. Since Y is a generating set, we can write

x1 =
∑

i αiyi, with αi ≥ 0, (4)

but each yi can be written as a convex combination of the vectors X . Substituting these expressions for
the y’s into (4) yields a formula of the form

x1 =
∑

i βixi, with βi ≥ 0. (5)
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There are four cases. Suppose that at least one of β2, β3, . . . are nonzero, say β2 > 0. Let
x =

∑
i≥2 βixi = (1− β1)x1.

Case I. If (1− β1) = 0 then −β2x2 =
∑

i≥3 βixi, hence x2 is a reversible pathway.

Case II. If (1− β1) < 0 then x1 must be reversible.

Case III. If (1− β1) > 0 then X cannot be minimal, since x1 is a convex combination of the other x’s.

Case IV. The only remaining possibility is that βi = 0 for all i = 2, 3, . . .. We show this cannot happen if X
and Y are really different, unless some reversible pathway exists. We are forming the convex combination
(5) by taking convex combinations of convex combinations. Since all coefficients are non-negative, no
cancellation can occur unless the negative of some pathway is also admissible. To be more specific, we can
assume WLOG that α1 > 0 and α2 > 0, since at least two of the α’s must be nonzero (otherwise a multiple
of x1 would be in Y). When writing y1 and y2 as convex combinations of the x’s, the combinations must
involve at least two different vectors from X , say xi and xj with j 6= 1, with corresponding positive
coefficients. When we substitute these expressions into (4) to obtain (5), the terms in xj must cancel. Such
cancellation cannot happen if xj appears in the convex combinations with only positive coefficients, unless
−xj is also an admissible pathway.

Hence we conclude that the minimal generating set is not unique if and only if there exists an admissible
reversible pathway, which in turn exists if and only if nullity(Nrev) ≥ 1.

Extreme Rays. In what follows, we assume the cone is pointed. We use the relationship between the
stoichiometry problem and the double description pair to develop a new simple “nullity test” for extreme
pathways similar to the test of Theorem 2.

Theorem 4 (Nullity Test for Extreme Pathways vs Elementary Modes). Assume N is a m× q
stoichiometry matrix with full rank m, whose first qi reactions are irreversible (without loss of generality).
Let R = {qi + 1, . . . , q} denote the indices of the reversible reactions, and assume the corresponding columns
of N , denoted N∗,R, are linearly independent. Let x be an admissible pathway (or flux vector) with respect
to N , i.e.

Nx = 0, x1 ≥ 0, . . . , xqi
≥ 0.

Let Z denote the set of indices of the non-zero entries in x. Then x is an elementary mode iff
nullity(N∗,Z) = 1, and is an extreme pathway iff nullity(N∗,Z∪R) = 1.

Of course, the assumption that the irreversible reactions occur first is just for notational convenience. This
theorem holds for any ordering of the reactions as long as the entries of the flux vector x have the
corresponding order.

Proof: Let x be a q-vector, with z = |Z| entries equal to zero and q − z entries non-zero. Without loss of
generality, we can permute the entries of x to put all the zero entries first, and apply the same permutation
to the columns of A and N . With this permutation, we have x1 = · · · = xz = 0 and xi 6= 0 for
i = z + 1, . . . , q, and we partition the reordered A and N as A = (A1, A2) and N = (N1, N2), where A1, N1

each have z columns (corresponding to the zero entries in the vector x after permutation). The condition
of being elementary depends on nullity of N∗,z+1,...,q by Theorem 2. The condition of being an “extreme
ray” depends on the rank of AZ(Ax),∗ by Theorem 1. These two conditions are related. We can write the
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product Ax as

Ax =



N

−N
E


x

=

(m)
n

(m) {

(zirr) {

(z̄irr) {




︷︸︸︷
N1

(z) ︷︸︸︷
N2

(q−z)

−N1 −N2

E1 0
0 E2




(
0
x2

)

=




0
0
0

E2x2


 ,

(6)

where E1, E2 are the zirr, z̄irr rows of the identity matrix corresponding to the irreversible reactions in
x1 = 0, x2 6= 0, respectively, or equivalently among {ρ1, . . . , ρz} and {ρz+1, . . . , ρq}, respectively. If all
reactions were irreversible, then we would have zirr = z and z̄irr = q − z, and the blocks E1, E2 would be
simply identity matrices of dimensions z, q − z, respectively.

Then we have that none of the entries in the vector E2x2 are zero. We can divide the entries in x into the
entries corresponding to the irreversible reactions and those corresponding to the reversible reactions:
x = (xT

1,irr, xT
1,rev, xT

2,irr, xT
2,rev)

T = (0, 0, ∗, ∗)T , where the ∗ marks the parts where no entry is zero. The

dimensions of these part are, respectively, zirr, zrev, z̄irr, z̄rev. We now write the product Ax (6) consistent
with this partitioning:

Ax =

0

@

N

−N

E

1

A x

=

0

B

B

@

N1,irr N1,rev N2,irr N2,rev

−N1,irr −N1,rev −N2,irr −N2,rev

I1,irr 0 0 0
0 0 I2,irr 0

1

C

C

A

0

B

B

@

x1,irr

x1,rev

x2,irr

x2,rev

1

C

C

A

=

0

B

B

@

0
0
0

E2,irrx2,irr

1

C

C

A

,

(7)

where the “I” blocks above are identity matrices of appropriate dimension: E1 = (I1,irr, 0), E2 = (I2,irr, 0).
Then we follow the prescription of the Extreme Ray Theorem 1 by extracting the rows of A corresponding
to the zero entries in Ax. The result is the following:

AZ(Ax),∗ =



N1,irr N1,rev N2,irr N2,rev

−N1,irr −N1,rev −N2,irr −N2,rev

I1,irr 0 0 0




= I1



N1,irr N1,rev N2,irr N2,rev

0 0 0 0
I1,irr 0 0 0




= I1I2




0 N1,rev N2,irr N2,rev

0 0 0 0
I1,irr 0 0 0


 ,

(8)
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where we have reduced the matrix by two non-singular transformations and where

I1 =



I 0 0
−I I 0
0 0 I


 and I2 =



I 0 N1,irr

0 I 0
0 0 I




are two invertible transformations. Hence

rank
(
AZ(Ax),∗

)
=

= rank (I1,irr) + [rank (N1,rev, N2,irr, N2,rev)]

= zirr + [(q − zirr)− nullity (N1,rev, N2,irr, N2,rev)]

= q − nullity (N1,rev, N2,irr, N2,rev)

So the condition that the rank of AZ(Ax),∗ is q − 1 is equivalent to the condition that the nullity of
(N1,rev, N2,irr, N2,rev) is 1. One can view this formula as saying that, regarding the determination of
“extremeness”, we need to select those columns of N corresponding to all reactions with non-zero fluxes,
plus those columns corresponding to all remaining reversible reactions regardless of their flux.

Applying the construction of equation (8) to the entire matrix A leads to the relation

rank(A) = z̄irr + rank(N∗,rev) = q − nullity(N∗,rev), (9)

hence the assumption rank(A) = q is equivalent to nullity(N∗,rev) = 0. We have thus established the
theorem.

Remark 1. If we remove the all-zero rows in the right-most matrix in equation (8), we are left with a
matrix of dimensions (m+ zirr)× q. The condition for being an extreme pathway that the rank of this
matrix is q − 1 implies that the matrix must have at least q − 1 rows. That is, m+ zirr ≥ q − 1. This yields
a necessary condition that is easy to check: |Z ∪ R| = q − zirr ≤ m+ 1. Likewise, regarding the test of being
an elementary mode, the condition that nullity(N∗,Z) = 1 implies that |Z| = z̄ ≤ m+ 1. These are low-cost
tests which can be applied to eliminate candidate elementary modes before applying the more expensive
tests based on Theorem 4.

Properties of the Algorithms

The Nullspace and Canonical Basis algorithms have been extensively and repeatedly described in the
literature [12, 16, 18, 19]. Hence we put brief descriptions of these methods in Appendix B in order to
relieve clutter in this paper. But we give some properties of these methods here since these are essential to
properly interpret some of the results produced by these algorithms.

Theorem 5 (The Nullspace Algorithm extracts the extreme pathways [18, 19]). Let Nm×q be a
stoichiometric matrix, and qrev is the number of reversible reactions. If m ≥ qrev, the columns of N
corresponding to the reversible reactions are linearly independent, and the Nullspace Algorithm as described
in [19] is configured to process the entries corresponding to the irreversible reactions first, then the modes
obtained upon processing all the irreversible reactions are exactly the extreme pathways for the network.

This theorem states that if the irreversible reactions are processed first by the Nullspace algorithm, the
extreme pathways can be extracted during the course of the computation, and then the computation can
be continued to generate all the elementary modes which are not extreme pathways.

Lemma 1 (Elementary modes are the same when the reversible reactions are split into two irreversible
reactions [20]). If the original stoichiometric matrix is reconfigured so that every reversible reaction is split
into two irreversible reactions resulting in the reconfigured matrix N ′ = [Nrev, Nirr, −Nrev], the set of
elementary modes obtained from the original matrix N is equivalent to the set of elementary modes
obtained from the reconfigured matrix N ′.
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If all the reversible reactions in a stoichiometric matrix are decomposed into two irreversible components,
then a set of elementary modes of the reconfigured matrix coincides with the set of its extreme pathways.
As was shown, the Double Description Method finds all the extreme pathways. For the case of the
reconfigured stoichiometric matrix with all reactions being made irrreversible by splitting reversible
reactions, the set of elementary modes coincides with the set of extreme pathways. Therefore, running the
Double Description Method results in computation of all the elementary modes for the reconfigured
matrix. This reasoning and the above Lemma 1 yield the following theorem.

Theorem 6 (Completeness Theorem for the Nullspace Algorithm [19]). The Nullspace algorithm (as
instantiated in [19]) finds all elementary modes for a given stoichiometric matrix Nm×q.

Remark 2 (Reducing the cost of the rank test). The rank test (or more properly the nullity test) of
Theorem 4 is used within the inner loop of the Nullspace algorithm (specifically step 2 in the algorithm as
presented in Appendix B) in order to check if a prospective flux vector is an elementary mode and/or
extreme pathway. The combinatorial test is also a valid alternative for this check, but relative efficiency of
each depends on the specific implementations [20,39,40]. The cost of an individual rank test is independent
of the total number of prospective elementary modes, but depends only on the size of the stoichiometry
matrix. But it must be applied to almost every prospective elementary mode as it is generated, and hence
the contribution to the total cost of the algorithm can be significant. In the following we show how the
nullity can be obtained from a proper submatrix of that indicated by Theorem 4 when the initial
stoichiometry matrix N has been transformed to reduced row echelon form, thereby reducing computation
time. This reduced rank test is actually used in the Metatool algorithm [22] without much explanation.

At each stage k in the Nullspace algorithm, we are generating all pathways which are elementary modes
with respect to the first k reactions, by trying combinations of pathways which were elementary modes
with respect to the first k − 1 reactions computed in the previous stage. As we generate each prospective
flux vector x, we must check if the nullity of the corresponding submatrix N∗,Z∪I equals 1, where Z is the
set of nonzero indices among the first k entries of each prospective vector x, and I are all the indices
k + 1, . . . , q. In terms of the original Double Description Algorithm [16], we must check the nullity of rows
selected from the first 2m+ k rows of the matrix A in equation (2) (the entire N , −N blocks plus certain
rows from the first k rows of the E block in (2)):

nullity




N∗,1...k N∗,k+1...q

−N∗,1...k −N∗,k+1...q

EZ1,q−m+k
0


 , (10)

where we select the rows corresponding to the zero entries in Ax. Following the same construction as in
(8), the nullity of (10) is the same as the nullity of the submatrix Ñ of N consisting of columns k+ 1, . . . , q
together with the columns corresponding to any all-zero columns within EZ1,q−m

. If N has previously been
reduced to row echelon form N = (N1, I), with an m×m identity matrix occupying the last m columns,

then we can omit those columns of Ñ which are drawn from those last m columns forming the identity
matrix, and omit the rows corresponding to the nonzero entries found in those columns omitted in this
way. The result is that we can obtain the nullity (10) by computing the nullity of the submatrix of N
obtained by fetching the columns corresponding to nonzeros among the first q −m entries of x and the
rows corresponding to the zero entries among the last m entries of x. The result of these considerations is
the following theorem.

Theorem 7 (Reduced Rank Test). Assume the stoichiometry matrix N has been reduced by row
operations to row echelon form N = Nrref =

(
N1 I

)
. Let the Nullspace algorithm be in its kth stage of

execution. A vector x is an elementary mode if nullity(N
Zb,Za

) = 1, where x = [a, b, c] and

a = [x1, . . . , xq−m],b = [xq−m+1, . . . , xk] and c = [xk+1, . . . , xq], and Zb and Za represent indices of zero and
non-zero elements in vectors a and b, respectively.
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This theorem and associated construction is most easily illustrated with Example 5 of a simple metabolic
network in the Appendix C.

We remark that while the rank tests within the Nullspace algorithm can be accelerated by this
construction, it has also been found that the combinatorial test [20, 39] can also be as efficient, if not more
so, in certain cases. However, recent improvements of the algorithm and use of residual arithmetic and
rank updating [40] indicates that the rank test may remain as a valid alternative to the combinatorial test
in the computation of the entire set of elementary modes, depending on the specific network being analysed
and on the specific implementations used. In any case, the rank tests can still be applied even when one
has only the one individual pathway one wishes to test, together with the stoichiometry matrix. This
makes the rank test useful as a free-standing test, as well as enhancing the possibilities of parallelizing the
Nullspace algorithm.

Results and Discussion

Validation of Rank/Nullity Test

Example 1 (A model of E. coli central metabolism). An example of a metabolic network usually studied
is a model of the central metabolism for E. coli, consisting of 70 reactions (19 reversible) and 68
metabolites (52 internal to the network, illustrated in Figure 1 [9]. In the model we consider the
anapleurotic pathway converting malate to pyruvate to be NADH dependent only. In addition, the reaction
FEM9 catalyzed by pyruvate decarboxylase to convert PYR to ACA is not native in E. coli but cloned into
E. coli through the plasmid pLOI297 [9].

To give an application of elementary mode analysis, we use the Metatool software [22] on the E. coli
network of Figure 1 to find a total of 38,001 elementary modes using glucose as the carbon source, of which
32,604 produce biomass and 5,010 are anaerobic. Using the theory developed in this paper, we can easily
find that 2,739 of these are extreme pathways (1,191 are producing biomass and 978 are anaerobic which
may or may not produce biomass). In [9] the goal was to find pathways maximizing the production of
ethanol as a biofuel for a given amount of glucose, while producing sufficient biomass to allow the cells to
grow by deleting the inefficient pathways. Maximizing a single linear objective function such as ethanol
production subject to the set of linear constraints in definition 1 (plus the constraint that glucose
consumption rate is 1 mole/L/hr) naturally leads to an extreme point in the polytope defining the feasible
region, corresponding to an extreme pathway. But this pathway does not support cell growth, hence the
need to trade off between the optimal solutions for two or more distinct objective functions. A resulting
semi-optimal solution with a minimal number of reactions will be an elementary mode, which will generally
be a convex combination of at least two extreme pathways representing the optimal solutions for each
individual objective function. Having all elementary modes available allows one to explore many
alternative knockouts to achieve similar performance objectives. Figure 2 shows the relative ethanol and
biomass production of all the anaerobic modes, both extreme pathways and non-extreme elementary
modes. Biomass yield is low because the result is shown for anaerobic growth conditions only. The
investigation of engineering and biological applications of these modes is beyond the scope of this paper
and will be the subject of separate papers.

Splitting Internal Reversible Reactions.

It has been proposed to split internal reversible reactions into two separate irreversible reactions of
opposite directions in order to guarantee the existence of a unique set of extreme pathways forming a
minimal generating set [13]. We discuss two examples showing that the nullity test proposed in Theorem 4

11



Figure 1: Metabolic map of E. coli central metabolism (reprinted with permission from Trinh, Unrean,
Srienc [9] c©American Society for Microbiology).
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Figure 2: Relationship of ethanol and biomass yields corresponding to anaerobic elementary modes (EFMs,
shown in blue circles) and extreme pathways (ExPas, shown in red triangles).

yields results that match previous computations, but also expose some discrepancies arising from this kind
of modification to the network models. For example, it is observed that the set of extreme pathways can
change when the network is subjected to splitting of internal reversible reactions.

Example 2 (Simple Pointed Cone). We illustrate the rank test with the example from [25] in Fig. 6. We
remark that in the network of [25], the elementary modes EFM1=EFM7+EMF8 and
EFM2=EFM6+EFM8 each yield an overall stoichiometry of 1A = 1P, while EFM3=EFM5+EFM7 and
EFM4=EFM5+EFM6 each yield an overall stoichiometry of 2A = 1P, as previously noted in [41]. To
eliminate this discrepancy, we have modified reaction R8 from 1B = 1P to 2B = 1P. This change does not
affect the set of reactions involved in each EFM, nor does it affect the observations we make here regarding
the rank tests and extreme pathways. We observe that Klamt & Stelling [25] first split the internal
reversible reaction R7r into two irreversible reactions (R7f & R7b), obtaining the extreme pathways EFM3,
EFM5, EFM6, EFM7, EFM8, and non-extreme elementary modes EFM1, EFM2, EFM4, plus the futile
cycle R7f+R7b. We find that by not splitting the internal irreversible reaction, we still have a pointed cone
so that it still makes sense to consider extreme pathways. With respect to this original network, our rank
test indicates that EFM3 is not an extreme pathway. Indeed, one can observe that EFM3 is the sum of
EFM5 and EFM7, by which the reversible reactions are cancelled. Hence the property of being an extreme
vs non-extreme pathway depends very much on the specific treatment of the reversible reactions within a
network. We remark that Lemma 1 indicates that, unlike the extreme pathways, the set of elementary
modes is not affected by splitting the reversible reactions, other than the futile cycles involving the split
reactions themselves.

Example 3 (Human red blood cell metabolism). It is useful to apply the nullity test in the analysis of the
Human Red Blood Cell metabolic network that has been previously analyzed using extreme pathway
analysis and elementary mode analysis and is well documented in the literature [14, 35]. The published
results show that there exist 6,180 EFMs and 55 ExPas (extreme pathways) [14]. It is important to note
that the elementary mode analysis has been carried out with the network containing reversible reactions
while the extreme pathways have been identified in a network where the internal reversible reactions have
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Figure 3: Elementary modes from a small network.
Reprinted from Klamt & Stelling [25], c©Elsevier,
used by permission.

R1 R2r R3 R4 R5 R6 R7r R8 R9
Non-Extreme Elem. Modes

EFM1 2 0 1 0 2 0 −2 1 0
EFM2 2 0 1 2 0 0 0 1 0
EFM3* 2 0 1 0 1 1 0 0 1
EFM4 2 0 1 1 0 1 1 0 1

Extreme Pathways
EFM5 1 1 1 0 0 1 1 0 1
EFM6 1 −1 0 1 0 0 0 0 0
EFM7 1 −1 0 0 1 0 −1 0 0
EFM8 0 2 1 0 0 0 0 1 0
* EFM3 is extreme only when R7r is split

Figure 4: List of elementary modes shown in Fig. 3.

R1 R2r R3 R4 R5 R6 R7r R8 R9
internal metabolites

A 1 0 0 −1 −1 −1 0 0 0
B 0 1 0 1 0 0 −1 −2 0
C 0 0 0 0 1 0 1 0 −1
D 0 0 0 0 0 1 0 0 −1
P 0 0 −1 0 0 0 0 1 1
external metabolites (not used in rank tests)
A ext −1 0 0 0 0 0 0 0 0
B ext 0 −1 0 0 0 0 0 0 0
P ext 0 0 1 0 0 0 0 0 0

Figure 5: Stoichiometry matrix for Example shown
in Fig. 3. Only the upper part corresponding to the
internal metabolites is used here.

Consider the network represented by the stoichiome-
try matrix shown in Fig. 5, with 8 elementary modes
shown in Fig. 3: where R2r and R7r are the only
reversible reactions, and R1, R2r, R3 are exchange
fluxes. Mass balance is achieved by having reaction
R8 be 2B = P (see text). To use the rank tests pro-
posed in theorems 4, 3, we go through the following
steps, ignoring the external metabolites.

1. Before using the rank test to distinguish extreme
pathways, we first check that the cone is pointed
by applying Theorem 3. That is, we check that
there are no admissible pathways in the network
by computing the nullity [dimension of the right
nullspace] of the columns of Fig. 5 corresponding
to the reversible reactions, R2r & R7r. These two
columns are linearly independent, so the nullity
is zero. Hence the cone is pointed.

2. We can now check each Elementary mode to see
if it is an extreme pathway. For example, to
check EFM6, we select the columns of Fig. 5 cor-
responding to the reactions with non-zero fluxes
in this mode (R1, R2r, R4) together with any re-
maining reversible reactions (R7r). We find that
the rank of this submatrix is 3, i.e. the nullity is
1 and hence it satisfies the conditions of Theo-
rem 4 to be an extreme pathway. If we apply this
test to every elementary mode shown in Fig. 3,
we find that the extreme pathways are EFM5,
EFM6, EFM7, EFM8.

Figure 6: Example illustrating how to use the rank test to distinguish extreme pathways from non-extreme
elementary modes (see Example 2).
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been separated into two distinct reactions operating in the opposite direction. The two approaches yield
very different results and the differences are revealed when the nullity test is applied. We analyzed the
identically constructed metabolic network [35] that consists of 58 metabolites (39 of which are internal)
and of 51 reactions (33 of which are reversible reactions). Among the 33 reversible reactions, 17 are
reversible internal reactions; 16 are reversible exchange reactions. Using Metatool, elementary mode
analysis on the network that includes all reversible reactions yields 6,180 EFMs as previously reported.
The nullity test applied to these elementary modes identifies only a single extreme pathway that consists
only of reversible reactions. This result is obtained because the flux cone is not pointed, and corresponds
to the condition nullity(Nrev) = 1 using the notation of Theorem 3. To perform the analysis on the exactly
identical network as previously published, we have split each of the 17 reversible internal reactions into two
irreversible reactions. This guarantees also that the flux cone is pointed. Elementary mode analysis on the
modified network identifies 6,198 EFMs. The nullity test applied to these EFMs identifies 55 ExPas, the
same number as previously published.

Inspection of the 18 additional EFMs in the network case with separated internal reversible reactions
reveals that 17 of these pathways are the futile cycles consisting of the two separate reactions derived from
each reversible reaction. Out of these 17 futile cycles, 16 are also extreme pathways classified as Type III
extreme pathways [13]. The 18th pathway is a pathway consisting only of reversible reactions matching the
single extreme pathway from the unmodified network, but opposite in direction. Thus, these 18 additional
EFMs will not be calculated if the internal reversible reactions are not split into two separate reactions.

These examples demonstrate that the nullity test can accurately identify ExPas from calculated EFMs,
and that the obtained results are consistent with previous reports. The differences in extreme pathways
identified in the two types of networks emphasizes the importance of the type of network that is subjected
to the analysis. Therefore, the type of network (reversible reactions present or with reversible reactions
split into two separate reactions) on which the analysis is performed should always be mentioned when the
number of elementary modes or the number of extreme pathways is listed.

Conclusions

We have reviewed the connections between the classical double description method and the task of
computing the elementary modes through a metabolic network, and used these connections to derive some
simple new tests to distinguish elementary modes from extreme pathways, and to provide a proof and
explanation for improving the efficiency of computing elementary modes. These tests make it possible to
identify extreme pathways individually, and to more easily follow the effects when the network is modified
by splitting reversible reactions. In examples in which it is desired to estimate how much an individual
elementary mode contributes to an observed physiological flux distribution, it might be useful to know if
the given mode is an extreme pathway or not, since will affect how well the same physiological flux
distribution could be explained using alternate elementary modes.

It is evident from the heavy role that linear equalities and inequalities play in this development that the
theories of linear programming and convex polyhedral cones are closely tied to the theory presented here.
There are many analogs between some of the results presented here and techniques arising in linear
programming such as the simplex method as well as convex hull problems, and these have served and can
continue to foster future developments in this area.
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Figures

Figure 1 - Metabolic map of E. coli central metabolism (reprinted with permission from Trinh,
Unrean, Srienc [9] c©American Society for Microbiology).

Illustration of a sample metabolic network under study.

Figure 2 - Relationship of ethanol and biomass yields corresponding to anaerobic elementary modes
(EFMs, shown in blue circles) and extreme pathways (ExPas, shown in red triangles).

This figure illustrates how the trade-off between ethanol production, biomass production (plus ease of
implementation) might point to the use of non-extreme pathways.

Figure 3 - Elementary modes from a small network. Reprinted from Klamt & Stelling [25], c©Elsevier,
used by permission

Figure showing elementary modes from example network, used in the example to illustrate the difference
between elementary modes and extreme pathways, as suggested by Reviewer 1. Permission has been
obtained through the ScienceDirect web site.

List of elementary modes shown in Fig. 3.

This figure lists all the elementary flux modes for the network shown in figure 3. This is part of Figure 6.

Stoichiometry matrix for Example shown in Fig. 3. Only the upper part corresponding to the internal
metabolites is used here.

This figure shows the stoichiometry matrix for the example corresponding to Example 2 in the text and
pictured in figure 3. This is part of Figure 6.

Figure 6 - Example illustrating how to use the rank test to distinguish extreme pathways from
non-extreme elementary modes (see Example 2).

A boxed inset showing the steps to use the new rank test for ’extremeness’. The content of this figure
(including figures 3, 5 , 3) should be re-formatted to suit the final Journal format and layout for a boxed
inset.
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Description:

Appendix A contains proofs of theorems stated in the main paper.

Appendix B contains an overview of Canonical Basis Algorithm and Nullspace Algorithm.

Appendix C contains two computational examples illustrating the algorithms.
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Appendix A – Proofs of Theorems
Proof (sketch) of Theorem 1. Assume WLOG that the rows of A are ordered so that

s =

(
s1

0

)
= Ax =

(
A1

A2

)
x,

where A1, A2 are (d1 × q), (d2 × q), resp., and s1 > 0.
If the rank of A2 is q − 1, then its nullity is 1, and the vector x such that A2x = 0 is unique up to

a scale factor. If x were a non-negative combination of two other valid flux vectors: x = αx̃ + β ˜̃x, with
α, β ≥ 0, then s = αs̃ + β˜̃s. Because s, α, s̃, β, ˜̃s are all non-negative, the parts s̃2, ˜̃s2 must be zero. Because
nullity(A2) = 1, that would mean x̃, ˜̃x are both multiples of x. Hence, in order for x to be a non-negative
combination of columns of a minimal R of a double description pair (A,R), all of which are valid flux vectors,
x (or a multiple thereof) must appear as one of the columns in R.

Conversely, if (A,R) is a minimal double description pair, and x is a column of R (or a non-negative
multiple thereof), then by definition of minimality, x cannot be a non-negative combination of any different
valid flux vectors, which are themselves non-negative combinations of columns of R. If nullity of A2 is bigger
than one, then there is more than 1 vector satisfying the steady state condition. Suppose there were a
different vector x̃ not a multiple of x such that A2x̃ = 0. We can assume A1x̃ > 0, since we can add a
sufficiently large positive multiple of x to x̃ if necessary. Then one can find a combination ˜̃s = Ax + α̃Ax̃
such that ˜̃s2 = 0 and some element of ˜̃s1 ≥ 0 is zero. Since Ax ≥ 0 and Ax̃ ≥ 0, it must be that α̃ < 0
Hence we have that x is a non-negative combination of x̃ and ˜̃x = x + α̃x̃. Thus x could not be present in
a minimal R. Hence no such x̃ can exist, and the nullity of A2 is 1.

Proof of Theorem 2. To simplify the notation, we locally use Z as a shorthand for Z(x).
Suppose that that x is not an elementary mode. Then x is a non-negative combination of two other

different valid admissible pathways: x = α1x
(1) + α2x

(2) with α1, α2 > 0, x(1),x(2) ≥ 0. The positions of

the non-zero entries in x(1),x(2) must be subsets of the positions Z. Hence x
(1)

Z
, x

(2)

Z
must both be in the

nullspace of N∗,Z as well, and hence the right nullity of N∗,Z must be at least 2.
On the other hand, if the nullity of N∗,Z is at least 2, then x

Z
must be the linear combination of two

other vectors in the nullspace, and by adding suitable multiples of x
Z

to these other vectors, we can ensure
that these two other vectors are non-negative, and hence x

Z
is not elementary.

Let Z = Z(x) be the set of indices of the nonzero elements of an admissible flux vector x, and let x
Z

the
vector of those nonzero entries. Assume without loss of generality that all irreversible reactions are listed
before any reversible reactions. Partition

x
Z

=

[
x
Z1

x
Z2

]

where Z1 denotes the indices of all the irreversible reactions. The cardinality of Z, denoted |Z|, is the number
of non-zeros in x, often called the fill of the vector. Let N∗,Z denote the matrix of columns of N corresponding

to the non-zeros in x. This matrix is m× |Z|.
Since x

Z
consists entirely of nonzero entries, we have that x

Z1
> 0 and that N∗,Z · xZ

= 0,
If nullity(N∗,Z) = 1 then x

Z
is the only possible vector such that N∗,Z · xZ

= 0, up to scalar multiples.

If nullity(N∗,Z) > 1 then there is another non-zero |Z|-vector v, not a multiple of x
Z
, such that N∗,Z ·v = 0.

Any linear combination y = x
Z
+ cv with y1 = x

Z1
+ cv1 ≥ 0 also satisfies N∗,Z · y = 0 for any c. We choose

c 6= 0 with smallest |c| to introduce a zero element into the vector y while maintaining y1 ≥ 0. The resulting
y is an annihilating vector for N∗,Z with fewer non-zeros than x

Z
. Hence x is not “elementary” according to

Definition 1.

Proof of Theorem 5. It is assumed that the stoichiometric matrix N has columns ordered so that first
columns correspond to irreversible, and last columns correspond to reversible reactions. Idea for the proof of
this proposition is to show that the processing of all rows corresponding to irreversible reactions corresponds
to the execution of the double description method for the appropriately constructed matrix A. Suppose the
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matrix N is decomposed as N = (N1, N2) where N2 is m ×m non-singular matrix which includes all the
reversible reactions. Then N may be further decomposed to account for reversible and irreversible reactions
as N = (N1, N2,irr, N2,rev). Further, nullspace matrix of the Nullspace Algorithm is given as

X(1) =

(
Iq−m

−N−1
2 N1

)
=




I

M1

M2



 , (11)

M1 and M2 being of size (m − qrev) × (q −m) and qrev × (q −m), respectively. We will assign the initial
nullspace matrix of the Nullspace Algorithm to form the initial pair of the double description method whose
A matrix is equal to:

A =




N

−N
E



 =

(m) {

(m) {

(n−qrev)
n




︷︸︸︷
N1

(n−m) ︷ ︸︸ ︷
N2,irr

(m−qrev) ︷ ︸︸ ︷
N2,rev

qrev

−N1 −N2,irr −N2,rev

I(n−m) 0 0
0 I(m−qrev) 0


 (12)

The double description method will inspect which rows of the product AX(1) have negative values and
make combinations of the columns with positive and negative elements in the processed row to form linear
combinations and either adopt or reject them as candidates for extreme pathways. Since the aforementioned
product AX(1) is equal to:

AX(1) =




0
0

I(n−m)

M1


 , (13)

we may conclude that product AX(1) has to process submatrix M1 identical to the submatrix which will be
processed in the nullspace matrix of the nullspace algorithm, when only rows corresponding to irreversible
reactions are treated. Both algorithms will form the same set of linear combinations of columns.

Proof of Lemma 1. We show the proof as in [19] which demonstrates the existence of bijective mapping
between the set of elementary modes obtained from the original matrix N with q − qrev irreversible and
qrev reversible reactions and the reconfigured matrix N ′ with q + qrev irreversible reactions obtained by
splitting reversible reactions into two components. Let elementary mode corresponding to the original

matrix have the form x =

(
xrev

xirr

)
and those of the reconfigured matrix the form x′ =




xrevp

xirr

xrevn



. If a

function φ : Rq → Rq+qrev is defined as x′ = φ(x) = φ

(
xrev

xirr

)
=



pos(xrev)
pos(xirr)
pos(−xrev)


 and pos(x) = x+|x|

2 then

elementary modes of the original matrix may serve to construct elementary mode of the reconfigured matrix.

On the other hand, function ψ : Rq+qrev → Rq defined as x = ψ

(
xrev

xirr

)
=

(
xrevp − xrevn

xirr

)
maps every

elementary mode corresponding to the reconfigured matrix into an elementary mode of the original matrix,
unless the elementary mode of the reconfigured network is a spurious cycle.

Proof of Theorem 7. The reduced rank test depends on using the reduced row echelon form of the stoichiom-
etry matrix, which has the form Nrref =

(
N1 I

)
, and is obtained by suitable row operations on N . We

assume without loss of generality that Nrref is m× q (by removing redundant rows in advance if necessary).
The reduced row echelon, at the stage k of the Nullspace Algorithm, can be further decomposed to:

Nrref =
(
N1 I

)
=

(k) {

(m−k) {

(︷︸︸︷
P

(q−m) ︷︸︸︷
Ik

k

0
Q 0 Im−k

)
. (14)

As mentioned in remark 2 we must select all the columns of the stoichiometric matrix whose indices corre-
spond to nonzero elements among x1, . . . , xq−m+k at stage k and all the columns corresponding to indices
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q−m+ k+ 1, ...q. In the (14) this would correspond to selecting all last m− k columns which contain in its
lower part matrix Im−k. To compute the rank of the submatrix obtained in this way we have:

rank

(
P∗,Za

Ik,Zb
0

Q∗,Za
0 Im−k

)
= rank

(
P∗,Za

Ik,Zb
0

0 0 Im−k

)

= rank

(
P∗,Za

Ik,Zb
0

0 0 Im−k

)

= rank(P∗,Za
, Ik,Zb

) + rank(Im−k)
= rank(P

Zb,Za
) + rank(Ik,Zb

) + rank(Im−k)

(15)

and x is an elementary mode if
rank(P

Zb,Za
) =

∣∣Za

∣∣− 1 (16)

or expressed in terms of nullity of the matrix

nullity(P
Zb,Za

) = 1. (17)

The result from (17) shows that at kth iteration it is sufficient to check the nullity of the submatrix obtained
from matrix Nrref when columns corresponding to indices of non-zero elements in a = [x1, . . . , xq−m] and
rows corresponding to indices of zero elements in vector b = [xq−m+1, . . . , xq−m+k] are selected among the
first k rows.

Appendix B – Algorithms
Having discussed the theory relating the stoichiometry problem to the general problem of double description
pairs, we now turn to the algorithms for computing a double description pair and the related algorithms for
computing all the elementary and/or extreme pathways for a stoichiometry problem.

General Double Description Method. The algorithm to compute an R forming a Double Description
pair [DD pair] (1), starting with the matrix A, proceeds in a recursive manner. Let Ak denote the matrix
consisting of the first k rows of A, where the ordering of the rows is arbitrary. Suppose Ak, Rk form a
DD pair. The recursive process then proceeds to construct a DD pair Ak+1, Rk+1, where Ak+1 is formed
by appending the k + 1-st row of A to Ak, and Rk+1 is formed by taking all possible valid non-negative
combinations of columns of Rk. The heart of the recursive algorithm consists of specifying the details of
how Rk+1 is constructed from Rk, proving that the result indeed forms a DD pair with Ak+1, and finding a
proper way to initialize the algorithm.

Lemma 2 (DD Lemma [16]). Let Ak denote the matrix consisting of the first k rows of the d× q matrix A.
Any extreme ray with respect to Ak+1 is a non-negative combination of at most two extreme ray with respect
to Ak.

Proof (sketch). Let s be an extreme ray wrt Ak+1. If it is already an extreme ray wrt Ak, we are trivially
done. Let Z denote the indices of the zero entries in Ak+1 · s, and let Ak+1, Z, Ak, Z denote the rows of Ak+1,
Ak corresponding to these zero entries, respectively. If [A · s]k+1 6= 0 (i.e. the k + 1-st entry of A · s is not
zero), then Ak+1, Z = Ak, Z, implying s is extreme ray wrt Ak and hence we would be done. So we are left
to consider the case where [A · s]k+1 = 0, and q − 1 = rank(Ak+1, Z) > rank(Ak, Z) = q − 2. This also implies
that the k + 1-st row of A cannot be expressed as a linear combination of the rows of Ak, Z.

Since s is a valid extreme ray wrt Ak+1, we have that Ak ·s ≥ 0, and s must be a non-negative combination
of extreme ray wrt Ak: s = α1x1 + · · ·αjxj where αi > 0, xi extreme wrt Ak, for i = 1, . . . , j.

It remains to show that s is the non-negative combination of exactly 2 rays that are extreme wrt Ak.
Let Z1 denote the indices corresponding to zeros in Akx1. Then select the rows of Ak indexed by Z1 to form
Ak, Z1 . This matrix has rank q − 1 (since x1 is extreme wrt Ak).

Find the positive multiple β of x1 such that Ak · [s−βx1] has at least one more zero entry (in position ν)
compared to those of Ak · s, but maintaining Ak · [s−βx1] ≥ 0. Let Zβ denote the indices of the zero entries
in Ak · [s−βx1]. We have that Z\{k+1} ⊂ Zβ, but the index ν is in Zβ , but not in Z. Since [A · s]ν 6= 0, but
[Ak, Z · s] = 0, the ν-th row of A cannot be a linear combination of the rows of Ak, Z.
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What is rank(Ak, Zβ
)? It must be no more than q− 1 because its nullspace contains at least one non-null

vector, namely [s−βx1]. It must be at least 1 more than rank(Ak, Z) because Ak, Zβ
includes all the rows in

rank(Ak, Z) plus at least row ν not a linear combination of the rows of Ak, Z. Since this latter matrix has rank
q−2, the rank of Ak,Zβ

must be exactly q−1, and hence [s−βx1] must be an extreme ray wrt Ak. So we have
shown that s can be written as a non-negative combination of two extreme rays wrt Ak: s = βx1 + [s−βx1].

We end with the remark that if [A · x1]k+1 were 0, then so would [A · [s−βx1]]k+1, but then both x1 and
[s−βx1] would be extreme wrt Ak+1. Hence these entries cannot be zero.

Naive DD Algorithm. Suppose we have an initial DD pair (Ak0
, Rk0

), for some initial value of k0, the
DD Lemma gives a way to compute a DD pair for the entire matrix A.
For k = k0, . . . , d−1,

1. Form Ak+1 appending the k+1-st row of A to Ak.

2. For every pair of columns x1, x2 of Rk (extreme rays wrt Ak), form a non-negative combination
s = α1x1 + α2x2 such that [A · s]k+1 = 0. This is possible exactly when [A · x1]k+1 and [A · x2]k+1 are
both nonzero and have opposite signs (see remark at the end of the proof of the DD Lemma).

3. Check that s is extreme wrt Ak+1, either by checking that rank(Ak+1, Z(s)) = q− 1, or by checking that
the set of indices Z(s) (set of indices of the zero entries in Ak+1 · s) is not a subset of the corresponding
set of zero indices for any existing column of Rk. Discard any vectors s failing this test.

4. Every column x of Rk such that Ak+1x ≥ 0 is already an extreme ray wrt Ak+1. So collect all columns
x satisfying this condition, together with all vectors s found to be extreme wrt Ak+1 in the previous
step, to form Rk+1. The resulting Rk+1 forms a DD pair with Ak+1. (Actually, if any q rows of A are
linearly independent, then Ak+1x = 0 cannot occur.)

At the end of this iteration, Rd will form a DD pair wrt A. It remains to figure out how to initialize the
iteration. In the special case of (2), it is easy to construct an initial DD pair in two possible ways.

1. In the case the E block of (2) is a complete q × q identity matrix (i.e., all reactions are irreversible),
then we can select the rows corresponding to the E in (2) by using the R = Iq×q . The initial DD pair
is (E, Iq×q), and the recursive steps are used to enforce the remaining conditions Nx ≥ 0, −Nx ≥ 0.
During the recursive algorithm, we add each row of N and the same row from −N together to enforce
the condition Nx = 0 directly. The resulting algorithm is the Canonical Basis Algorithm [12].

2. We can let the initial R be a basis for the nullspace of N , such that the first q −m rows of R form an
identity matrix. This is equivalent to setting the initial Ak0

to consist of all of the N and −N parts of
(2) plus the first q −m rows of the E part. The recursive steps are used to enforce the non-negativity
conditions wrt the remaining rows of E. This initialization works even when E is not a complete
identity matrix, as long as E contains at least q −m rows from the complete identity matrix, and the
initial rank condition is still satisfied:

rank(Ak0
) = rank




N

−N
Iq−m×q−m, 0



 = rank




N1 N2

−N1 −N2

Iq−m×q−m 0



 = q.

This is equivalent to the condition that them×m submatrixN2 is non-singular. The reactions (columns
of N) may need to be permuted to meet this conditions. In terms of the stoichiometry, this works even
if there are some reversible reactions, as long as there are at most m reversible reactions, and one can
find m reactions, which must include all the reversible reactions, such that the stoichiometry wrt those
reactions is “linearly independent.” This leads to the Nullspace Algorithm [18, 19].

An overview of these two algorithms are given below.
Canonical Basis Algorithm [7]. Let the algorithm be illustrated on a simple one-metabolite example

depicted in Figure 7 with a stoichiometry matrix N = (1,−1,−1), representing a single metabolite M1 and
three reactions, R1, R2, R3. Reaction R1 produces the metabolite, while the other two consume it. We
assume only R3 is reversible.

In this algorithm, we start by enforcing the sign constraints x ≥ 0 at stages which correspond to irre-
versible reactions, and impose the constraints Nx = 0 one by one.
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Figure 7: One-metabolite example.

1. Construct an initial basis guaranteed to encompass the answer, namely the columns of I. Call the
initial basis X(1) = I, and form the initial tableau

T(1) =

(
NX(1)

X(1)

)
.

As the columns of X are combined, the columns in top part of this tableau are combined the same
way, and hence will always show NX . The goal is to find an X such that NX = 0 while maintaining
X ≥ 0.

Initialize the iteration counter k = 1. Columns of N are sorted so that columns corresponding to
irreversible reactions precede those columns corresponding to reversible reactions [12]:

T (1) =
(
N

(1)
IRREV , N

(1)
REV

)
.

In the case of the one-metabolite example, the initial tableau is

T(1) =




1 −1 −1
1 0 0
0 1 0
0 0 1




2. Columns with zero elements in kth row of the matrix T(k), are added to the empty matrix T(k+1)

In each iteration k, among the remaining columns in T(k), three cases are considered to form linear

combinations. First, all pairs of columns from column group N
(k)
REV are combined between each other

to form a linear combination which has a zero value in kth row, and such are added to N
(k+1)
REV . Second,

pair of columns from N
(k)
IRREV with elements of opposite signs in the kth row are combined to give

the column with a zero element in kth row of T(k) and such are added to the block of columns in
N

(k+1)
IRREV . Third, one column from N

(k)
REV is combined with one column from N

(k)
IRREV to form a linear

combination with a zero element in kth row, and the same is added to the N
(k+1)
IRREV part of the matrix

T (k+1). If columns i, j form one such pair, the new flux vector (lower part of tableau) will be

x̃ = αxk
i + βxk

j ,

and the upper part of the tableau will be

N x̃ = αNxk
i + βNxk

j ,

where α, β ≥ 0 are chosen so that the k-th entry in N x̃ is zero.

In the one-metabolite example, in the first and only round, the possible combinations yielding zeros in
the first entry are (where in all cases α = β = 1)

(i, j) : (1, 2) (1, 3) (2, 3)
N x̃ : 0 0 0

x̃ :




1
1
0








1
0
1








0
1
−1




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3. Check that each prospective flux vector x̃ generated in the previous step is “elementary,” either by
checking that no other flux vector has non-zero entries only in positions corresponding to the nonzeros
in x̃, or by checking the nullity condition. Eliminate all vectors that fail this test. Collect all the
remaining new flux vectors into X(k+1).

The new tableau has the final form of T(k+1) =

(
NX(k+1)

X(k+1)

)
. Note that the first k rows of NX(k+1)

are now entirely zero.

In the simple one-metabolite example no vector is eliminated this way.

4. If k < m, increment k ← k + 1 and repeat from step 2.

5. After m steps, the set of columns in the lower part of the matrix, occupying last q rows represents the
set of elementary modes.

Alternatively, the algorithm could have been executed if we split every reversible reaction into two
irreversible, expanding the size of the matrix T (k). Upon computing the set of elementary modes
according to the reconfigured approach, it would additionally require the mapping to the original set
of elementary modes using the Lemma 1.

Nullspace Algorithm [18]. Here we start with all possible vectors satisfying Nx = 0 and enforce one
by one the non-negativity constraints in iterations which correspond to irreversible reactions.

1. Start with an initial set of rate vectors which form a basis for the nullspace of N , such that as many
entries are non-negative as possible. Specifically, assume WLOG that the last m columns of N are
linearly independent (permute the columns if necessary). These last m columns must include all the
reversible reactions (if any), since we are in effect enforcing non-negativity conditions on the rates for
the first q −m reactions. Split N = (N1, N2), where N2 is m×m non-singular. Set

X(1) =

(
Iq−m

−N−1
2 N1

)
,

where Iq−m denotes a (q −m)× (q −m) identity matrix and N−1
2 is the matrix inverse of N2.

Initialize the iteration counter k = 1.

In the simple one-metabolite example, q = 3, m = 1, N1 = [1 − 1], N2 = [−1], N−1
2 = [−1] and the

initial set of vectors is

X(1) =




1 0
0 1
1 −1


 .

The goal is now to form pair-wise non-negative combinations of the columns to eliminate the negative
entries in −N−1

2 N1, the lower part of X(1). We do this row by row starting with the first row of
−N−1

2 N1, which is the q −m+ 1-th row of X(1).

2. Form non-negative combinations of all possible pairs of columns of X(k) which yield zeros in the
q −m+ k-th row of X(k). Eliminate any that fail the test of being elementary. This test may require
a scan of all the other columns to check the locations of the non-zeros, in a manner similar to the
Canonical Basis Algorithm.

In the simple one-metabolite example, the only pair of columns that can be combined to introduce
zeros in position q −m+ 1 = 3 is (1, 2), yielding

X̃ =




1
1
0



 .

This mode satisfies the “elementariness” test.
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3. If q−m+k-th reaction is irreversible reject those columns which have negative element, otherwise add
Collect all the old columns in X(k) whose q−m+ k-th entry is already non-negative, together with all
the new columns that pass the test in the previous step. These columns form X(k+1).

In the simple one-metabolite example, the first and second column from the original X(1) are carried
over, together with the new column just created. The result is

X(2) =




1 0 1
0 1 1
1 −1 0



 .

This set of three elementary modes is the final result for this simple example.

4. If k < m, increment k ← k + 1 and repeat from step 2.

5. After m iterations we obtain complete set of elementary modes.

Similar to the Canonical Basis Algorithm, the reversible reactions could be split into two irreversibles
expanding the initial nullspace matrix by qrev more columns and rows. Upon completion of the computation
of the elementary modes, the same will have to be reverted back into the original version, using the mapping
from the Lemma 1.

So we can think of this algorithm as starting with a set of valid elementary flux modes pretending that
only ρ1, . . . , ρq−m are irreversible, and imposing irreversibility on the remaining reactions ρq−m+1, . . . , ρq one
at a time. If the reactions ρq−qrev+1, . . . , ρq really are reversible, while all the earlier reactions are irreversible,
we may stop the Nullspace Algorithm at stage k = m−qrev, and we will be left with all the extreme pathways
for this Stoichiometry matrix N . Algorithms for computation of elementary modes and extreme pathways
are applied on the original matrix, since its reconfiguration would result in bigger matrix and more processing
time. However, matrix reconfiguration is used to prove that algorithm finds all the elementary modes and
extreme pathways of the metabolic network [19].

Appendix C – Examples
Example 4 (A One-Metabolite Example). Refering to the one-metabolite example used in the description
of Canonical Basis and Nullspace Algorithms the set of computed elementary modes is

X =




1 0 1
0 1 1
1 −1 0



 . (18)

Notice that the last column is the sum of the first two, so it is not an extreme pathway, but it is still
elementary according to both Definition 1 and Theorem 2.

A corresponding double description pair consists of

A =




N

−N

E


 =




1 −1 −1
−1 1 1

1 0 0
0 1 0


 , R = X.

The matrix X does not form a minimal double description pair. We find that

S = AX =




0 0 0
0 0 0
1 0 1
0 1 1




Applying the Extreme Ray Theorem 1 and taking each column in turn, we extract the rows of A corre-
sponding the zero entries in that column:

A(1) =




1 −1 −1
−1 1 1

0 1 0


 , A(2) =




1 −1 −1
−1 1 1

1 0 0


 , A(3) =

(
1 −1 −1
−1 1 1

)
.
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We notice that the ranks of these three matrices are 2, 2, 1, and the nullities are 1, 1, 2, respectively.
Hence only the first two columns satisfy the conditions to be extreme pathways and hence form a minimal

double description pair. This connection between the stoichiometry problem and the general theory of double
description pairs leads to a simple test to distinguish an extreme pathway from an elementary mode.

Example 5. Let N be the stoichiometric matrix representing a metabolic network with 3 metabolites
m1,m2,m3 and 6 reactions Ri, 1 ≤ i ≤ 6. The network has four irreversible and two reversible reactions.
The irreversible reactions are R1, R2, R3, R4, while the reversible ones are R5, R6. Initially, the columns are
ordered so that irreversible reactions precede reversible reactions in the following manner:

N =




0 0 0 −1 1 −1
1 −1 0 0 0 1
0 1 −1 1 0 0


 . (19)

The matrix columns are first ordered so that columns with more zero elements precede columns with fewer
zero elements, maintaining the precedence of irreversible to reversible reactions. This heuristic is part of the
Nullspace algorithm, and is intended to reduce the amount of elementary modes generated at intermediate
steps. After this permutation, the matrix has the form:

N ′ =




0 0 −1 0 1 −1
1 0 0 −1 0 1
0 −1 1 1 0 0


 (20)

and its reduced row echelon form is

N ′
rref =




0 −1 1 1 0 0
1 −1 0 0 1 0
1 −1 1 0 0 1


 (21)

To allow easier notation we will use N ′′ = N ′
rref in continuation of this example. The initial right nullspace

matrix for N ′′ is

X(0) =




1 0 0
0 1 0
0 0 1

0 1 −1

−1 1 0
−1 1 −1



. (22)

The nullspace algorithm finds all elementary modes in three steps, starting from the 4th row of X(0). In
the following, we illustrate the reduced rank test as applied to the Nullspace algorithm.

1. k = 4. The last two columns ofX(0) are combined to form a new candidate column
(
0 1 1 0 1 0

)T
.

The new matrix X(1) consists of the first two columns from X(0) together with the new candidate
column:

X(1) =




1 0 0
0 1 1
0 0 1
0 1 0
−1 1 1
−1 1 0




(23)

The third column in the the initial matrix X(0) was eliminated because it does not satisfy the ir-
reversibility requirement (the boxed coefficient was negative). To check that the candidate column
(mode) is elementary, we must check the rank of submatrix of N ′′ consisting of columns 2, 3, 5, 6,
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following the prescription in Theorem 2, where we include all the nonzeros among entries 1, 2, 3, 4,
and all entries among those not yet processed (entries 5, 6). Equivalently, we use extract the same
columns from the reduced row echelon form (21):

N ′′
∗,Z

=



−1 1 0 0
−1 0 1 0
−1 1 0 1


 (24)

Instead of computing the nullity of this directly, we follow Theorem 7 to form a smaller matrix as
follows. Subsets of indices which specify the submatrix are Zb=[1] and Za=[2,3], having that q=6,
m=3, a = [0, 1, 1] and b = [0]. The submatrix is found in the intersection of first row, and second and
third columns of the matrix N ′′. The last two columns of N∗,Z are derived from the “identity” block
in (21), so we add multiples of these columns to the rest of the matrix to annihilate the corresponding
row(s):

nullity(N
Zb,Za

) = nullity
(
−1 1

)
= 1, (25)

This last reduced matrix consists of the columns of N ′
rref corresponding to the nonzeros among the

first q−m entries and the rows corresponding to the zero entries among the entries q−m+ 1 through
q −m+ k of the candidate mode, according to Theorem 7.

We remark that at this stage we have processed all the rows ofX corresponding to irreversible reactions,
and hence according to Theorem 5 the matrix X(1) contains all the extreme pathways. The remaining
steps compute elementary modes which are not extreme pathways.

2. k = 5. We combine columns of X(1) to annihilate coefficients in position k = 5 to form two new
candidate columns, shown as the last two columns in X(2):

X(2) =




1 0 0 1 1
0 1 1 1 1
0 0 1 0 1
0 1 0 1 0
−1 1 1 0 0
−1 1 0 0 −1



. (26)

The first three columns of X(2) are the columns of X(1), all of which are acceptable because the
corresponding reaction (R5) is reversible.

The reduced submatrix corresponding to the last column of X(2) is constructed as in (25):

nullity




0 −1 1 0
1 −1 0 0
1 −1 1 1


 = nullity




0 −1 1 0
1 −1 0 0
0 0 0 1


 = nullity

(
0 −1 1
1 −1 0

)
= 1, (27)

We could also directly apply the result of Theorem 7 having that Zb=[1,2] and Za=[1,2,3], selecting
first two rows and first three columns of the matrix N”, to obtain the same final submatrix as above
and compute its nullity. Similar reduced matrix is formed for the next to last column of X(2). In both
cases, the nullities are equal to 1, so both columns are accepted.

3. k = 6. New candidate elementary modes are generated by combining pairs of columns (1,2) and

(2,5) in the matrix X(2). These pairs of columns give the candidate modes (1, 1, 0, 1, 0, 0)
T

and

(1, 2, 1, 1, 1, 0)T . The first candidate is rejected because it is a duplicate of the 4th mode in X(2).
The second column is discarded because the nullity of the corresponding submatrix is not 1:

nullity




0 −1 1 1 0
1 −1 0 0 1
1 −1 1 0 0


 = nullity




0 0 0 1 0
0 0 0 0 1
1 −1 1 0 0


 = nullity

(
1 −1 1

)
= 2. (28)
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Actually, this column can be discarded without carrying out the rank test because it has too many
non-zero elements so that the matrix (28) has too many columns, as discussed in 1.

The final set of obtained elementary modes is

X =




1 0 0 1 1
0 1 1 1 1
0 0 1 0 1
0 1 0 1 0
−1 1 1 0 0
−1 1 0 0 −1




(29)

of which only the first three (carried over from (23)) are extreme pathways.
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