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Abstract

Elementary mode analysis is a useful metabolic pathway analysis tool in understanding and
analyzing cellular metabolism, since elementary modes can represent metabolic pathways
with unique and minimal sets of enzyme-catalyzed reactions of a metabolic network under
steady state conditions. However, computation of the elementary modes of a genome-scale
metabolic network with 100-1000 reactions is very expensive and sometimes not feasible
with the commonly used serial Nullspace algorithm. In this work, we develop a distributed
memory parallelization of the Nullspace algorithm to handle efficiently the computation of
the elementary modes of a large metabolic network. We give an implementation in C++
language with the support of MPI library functions for the parallel communication. Our
proposed algorithm is accompanied with an analysis of the complexity and identification
of major bottlenecks during computation of all possible pathways of a large metabolic net-
work. The algorithm includes methods to achieve load balancing among the compute-nodes
and specific communication patterns to reduce the communication overhead and improve
efficiency.

Key words: biochemical network, metabolic pathway, Nullspace Algorithm, elementary
flux mode

1. Introduction

Analysis of the metabolic networks is a common practice in biotechnology and metabolic
engineering [1, 2, 3, 4]. Reconstruction of complete metabolic networks of various organisms
has allowed researchers to further concentrate on the discovery and analysis of the feasible
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metabolic pathways. The reconstructed metabolic networks of Escherichia coli [5], Saccha-
romyces cerevisiae [6, 7], Streptomyces coelicolor [8], Helicobacter pylori [9], H. influenzae
[10] and human mitochondria [11, 12] require efficient and accurate computational methods
for their analysis. By definition, a metabolic network is comprised of metabolites together
with a collection of chemical reactions which consume or produce the respective metabo-
lites. An example of the metabolic network for the central metabolism of Escherichia coli
microorganism strain is given in Figure 1. In this figure, metabolites outside the boundary
are classified as external, while those inside the boundary are internal and subject to mass
balance constraints [13, 14, 15, 16]. External metabolites can be further classified as sub-
strates (inputs such as glucose, galactose, mannose, etc.) and/or products (outputs such
as ethanol, lactic acid, or succinic acid) depending on the direction of the corresponding
reaction. Reactions which exchange between internal and external metabolites, such as the
glucose-uptake reaction GG1, are called exchange reactions or external reactions. Reactions
just between internal metabolites, such as the reaction GG2r converting glucose-6-phosphate
(G6P) into fructose-6-phosphate (F6P), are internal to the network.

A metabolic pathway contains a subset of reactions of a metabolic network which have
non-zero reaction rates (or fluxes) at a given moment, and thus constitutes a possible state
of the cellular metabolism. Feasible metabolic pathways, such as elementary flux modes [13],
have been used to describe the cell functions and capabilities such as growth and regulation
[18, 19], estimation of product yields [14], evaluation of metabolic network robustness [19]
and rational design of efficient and robust whole-cell biocatalysts [20, 17]. An elementary
flux mode is an admissible metabolic pathway which cannot be feasible if any one of its
reactions is removed or its flux is set to zero.

The remainder of this paper is organized as follows. In section 2 we give an overview of
the background and related work. We state the definition of the stoichiometry model and
its mathematical representation, define elementary flux modes and extreme pathways and
the conditions for their admissibility, and give a description of the Nullspace Algorithm, the
basis for our parallel implementation. Section 3 gives a pseudocode of the serial Nullspace
Algorithm and points out its major bottlenecks. The section also presents the computational
complexity analysis of the algorithm implementation. The Parallel Nullspace Algorithm is
given in section 4. Section 5 shows the results of implementing the algorithm on specific par-
allel architectures using the metabolic network models for E. coli and S. cerevisiae. Finally,
in section 6 we sketch some future developments and applications of the algorithm.

2. Background and related work

Since the introduction of elementary flux modes into the problem of modeling and ana-
lyzing biochemical reaction networks, two algorithms have been proposed. First, the Canon-
ical Basis Algorithm [15] was developed, followed by the more efficient Nullspace algorithm
[21, 22, 23, 24, 25, 26, 27]. Both algorithms are based on convex analysis and the Double
Description Method [28] used in the mathematical problem of enumerating the extreme rays
in a convex polyhedral cone.
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Figure 1: Metabolic network of E. Coli[17]

Here, we briefly give the outline of the theory used in the modeling of the metabolic
networks and computing the elementary flux modes.

2.1. Stoichiometry model

The stoichiometry model which describes a given metabolic network can be represented
mathematically by a stoichiometry matrix, Nm×q, with each row corresponding to one of the
m metabolites and each column corresponding to one of the q reactions. Element Ni,j of the
stoichiometry matrix, if non-zero, denotes the stoichiometric coefficient for the ith metabolite
in the equation of the jth reaction. A positive [negative] stoichiometric coefficient Ni,j denotes
the molar concentration of the i-th metabolite produced [consumed] with a unit flux for the
j-th reaction. Additionally, reactions are denoted as reversible or irreversible to reflect their
thermodynamic constraints. This property of directionality implies that the reaction may or
may not flow in both directions. Beside the metabolite connectivity imposed by the reaction
definitions, an additional requirement is given in the form of mass balance of the internal
metabolites in the metabolic network [13, 14, 15, 16]. The flux or reaction rate is the
numerical value which expresses the speed of the individual reaction. Fluxes for irreversible
reactions are constrained to be non-negative. The set of active reactions is represented by
a vector x of length q in which each entry is the flux for the corresponding reaction. By
assuming the internal metabolite concentrations remain constant at the steady state, the
mass-balance equations for all internal metabolites can be written as follows [13, 14, 15, 16]:

Nm×qx = 0 (1)
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The elements in the flux vector x whose indices correspond to active reactions have non-
zero values. In addition, if a reaction is irreversible the corresponding entry in the vector x

has a non-negative value. Since the number of metabolites is usually much smaller than that
of reactions in a metabolic network, the system of linear equations (1) is underdetermined.

2.2. Elementary flux modes and extreme pathways

If a flux vector x satisfies equation (1) plus the applicable non-negativity constraints, we
also call it an admissible [flux] mode. Of all the admissible modes, the ones of particular
interest are the elementary [flux] modes, described below.

Definition 1 (Elementary mode and extreme pathway). Let the Nm×q stoichiometry matrix
be representing m internal metabolites and q reactions connecting these metabolites. A flux
vector is a q-vector x of reaction rates. The vector x is said to be admissible if it satisfies
the following two conditions

1. pseudo steady-state: Nx = 0 . Metabolite concentrations remain constant within the
metabolic network.

2. thermodynamics: xi ≥ 0 if the ith reaction is irreversible.

An admissible vector is said to be an elementary mode, elementary flux mode, or elementary
pathway if it satisfies the above two conditions plus [13, 29, 15, 30]:

3. elementarity: there is no other vector v (v 6= x and v 6= 0) fulfilling conditions 1 and
2, such that the set of indices of the non-zero elements in v is a strictly proper subset
of set of indices of the non-zero elements in x.

A vector x is an extreme pathway if it is an elementary pathway and also satisfies the
following:

4. independence: x is said to be extreme if it cannot be written as a convex combination
of any other admissible pathways.

In [16], an extreme pathway is defined as a member of a set of elementary modes which
are obtained when the internal reversible reactions of the metabolic network are split into
pairs of irreversible reactions. However, if sufficiently many internal reversible reactions are
split, then the metabolic network will not admit a completely reversible pathway. In this
case the set of extreme pathways would coincide with the “minimal generating set” for all
admissible pathways [16, 31]. Geometrically, the set of admissible extreme pathways would
form a pointed polyhedral cone [31].

2.3. Compression of metabolic networks

Metabolic networks may be reduced in size with respect to the total number of par-
ticipating metabolites and reactions to remove redundancies and impossible combinations
[25, 32]. Among the heuristics applied in order to compress the stoichiometric model are:
detection of conservation relations, strictly detailed balanced reactions, enzyme subsets and
uniquely consumed (or produced) metabolites [29]. Some of the reduction heuristics match
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the methods for removal of redundant constraints in a linear programming problem [33]. All
the methods in this paper assume that the network has been already compressed, eliminating
all redundant constraints. The resulting stoichiometry matrix has full row rank.

To illustrate the compression on the genome-scale metabolic networks, in Table 1 we give
the original and compressed size of representative metabolic networks for several organisms.
The data was taken from the BiGG database [34].

Table 1: Compression of genome-scale metabolic networks.

organism original size (m × q(qrev)) compressed size (m × q(qrev))

E. coli iJR904 904 × 1361(674) 284 × 740(389)

E. coli iAF1260 1972 × 2980(1450) 579 × 1567(769)

S. cerevisiae iND750 1177 × 1498(778) 269 × 597(345)

M. barkeri iAF692 698 × 830(406) 140 × 300(181)

H. pylori iIT341 562 × 702(388) 100 × 236(164)

S. aureus iSB619 741 × 911(473) 162 × 368(215)

2.4. Nullspace Algorithm

The two algorithms typically used for the computation of elementary modes are the
Canonical Basis Algorithm [15] and the subsequent Nullspace Algorithm [21, 22, 23, 24,
25, 26, 27]. Both algorithms are based on convex analysis and computation of the extreme
rays of a convex polyhedral cone. The Nullspace Algorithm is more efficient for metabolic
networks and is the subject of this paper.

The Nullspace Algorithm begins by computing an initial basis for the right nullspace of
the m× q stoichiometry matrix such that the sign constraints are automatically satisfied for
the first q − m reactions. It then proceeds to form convex combination of these vectors to
impose the sign and elementarity constraints on the remaining reactions one-by-one, until a
complete set of elementary flux vectors are computed. In the following, we state some of the
basic properties of the Nullspace Algorithm.

Proposition 1. If Nm×q is a stoichiometry matrix with full row rank m, then the columns
may be permuted such that a basis for the right nullspace of N has the form

Kq×(q−m) =

[
I(q−m)×(q−m)

Rm×(q−m)

]

(2)

Proof. Apply elementary row operations (represented by the nonsingular matrix X) to the
matrix N to obtain the reduced row echelon form

Ñm×q = Xm×mNm×q =
[
−Rm×(q−m) Im×m

]
. (3)

The new matrix has the same nullspace, which has the form (2) by inspection.

For the application of Proposition 1 it is sufficient to use compression techniques from
subsection 2.3 which will reduce the original stoichiometry matrix to the one of full row
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rank, even though it may be further reduced. In addition, we will take further advantage of
the reduced row echelon form already computed to obtain the initial basis for the nullspace.
Therefore, we shall henceforth assume that the stoichiometry matrix N has been compressed,
reduced to row echelon form, and that the columns (i.e. reactions) have been permuted so
that the row echelon form has the form (3). This is equivalent to finding q − m columns
which form a (q − m) × (q − m) non-singular matrix and putting them first. We further
assume that the corresponding q − m reactions are all irreversible, otherwise we must split
sufficiently many reversible reactions into pairs of irreversible reactions to make this possible.
Many networks do not require such splitting of reversible reactions.

If Z denotes the set of indices corresponding to the nonzero entries of a given vector,
then N∗,Z will denote the submatrix of N formed by extracting the columns corresponding
to those non-zero entries. It has been shown in [23, 31] that nullity(N∗,Z) = 1 if and only
if x is elementary mode. Here nullity(A) denotes the dimension of the right nullspace of a
matrix A. During the course of the Nullspace Algorithm, we enforce the following property
on each prospective elementary vector x at each stage k so that at the end, this property
implies that x is elementary according to Definition 1.

Proposition 2. Let the Nullspace Algorithm be in its kth iteration of execution where
k = q − m + 1, . . . , q. A vector x is an elementary flux mode with respect to reactions
1, . . . , k corresponding to first k columns of matrix N iff

nullity(N∗,Zk
) = 1. (4)

where Zk is the union of the set of indices of non-zero values among first k entries of vector
x together with all indices (k + 1), . . . , q.

The property in equation (4) enforces the elementarity over the first k reactions. It will
be observed that each column of the initial basis K from equation (2) satisfies the partial
elementary property above for k = q −m. As a simple consequence of the above property, a
vector satisfying this condition cannot have more non-zero entries than one plus the number
of rows in N , leading to the following.

Proposition 3. Let x be a column-vector which is an elementary flux mode to the stoi-
chiometry matrix Nm×q i.e. Nx = 0. An upper bound on the number of non-zero elements
in the vector x is given by

|Z| ≤ m + 1, (5)

where |Z| denotes the cardinality of Z.

The upper bound stated in Proposition 3 is given for the full elementary property of
Def. 1. At the kth iteration, since the entries of a prospective vector x corresponding to
indices (k + 1), . . . , q are all considered implicitly nonzero, the number of nonzeros among
the first k entries is reduced from 1+m to 1+m− (q− k). The result leads to the following
necessary condition for elementarity that can be applied very fast.

6



Proposition 4. Let x be a column-vector in the right nullspace matrix K of the stoichiom-
etry matrix Nm×q i.e. Nx = 0. Let the first k elements of the vector x have non-negative
values in the positions corresponding to irreversible reactions, and condition (4) is satisfied.
Denote by Z1,...,k the set of indices of nonzero elements in the subvector x1,...,k. If the matrices
are in reduced row echelon form as in Proposition 1, then

|Z1,...,k| ≤ k − q + m + 1 (6)

Proof. Follows from Proposition 3.

In brief, the Nullspace algorithm is an iterative procedure which starts with a nullspace
basis as in Proposition 1. At each iteration it forms new prospective elementary modes by
pair-wise convex combinations of the partial elementary modes it has accumulated so far.
Each prospective elementary mode is tested to be elementary, first by testing the condition
of Proposition 4 and then by that of Proposition 2. The steps to execute the Nullspace
algorithm are sketched in Algorithm 1, and the way the computation is split into its essential
parts is shown in Algorithm 2.

The sketch of the Nullspace Algorithm presented omitted several improvements to the
efficiency for clarity. First, during every iteration, each new column is normalized with
respect to the 1-norm. Second, we are able to keep the matrix R(1) as a bit-valued matrix
and compress it into a matrix scaled down by a factor equal to the length of the machine
word (32 or 64 bit). Accordingly, the compressed matrix R(1) as stored in memory has the
dimension of (q/width) × nems, where width=32 or 64.

We take advantage of the special row-echelon form of N to obtain a reduced-cost rank
test, more properly called a nullity test.

Proposition 5. (Proof in Appendix) Let the Nullspace Algorithm be in its kth iteration of
execution as k ranges over q−m+1, . . . , q. Let Z1,...,q−m be the set of indices corresponding
to non-zero entries in x1,...,q−m, and let Zq−m+1,...,k be the set of indices corresponding to
zero entries in xq−m+1,...,k. A vector x is an elementary flux mode with respect to reactions
1, . . . , k corresponding to the first k columns of matrix N iff

nullity(NZq−m+1,...,k,Z1,...,q−m
) = 1. (8)

Proposition 5 gives a nullity test over a smaller submatrix and thus reduces the cost
of its computation. This reduced nullity test decreases the size of both dimensions of the
submatrix by the same value, equal to the number of non-zero entries in the sub-vector
xq−m+1,...,k.

2.5. Complexity of the Nullspace Algorithm

Enumeration of the elementary flux modes is equivalent to the problem of enumeration
of vertices in a bounded polyhedron (polytope) [35]. The complexity of this problem is still
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Algorithm 1 Nullspace Algorithm (sketch) [31].

Assume we have a stoichiometry matrix Nm×q that has full row rank m and in the form as
given in Proposition 1, compressed if needed using the methods of subsection 2.3. Further,
let qirrev and q − qirrev be the number of irreversible and reversible reactions, respectively.
The Nullspace Algorithm may be briefly sketched as follows:

1. Denote the initial right nullspace Kq×(q−m) (equation (2)) of the stoichiometry matrix
Nm×q as:

K =
(q−m)



(m)



[︷︸︸︷

R(1)

q−m

R(2)

]

=

[
I

R(2)

]

(7)

where the upper matrix of K, denoted as R(1), is an identity matrix I(q−m)×(q−m).

2. For k = (q − m), . . . , (q − 1),

(a) Generate convex combinations of all possible pairs of columns in R so as to an-
nihilate the (k + 1)th entry of the resulting column. Each combination is formed
using a column ii whose (k + 1)th entry is positive combined with a column jj
whose (k +1)th entry is negative. Following the results from [25] we may perform
the operation of bit-wise logical disjunction over the column parts belonging to
matrix R(1), while performing the algebraic convex combination over column parts
in matrix R(2).

(b) Eliminate duplicate columns among those generated from R(1) in the previous
step.

(c) Apply the rank test as given in Proposition 2 to each candidate mode, discarding
those that fail the test.

(d) Append matrix R column-wise with the newly computed elementary modes which
were accepted by the rank test in the previous step.

(e) If the (k + 1)th reaction is irreversible, discard those old columns whose (k + 1)th

entry is negative.

In the next step, the (k+1)th row (the top row of R(2)) is moved to become the bottom
row of R(1). Following [25], R(1) can be kept only as a bit mask, so the (k + 1)th row
is converted to a bit mask (a 1 bit stands for a non-zero value).

3. When the computation is complete, matrix R(1) will be of dimension q × nems, where
the nems is the total number of elementary flux mode columns, while R(2) will be
empty. It is then necessary to recalculate the numerical values. This process has linear
complexity in the number nems of elementary modes computed [25].
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an open question in computational geometry. In order to illustrate and give the intuition
to the possible hardness of the elementary mode computation it may be worth referring
to the two earlier results [35, 36]. First, it is not possible to generate in polynomial total
time all elementary flux modes that have non-zero flux for the specific reaction unless P=NP.
Second, deciding if there exists an elementary flux mode that has non-zero flux for k specified
reactions can be solved in polynomial time via a linear program if k ≤ 1, but is NP-complete
for k ≥ 2. The two results are obtained as a corollary to the problem of enumeration
of negative cycles in a weighted directed graph [37]. In these enumeration problems, it is
common to analyze the complexity as a function of the combined size of the input and the
output. In summary, it is unknown if the complexity of the problem of the enumeration
of elementary flux modes is polynomial as a function of the combined size of the metabolic
network and the final number of elementary flux modes. We do observe in practice that the
number of final elementary modes can be orders of magnitude larger than the dimensions of
the initial system, and the number of partial modes present during intermediate stages of
the algorithm can sometimes be significantly larger than the number of final modes.

3. Serial Nullspace Algorithm

The serial Nullspace Algorithm given in Algorithm 2 takes as input the compressed
stoichiometry matrix in the reduced row echelon form (Proposition 1), initial nullspace,
and the information on reaction reversibility/irreversibility. The algorithm is executed in m
iterations, each of them corresponding to one of the m reactions.

Algorithm 2 [K] = SERIAL NSP(N, K)

Input:

reduced stoichiometry matrix (Nm×q);

initial nullspace of the form Kq×(q−m) =

[
R(1)

R(2)

]

=

[
I

R(2)

]

Output:

bit-valued matrix of elementary modes Kq×nems

1: for k = q− m + 1 to q do

2: {find pairs of columns which when combined form candidate columns. Algorithm 3}
3: combinations ⇐ GENERATE CANDIDATES(K)
4: {remove duplicate columns by means of sorting. Algorithm 7}
5: combinations ⇐ RADIXSORT(R(1), combinations)
6: combinations ⇐ REMOVE DUPLICATES(R(1), combinations)
7: {accept those candidate columns which satisfy Proposition 5. Algorithm 8}
8: combinations ⇐ RANKTESTS(N, K, combinations)
9: {expand K matrix, i.e. its R(1) and R(2) submatrices. Algorithm 9}

10: K ⇐ EXPAND(K, combinations)
11: end for
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Algorithm 3 [combinations] = GENERATE CANDIDATES(K)

Input:

current nullspace matrix Kq×nems =

[
R(1)

R(2)

]

Output:

pairs of indices of columns forming candidates (combinations)

1: irrev+ ⇐ {i : R
(2)
1,i > 0 and (∃j : jth reaction is irreversible, R

(1)
j,i 6= 0)}

2: irrev- ⇐ {i : R
(2)
1,i < 0 and (∃j : jth reaction is irreversible, R

(1)
j,i 6= 0)}

3: rev ⇐ {i : R
(2)
1,i 6= 0 and (∀j : jth reaction is reversible or R

(1)
j,i = 0)}

4: {combine columns that can annihilate the element in the current row}
5: S ⇐ {(ii, jj) : (ii, jj) ∈ (irrev+ × irrev-) ∪ ((irrev+ ∪ irrev- ∪ rev) × rev)}
6: for each (ii, jj) ∈ S do

7: form candidate column from the pair of columns indexed by (ii,jj)

8: if candidate satisfies Proposition 4, add (ii,jj) to combinations

9: end for

Algorithm 2 is comprised of the generation of the candidate columns (Algorithm 3), sort-
ing (Algorithm 7) and removal of the duplicate candidate columns, numerical rank testing
(Algorithm 8) and update of the current nullspace matrix K (R(1) and R(2)) (Algorithm
9). In an effort to eliminate the duplicate bit-valued candidate columns we first sort them
according to their binary values and then use one scan to eliminate the duplicates. This op-
eration requires an efficient sorting method to reduce the cost of removing duplicate columns.
Candidate columns are sorted using a variation of radixsort algorithm [38] in order to attain
linear complexity. We give the outline of the radixsort over an array of bit-valued columns
in Algorithm 7 in B.

The idea in Algorithm 7 is to sort bit-columns by first cutting all columns horizontally
into chunks of width equal to 2d (where d = 3, 4, 5, . . . ,) and in q/2d iterations sort the
columns using the idea from the radix-sort. In every iteration, columns would be sorted
according to the value in the respective chunk. Complexity of this operation is O( q

2d · nems),
where nems is the number of candidate columns at the given iteration. With the proper
selection for width d, we may assume that the constant factor before nems is small enough
to assume linear complexity. In B we also give the pseudocode of the subroutines for rank
tests and expansion of nullspace matrix in every iteration.

3.1. Computational Complexity Analysis

Due to the unpredictable expansion of the size of elementary mode matrix during each
iteration of the computation of elementary modes, it is difficult to directly estimate the
computational cost within the bottlenecks of the algorithm. We observe from the algorithmic
structure and implementation that the three major bottlenecks are (ordered by decreasing
overall observed costs) (i) the generation of new candidate elementary mode columns, (ii)
the evaluation of the numerical rank tests, and (iii) sorting to eliminate duplicate candidate
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elementary mode columns. Thus, we may decompose the total computational cost per
iteration as T (nems) as:

T (nems) = T gencands + T rank tests + T sorting (9)

where T gencands, T rank tests, T sorting are the computational costs for generation of candidate
columns, evaluation of numerical rank test, and sorting of bit-valued candidates, respectively.
The complexity for the generation of candidate columns T gencands has an upper bound of
O(n2

ems). Sorting can be accomplished with almost linear complexity using the variation of
the radix-sort algorithm as earlier described. Elimination of the duplicate candidate columns
after sorting has linear complexity and is of negligible cost. For the rank test we used LU
decomposition with full pivoting [39]. The complexity of the single LU-based rank test is
cubic in terms of the dimensions of submatrix over which the rank is evaluated. It has
linear complexity in terms of the total number of candidate elementary mode columns. We
use the reduced rank test derived in Proposition 5 to decrease the cost of individual rank
computation. It remains to study how the numerical precision of the rank computation
would behave as the size of the initial stoichiometry problem grows, and if the more robust
singular value decomposition would be necessary.

4. Parallel Nullspace Algorithm

For the metabolic networks which after compression have the number of both metabolites
and reactions on the order of 102 − 103, the existing software is unable to complete the
computation of the elementary flux modes. Thus, we resort to the idea of parallelizing the
Nullspace Algorithm.

We assume that the algorithm is designed for a parallel environment of P compute-nodes,
where each compute-node has its own memory and executes an instance of the parallel
program. The compute-nodes exchange messages over an unspecified network architecture.
This parallel environment corresponds to a distributed memory system, though our proposed
algorithm may be easily expanded into hybrid parallel implementation with the shared-
memory paradigm. For convenience, in the sequel we will refer to compute-nodes as simply
nodes.

In Algorithm 4 we give the parallel Nullspace Algorithm with an introduction of commu-
nication in line 7. We parallelize the tasks of generating candidate columns as in Algorithm
5 and by proper load balancing attain that each participating compute-node generates ap-
proximately the same number of candidate columns.

Load balancing is needed to assure that there is no serious time discrepancy among the
compute-nodes when they perform the sorting and the evaluation of numerical rank tests.
Each compute-node generates its share of candidate elementary mode columns, and filters
those which are valid elementary modes at the given iteration according to the same criteria
as in serial Nullspace Algorithm. However, different compute-nodes may generate identical
candidate elementary mode columns, and compute-nodes will have to communicate to remove
these duplicated bit-columns. The result of communication among compute-nodes is the
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Algorithm 4 [K] = PARALLEL NSP(N, K)

Input:

reduced stoichiometry matrix (Nm×q); initial nullspace matrix Kq×(q−m) =

[
R(1)

R(2)

]

Output:

bit-valued matrix of elementary modes Kq×nems

1: for k = q− m + 1 to q do

2: combinations ⇐ GENERATE CANDIDATES PARALLEL(K)
3: combinations ⇐ RADIXSORT(R(1), combinations, width)
4: combinations ⇐ REMOVE DUPLICATES(R(1), combinations)
5: combinations ⇐ RANKTESTS(N, R(1), combinations)
6: {communicate columns and merge }
7: combinations ⇐ COMMUNICATE TREE(R(1), combinations)
8: K ⇐ EXPAND(K, combinations)
9: end for

complete set of elementary modes after processing the kth reaction. In a carefully designed
communication pattern, compute-nodes would exchange their generated elementary modes,
and each compute-node would merge the arrays of bit-columns obtained from other compute-
nodes with its local set of elementary mode columns. The disadvantage of this approach,
which we have also implemented, is in the ALL-TO-ALL merge and communication pattern.
The cost of communication among compute-nodes is negligible compared to the total cost
of the merge and elimination of duplicated elementary modes which is performed on the
compute-nodes locally. In subsection 4.2 we analyze the complexity and give an improved
communication algorithm for exchange of candidate elementary modes among compute-
nodes and efficient merge. Subroutines for sorting, elimination of duplicated candidates, and
rank tests remain unmodified from the serial Nullspace Algorithm.

4.1. Load Balancing

As shown in lines 4-5 of Algorithm 5 we partition the arrays of indices of columns of
matrix irrev- and rev among the compute-nodes evenly. However, since the R(1) bit-
matrix remains in sorted order at the beginning of each iteration, the generated candidate
elementary mode bit-columns at every compute-node may have non-uniform overall density
of non-zero entries. This imbalance would occur if we assigned to each compute-node the
contiguous range of indices from arrays irrev- and rev. If this was the case, compute-nodes
would generate the set of candidate columns of non-uniform “sparsity” and thus produce an
unequal number of candidate columns which satisfy Proposition 4. This would result in the
poor load balancing in the sections of the algorithm corresponding to the “sort & removal of
duplicated columns” and “rank tests of candidate columns”. As a solution to this problem,
we assigned to each compute-node the set of indices from both irrev- and rev which have
values congruent to the compute-node identifier modulo total number of compute-nodes P ,
as illustrated in Algorithm 5.
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Algorithm 5 [combinations] = GENERATE CANDIDATES PARALLEL(K)

Input:

current nullspace matrix Kq×nems =

[
R(1)

R(2)

]

Output:

pairs of indices of columns forming candidates (combinations)

1: irrev+ ⇐ {i : R
(2)
1,i > 0 and (∃j : jth reaction is irreversible, R

(1)
j,i 6= 0)}

2: irrev- ⇐ {i : R
(2)
1,i < 0 and (∃j : jth reaction is irreversible, R

(1)
j,i 6= 0)}

3: rev ⇐ {i : R
(2)
1,i 6= 0 and (∀j : jth reaction is reversible or R

(1)
j,i = 0)}

4: irrev p- ⇐ {i : i ∈ irrev- and i = proc id (mod P )}
5: rev p ⇐ {i : i ∈ rev and i = proc id (mod P )}
6: S ⇐ {(ii, jj) : (ii, jj) ∈ (irrev+ × irrev p-) ∪ ((irrev+ ∪ irrev p- ∪ rev p) × rev)}
7: for each (ii, jj) ∈ S do

8: form candidate column from the pair of columns indexed by (ii,jj)

9: if candidate satisfies Proposition 4 add to combinations

10: end for

The comparison between “sequential” and “interleaved” generation of candidate columns
is given in Table 2. The imbalance rate in the two sections of algorithm across P compute-
nodes is used as a measure, as given in equation (10).

ImbalanceRate(task) =
max1≤i≤P T

(i)
task

min1≤j≤P T
(i)
task

(10)

where task corresponds to the “sort & removal of duplicated columns” or “rank tests of
candidate columns”, while T

(i)
task is the time ith compute-node spent performing the task.

4.2. Computational Complexity Analysis

In order to estimate the complexity of the parallel Nullspace Algorithm, we have to
include the computational complexity term corresponding to the communication among
compute-nodes. We try to attain the load balanced situation where every compute-node
approximately generates the same number of elementary flux modes as described in subsec-
tion 4.1. Initially, we implemented the ALL-TO-ALL broadcast communication pattern in the
environment of P compute-nodes. The network parameters given are the latency ts and the

Table 2: Imbalance rate of interleaved and sequential generation of candidates.
number of compute-nodes

2 4 8 16 32

sequential
sort & removal of duplicated columns 1.91 2.55 4.75 6.49 14.57

rank tests of candidate columns 2.04 2.97 5.35 10.13 34.34

interleaved
sort & removal of duplicated columns 1.00 1.03 1.03 1.08 1.10

rank tests of candidate columns 1.02 1.02 1.04 1.07 1.12
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per-word transfer time tw [40]. The per-word transfer time is inversely proportional to the
available bandwidth between the compute-nodes. Every compute-node generates candidate
elementary modes, validates that they represent admissible elementary modes by means of
the numerical rank test, and communicates them to the other compute-nodes to eliminate the
duplicate columns and merge. The elementary mode columns sent between compute-nodes
are in sorted order, and only a proper merge subroutine is needed to eliminate duplicates.
In the ALL-TO-ALL communication, every compute-node broadcasts its local set of elemen-
tary mode columns it generated to all other compute-nodes, and each compute-node does
the same task of merging the received sorted columns and eliminates the duplicates from
it. Note that the elementary mode columns are communicated as pairs of indices of current
nullspace matrix and not as full bit-columns, for the reason of more compactness. At the
end of this communication, every compute-node will have the same result, i.e. the com-
plete nullspace matrix of the elementary flux modes at the end of current iteration of the
Nullspace Algorithm. For network architectures of ring, 2D-mesh, and hypercube the cost
of ALL-TO-ALL communication, if we assume that each compute-node has to send the mes-
sage of approximately the same size M , can be estimated [40]. In the case when very large
messages are sent over the network, what is the case in our algorithm, the cost may be
approximated as

T all−to−all
comm (M, P ) = O(twM(P − 1)), (11)

where M is the message length measured in units of pairs of indices being sent over the
network, and P is the number of participating compute-nodes. This approximation remains
the same, irrespective of the network architecture [40].

In order to sort the received messages, each compute-node has to merge P − 1 received
messages. In each merge, duplicates are being eliminated. Let tc be the per unit of operation
cost in the merge procedure. The computational cost of a single merge of two sorted arrays
of length len1 and len2, is equal to tc(len1 + len2). We can only give an upper bound on the
complexity of this merge task at a single compute-node, as follows:

T all−to−all
merge (M, P ) = tc2M + tc3M+, . . . , +tc(P − 1)M = tc((P − 1)P/2 − 1)M = O(P 2M).

(12)
We notice in the case of good load balancing, the product PM remains the same for the given
kth iteration as the number of compute-nodes P grows. Accordingly, we note that while the
cost of communication will remain the same, the cost of merging the received messages will
grow with P . Therefore, this would require the re-design of the communication and merge
pattern.

We may reduce the cost of merging the received messages with an alternative commu-
nication and merge pattern which corresponds to the hypercube communication. It may
be illustrated with a TREE-LIKE communication and merge, as a complete binary tree of
height log P and P leaf nodes, where P corresponds to the total number of compute-nodes.
The complete binary tree nodes at each level of the tree correspond to those compute-nodes
which are being used in the current iteration. We may equally use the term hypercube or
tree since the tree may be embedded in a log P -dimensional hypercube almost symmetrically
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[40]. For convenience we will refer to the TREE-LIKE communication and merge in the rest of
this paper. In the first phase, there will be log P iterations of unidirectional point-to-point
communication among pairs of compute-nodes on the same level of the tree. At the kth

iteration (k ∈ {1, . . . , log P}), each compute-node i such that i = 0 (mod 2k) will receive
the message from compute-node j = i + 2k−1. Approximately, the size of the message sent
will be of length 2k−1M . The cost of each iteration has an upper bound equal to the value
of merging two messages of length 2k−1M , i.e. tc2

kM . At the end of the first phase, the
resulting nullspace matrix will be contained in compute-node 0. We assume that the num-
ber of compute-nodes P is a power of two, in order to maintain a complete binary tree.
Accordingly, we assume that due to proper load balancing, prior to communication each
compute-node has precomputed approximately M elementary mode columns and needs to
distribute them to other compute-nodes for merge and elimination of duplicates. The cost
of this merge operation may be expressed as:

T tree−like
merge (M, P ) = tc(2M) + tc(2

2M)+, . . . , +tc(2
kM)

= tc(2(2k − 1)M) = tc(2(P − 1)M) = O(PM)
(13)

Hence, when compared to the result in equation (12), the cost of merging given in equation
(13) is reduced by the factor of P . Since the product PM is constant as P scales, the cost
of merge will remain constant as well for the particular iteration of the algorithm.

Algorithm 6 [combinations] = COMMUNICATE TREE(K, combinations)

Input:

current nullspace matrix Kq×nems =

[
R(1)

R(2)

]

;

local set of pairs of column indices which generate new candidates (combinations)
Output:

merged set of column-generating pairs of indices (combinations)

1: proc id ⇐ identifier of the local compute-node

2: for i = 1 to log P do

3: if proc id = 0 (mod 2i) then

4: receive columns from compute-node proc id + 2i−1

5: merge the local set of columns with the received columns

6: else

7: send columns to compute-node proc id− 2i−1

8: end if

9: end for

10: if proc id = 0 then

11: broadcast the columns to all other compute-nodes

12: end if

Apart from estimating the cost of merge, we estimate the cost of TREE-LIKE communi-
cation across the network. In every kth iteration the cost of exchanging a message of size
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2k−1M between two compute-nodes is equal to ts + tw2k−1M [40]. The cost of ONE-TO-ALL
broadcast from the compute-node 0 after all data is merged is equal to (ts + twPM) log P ,
and thus the total communication cost may be estimated as:

T tree−like
comm (M, P ) =

(
∑log P

k=1 ts + tw2k−1M
)

+ (ts + twPM log P )

= ts log P + twM(2log P − 1) + ts + twMP log P
= ts(log P + 1) + tw(M(2log P − 1) + MP log P )
= ts(log P + 1) + tw(M(P − 1) + MP log P )
= tw(MP log P ) + O(twMP )

(14)

The last approximation follows from the assumption that start up time is much smaller than
the per-word transfer time [40]. Accordingly, we conclude that the communication cost will
grow with a factor of log P , unlike in (11) where it remains unchanged.

However, the cost estimates just given are upper bounds. The final set of merged columns
which are broadcasted from compute-node 0 may be significantly smaller, because a large
share of duplicated elementary mode columns are eliminated before the broadcast. In the
experimental results on the computing platforms which were used to test the software, the
communication time was negligible compared to the total time required to merge and elim-
inate duplicates at each compute-node, as will be shown later.

5. Experimental evaluation

5.1. Experimental setup

We present the computational times obtained with both the serial and parallel Nullspace
Algorithm. We plot the runtime over five similar, but distinct models of the metabolic
networks of the central metabolism of Escherichia coli using our serial implementation,
METATOOL v5.1 [29, 21] and EFMTools [27]. Further, we time the results for the same
set of models for our parallel implementation and observe the scalability as the number of
compute-nodes grows. For both serial and parallel implementation we use the Template
Numerical Toolkit [41] from the National Institute of Technology and the C++ library of
linear algebra functions adapted from the Java Matrix Library [42] developed by Mathworks
and NIST.

We time the results of our parallel program on two distinct computing platforms: “Cal-
houn” of the Minnesota Supercomputing Institute and Blue Gene/P of IBM. In the following
discussion, we use the terms compute node, processor and core, to describe the hardware
of the computing platforms. Note that compute-node as used in the section 4 refers to the
abstract node which executes one instance of the parallel program in the message-passing
distributed memory communication environment.

The parallel program was compiled with Intel C++ compiler and OpenMPI on “Cal-
houn” platform. “Calhoun” has 512 Intel Xeon 5355 (Clovertown) class multi-chip modules
(MCMs). Each MCM is composed of two dies. These dies are two separate pieces of silicon
connected to each other and arranged on a single module. Each die has two processor cores
that share a 4 MB L2 cache. Each MCM communicates with the main memory in the system
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via a 1,333 MHz front-side bus (FSB). “Calhoun” is configured to have 256 compute nodes,
2 interactive nodes, 5 server nodes, total of 2048 cores, 4TB total main memory. Each node
within the system has two quad-core 2.66 GHz Intel Xeon (Clovertown) - class processors and
16GB memory running at 1,333 MHz. All of the systems within Calhoun are interconnected
with a 20-gigabit non-blocking InfiniBand fabric used for interprocess communication (IPC).
The InfiniBand fabric is a high-bandwidth, low-latency network, the intent of which is to ac-
commodate high-speed communication for large MPI jobs. The nodes are also interconnected
with two 1-gigabit ethernet networks for administration and file access, respectively.

The architecture of Blue Gene/P has been described elsewhere [43], but it is important
to provide a brief overview of the components of Blue Gene/P to understand the results
presented here. The smallest component in the system is the chip. Single chip has a PowerPC
450 quad-core processor. Each processor core runs at a frequency of 850 MHz, and each
processor core can perform four floating-point operations per cycle, giving a theoretical peak
performance of 13.6 gigaFLOPS/chip. The chip is soldered to a small processor card, one
per card, together with 2GB DRAM memory to create the compute card.

The I/O card is the next building block. This card is physically very similar to the
compute card. However, the I/O card has the integrated Ethernet enabled for communication
with the outside world. The I/O cards and the compute cards form a so-called node card.
The node card has 2 rows of 16 compute cards and 0-2 I/O nodes depending on the I/O
configuration. Further, a midplane has 16 node cards. A rack holds 2 midplanes, for a
total of 32 node cards or 1024 compute cards. A full petaflop system contains 72 racks.
Finally, the compute-nodes may be configured at boot time to operate in one of three modes:
a) symmetric multi-processing mode b) virtual node mode and c) dual mode. Symmetric-
multiprocessing mode runs the main process on one processor and can spawn up to 3 threads
on remaining processors. In dual mode CPUs with rank 0 and 2 run a main program process,
and each can spawn an additional thread. Virtual node mode runs the program on all four
processors, without additional threading.

5.2. Serial program

Results of the execution of the three distinct implementations over different metabolic
networks are shown in Table 3. As pointed out earlier [25] and in section 2.3, the compression
of the stoichiometric matrix is very important in reducing the computational cost. We present
the results over five models of central metabolism of E. coli for METATOOL, our implemen-
tation, and EFMTools. EFMTools and our implementation perform the identical iterative
compression procedure of the given metabolic network, while METATOOL does not. A ma-
jor bottleneck is in the generation of candidate elementary modes described in Algorithms 3
and 5, followed to smaller extent by the evaluation of numerical rank tests and sorting, respec-
tively. The serial program was timed on Intel Pentium D CPU 3GHz, dual-core, 2GB main
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memory.
Table 3: Results for serial Nullspace Algorithm

original network1 compressed network2 Time (sec)
METATOOL 5.1 NSP impl. EFMTools #EFM

E. coli 47 × 59(21) 26 × 38(13) 13 3.16 3.91 44,354
E. coli 41 × 61(19) 26 × 40(12) 16 2.65 4.89 38,002
E. coli 49 × 64(19) 26 × 41(12) 73 11.64 14.36 92,594
E. coli 50 × 66(19) 27 × 43(13) 195 39.51 49.04 188,729
E. coli 50 × 66(28) 29 × 45(19) NC3 1372.77 929.94 1,224,785
1 dimensions of stoichiometry matrix; number of reversible reactions given in parentheses
2 dimensions of the compressed metabolic network

3 NC (computation did not complete)

5.3. Parallel program

We give the results for the parallel implementation over the same set of the metabolic
network models as for the serial implementation. We also include the timing results for the
S. cerevisiae metabolic network, due to its higher computational cost. With the ALL-TO-ALL
communication and merge implemented we have seen the increase in the cost of merge
proportional to the increase of the number of participating processors P , as is demonstrated
in figure 2(a) and 2(b) for the two metabolic network models of E. coli having 59 and 61
reactions, respectively. When we replace the ALL-TO-ALL communication and merge pattern
with the TREE-LIKE communication and merge, we observe the reduced cost of merging local
and remote columns in figures 2(c) and 2(d).

Table 4: Parallel Nullspace Algorithm on Blue Gene/P machine for S. cerevisiae metabolic network.

Time (sec)
#EM

32p 64p 128p 256p 512p

S. cerevisiae

original gen. cand. 19,644.09 9,870.03 4,958.74 2,500.09 1281.13 13,322,495
62 × 80(31) sorting 45.09 24.97 15.17 9.96 6.53
compressed rank tests 2,169.65 1,244.22 726.45 435.44 299.25
38 × 58(20) comm 1.22 1.22 1.24 1.26 1.28

merge 80.03 86.09 90.05 95.88 100.59
total 22,153.23 11,414.66 5,952.08 3,203.84 1847.72

relative CPU 1.0 1.030 1.075 1.157 1.335
power ratio1

1 relative CPU power ratio = (number of processors× total time) / (32 × total time on 32 proc)

This is consistent with our theoretical prediction that the TREE-LIKE communication and
merge pattern reduces the overhead. For the three remaining variations of the metabolic net-
works of the central metabolism of E. coli, differing by the number of reactions, metabolites
and reversible reactions, we present the timing results obtained on afore mentioned Intel
Xeon (Clovertown) and Blue Gene/P computing platforms in the tables 5 and 6. Both ta-
bles contain the results for the more efficient TREE-LIKE communication and merge pattern.
Within the tables, the metabolic networks are annotated with the size of their original and
compressed stoichiometry network accompanied with the number of reversible reactions (in
the parentheses), since the core Nullspace Algorithm accepts the compressed stoichiometric
network as input. In addition to the E. coli models, we present in the Table 4 the results of
the metabolic network obtained for the S. cerevisiae strain, which contains 62 metabolites
and 80 reactions, of which 31 reactions are reversible. Figure 2(e) gives the diagram for the
parallel program over the E. coli 50×66(28) network, while the figure 2(f) gives the simi-
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lar diagram for the computation given in Table 4 corresponding to S. cerevisiae 62×80(31)
metabolic network, computed using the Blue Gene/P parallel platform.

From the experiments using the proposed parallel Nullspace Algorithm we see that the
rank tests may not scale as well as the remaining portions. The reason is that all compute-
nodes at the given iteration evaluate the rank tests on approximately similar number of
candidate columns. However, some compute-nodes may be evaluating the rank tests on
submatrices of different sizes which depends on the number and position of non-zero elements
in the candidate column.

5.4. Other parallelizations of elementary mode computation

In [44, 45] parallelizations of the older Canonical Basis Algorithm was proposed for
computation of extreme pathways. The parallel approach in [44] is not specific with respect to
the attained load balancing and relies on a custom based API for socket coomunication rather
than standard message-passing interface (MPI). In addition to using the older Canonical
Basis Algorithm, both approaches relied on a combinatorial search of the candidate matrix
rather than the algebraic rank test as in our approach, which has proved to be more efficient
[25].

In [39], an alternative way of parallelizing the Nullspace Algorithm is proposed in the
form of using the divide-and-conquer approach to split the set of all elementary flux modes
into disjoint subsets across a subset of reactions. The “divide” part of divide-and-conquer
was still carried out manually but the method shows enough promise that we foresee its
future use and incorporation within our algorithm and software. There are two issues to be
addressed in the divide-and-conquer approach. First, it is unclear how to select the optimal
subset of reactions that would lead to the good load balancing during parallel computation.
Second, it is not known how to ensure that the total number of intermediate candidate
elementary modes decreases as the problem is divided up, something of critical importance
since this is the major time and memory bottleneck of the Nullspace Algorithm.

Recently, the EFMTools software for the computation of elementary flux modes came
out with a shared-memory parallelization. The shared-memory parallelization was proposed
in [27], where multiple threads may search the same data structure to generate candidate
elementary flux modes. However, the use of this approach has its limits imposed by the
available number of processor cores (threads) and the contention during shared memory
access. The distributed-memory approach we propose here is complementary to the shared-
memory parallelization implemented in EFMTools.

An out-of-core computation model is proposed in [44, 27], and in future we will incorpo-
rate it in our software. The out-of-core feature may reduce the memory requirements during
the computation of elementary flux modes, but at additional time expense.

6. Discussion and Conclusions

The core of this work has been to develop an efficient and scalable distributed mem-
ory parallel Nullspace Algorithm for the computation of minimal metabolic pathways in
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metabolic networks, the so-called elementary flux modes, and expose and remove the major
bottlenecks.

We implemented the serial and parallel version of the Nullspace Algorithm based on the
algebraic rank test. The parallel algorithm and its implementation are based on the heuristic
which attains good load balancing and good scalability, across the metabolic network of
different dimensions. Algorithm implementation was tested on the Blue Gene/P and Intel
Xeon (Clovertown) parallel platforms, attaining the computation of more than 13 million
elementary flux modes. For the future work and research, we intend to address several issues.
First, we will improve the data structure and algorithm for the generation of candidate
elementary modes for the purpose of improving the cache performance and memory locality.
Second, we intend to address the issue of numerical error present in the evaluation of algebraic
rank test by means of matrix decompositions. The error occurs due to the nature of floating
point operations in larger problems, and we may address this issue using exact modular
arithmetic as it was already proposed in [27]. Third, we will incorporate the shared-memory
parallel paradigm to work with the current distributed-memory parallelization which was
implemented by means of MPI. Fourth, we intend to work out the alternative divide-and-
conquer approach towards solving the problem of computing elementary flux modes. Finally,
we would incorporate the optional out-of-core computation into the current implementation
to reduce the memory requirements inherent when the software is used over large metabolic
networks.
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A. Proofs

Proof of Algorithm 5. The reduced rank test is derived from the reduced row echelon form
of the compressed stoichiometry matrix as is obtained in Proposition 1, which has the form
ÑT =

(
N1 I

)
. We assume without loss of generality that N = ÑT is m × q (by removing

redundant rows in advance if necessary) matrix. At the stage k of the Nullspace Algorithm,
matrix N can be further decomposed to:

N =
(
N1 I

)
=

(k−(q−m)) {

(q−k) {

(
︷︸︸︷

P

(q−m)
︷ ︸︸ ︷

Ik−(q−m)

k−(q−m)

0
Q 0 Iq−k

)

. (15)

As stated in Proposition 2 we must select all the columns of the stoichiometric matrix whose
indices correspond to nonzero elements among x1, . . . , xk at stage k and the first k− (q−m)
rows. According to Proposition 2 we would have that:

rank
(
P∗,Z1...q−m

Ik−(q−m),Zq−m+1...k

)
=

∣
∣Z1...q−m

∣
∣+
∣
∣Zq−m+1...k

∣
∣− 1 (16)

To compute the rank of the submatrix obtained in this way we have:

rank
(
P∗,Z1...q−m

Ik,Zq−m+1...k

)
= rank(PZq−m+1...k,Z1...q−m

) + rank(Ik,Zq−m+1...k
)

= rank(PZq−m+1...k,Z1...q−m
) +

∣
∣Zq−m+1...k

∣
∣

(17)

and from (16) and (17) we have that

rank(PZq−m+1...k,Z1...q−m
) =

∣
∣Z1...q−m

∣
∣− 1 (18)

or expressed in terms of nullity of the matrix

nullity(PZq−m+1...k,Z1...q−m
) = 1. (19)
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B. Algorithms

Algorithm 7 [combinations] = RADIXSORT(R(1), combinations, width)

Input:

R(1) - bit pattern matrix used to generate new candidates
combinations - pairs of column indices which generate new candidates
width - width of the sequence of bits over which elementary radix sort is performed

Output:

combinations - reordered pairs of indices so that corresponding columns are sorted

1: r ⇐ size(R(1), 1)
2: col length ⇐ number of machine words in r bits

3: for i = 1 to col length do

4: factor ⇐ r

width
{number of sequences of length width in current word}

5: for j = 1 to factor do

6: counting ⇐ zeros(1, 2width)
7: for k = 1 to length(combinations) do

8: (ii, jj) ⇐ combinationsk

9: aa ⇐ R
(1)
∗,ii or R

(1)
∗,jj

10: aa ⇐ (aa shl j · width) and (2width − 1)
11: countingaa ⇐ countingaa + 1

12: end for

13: for k = 1 to 2width do

14: countingk ⇐ countingk + countingk−1

15: end for

16: for k = length(combinations) downto 1 do

17: (ii, jj) ⇐ combinations(k)

18: aa ⇐ R
(1)
∗,ii or R

(1)
∗,jj

19: aa ⇐ (aa shl j · width) and 2width − 1

20: combinations sorted[countingaa − 1] ⇐ combinationsk
21: countingaa ⇐ countingaa − 1

22: end for

23: combinations ⇐ combinations sorted

24: end for

25: end for
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Algorithm 8 [combinations] = RANKTESTS(N, K, combinations)

Input:

reduced stoichiometry matrix Nm×q; current nullspace matrix Kq×(q−m) =

[
R(1)

R(2)

]

; array of

pairs of column-generating indices (combinations)
Output:

array column-generating pairs valid elementary modes (combinations)

1: k ⇐ size(R(1), 1)
2: for each (ii, jj) ∈ combinations do

3: x1×k ⇐ R
(1)
∗,ii or R

(1)
∗,jj

4: aa ⇐ indices of non-zero entries in x1...q−m

5: bb ⇐ indices of zero entries in xq−m+1...k

6: {if Proposition 5 is not satisfied reject candidate }
7: if NULLITY(Nbb,aa) 6= 1 then

8: combinations ⇐ combinations \ (ii, jj)
9: end if

10: end for

Algorithm 9 [K]=EXPAND(K,combinations)

Input:

current nullspace matrix Kq×(q−m) =

[
R(1)

R(2)

]

; array of column-generating pairs of indices

(combinations)
Output:

updated matrix K

1: k ⇐ size(R(1), 1)
2: eps ⇐ 10−10

3: for each (ii, jj) ∈ combinations do

4: xk×1 ⇐ R
(1)
∗,ii or R

(1)
∗,jj

5: y(q−r)×1 ⇐ linear combination of R
(2)
∗,ii and R

(2)
∗,jj so that y1 = 0

6: {for simplicity we omit the check if improperly adopted tolerance assigns zero value
erroneously}

7: y(fabs(y) < eps) ⇐ 0

8: y ⇐ y/‖y‖1
9: R(1) ⇐ [R(1) x]

10: R(2) ⇐ [R(2) y]
11: end for

12: if kth reaction is irreversible then

13: delete from K columns with negative elements in current row

14: end if
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C. Figures
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(b) E. coli 41×61 (19 rev.)
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Figure 2: Parallel Nullspace Algorithm (a), (b) ALL-TO-ALL, (c), (d),(e), (f) TREE-LIKE communication
and merge pattern. Subfigures (a)-(f) are results of computation on Blue Gene/P parallel platform.
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D. Tables

Table 5: Results for parallel Nullspace Algorithm on Intel Xeon (Clovertown) machine for E. coli metabolic
networks.

Time (sec)
#EM

1p 2p 4p 8p 16p 32p 64p 128p

E. coli

original gen. cand. 13.45 7.12 3.73 1.92 1.28 1.21 1.17 0.81 92,594
49 × 64(19)1 sorting 0.84 0.42 0.33 0.10 0.05 0.05 0.02 0.01
compressed rank tests 2.55 1.98 1.35 0.89 0.55 0.39 0.30 0.10
26 × 41(12)2 comm 0.00 0.01 0.01 0.01 0.01 0.02 0.04 0.08

merge 0.00 0.02 0.05 0.05 0.05 0.06 0.06 0.07
total 17.10 9.72 5.65 3.09 2.16 2.01 1.92 1.39

E. coli

original gen. cand. 46.99 23.86 11.95 6.39 3.73 2.37 1.32 0.73 188,729
50 × 66(19) sorting 2.94 1.48 0.82 0.55 0.27 0.11 0.06 0.03
compressed rank tests 8.15 6.27 4.27 2.74 1.54 0.90 0.69 0.47
27 × 43(13) comm 0.00 0.01 0.02 0.05 0.05 0.06 0.06 0.08

merge 0.00 0.05 0.08 0.09 0.10 0.11 0.11 0.12
total 58.90 32.35 17.71 10.31 6.57 3.91 2.31 1.63

E. coli

original gen. cand 2189.32 1077.90 538.30 268.93 135.53 67.48 37.35 21.25 1,224,785
50 × 66(28) sorting 84.58 26.60 14.07 10.84 5.55 1.99 1.35 1.32
compressed rank tests 91.60 70.40 48.58 30.57 17.89 10.06 5.27 2.85
29 × 45(19) comm 0. 0.06 0.14 0.3 0.27 0.28 0.31 0.4

merge 0. 0.80 1.26 1.42 1.47 1.56 1.67 1.79
total 2381.49 1185.06 609.42 318.80 166.29 86.30 50.97 36.16

1 dimensions of stoichiometry matrix of the metabolic network; number of reversible reactions given in parentheses

2 dimensions of stoichiometry matrix of the reduced metabolic network

Table 6: Results for parallel Nullspace Algorithm on Blue Gene/P for E. coli metabolic networks.
Time (sec)

#EM
1p 2p 4p 8p 16p 32p 64p 128p

E. coli

original gen. cand 33.89 17.03 8.60 4.39 2.31 1.34 0.81 0.55 92,594
49 × 64(19) sorting 2.04 1.06 0.56 0.30 0.17 0.10 0.07 0.04
compressed rank tests 16.39 12.65 8.65 5.56 3.24 1.91 1.05 0.50
26 × 41(12) comm 0.00 0.01 0.01 0.01 0.01 0.02 0.04 0.05

merge 0.00 0.19 0.31 0.39 0.44 0.48 0.50 0.52
total 53.77 31.92 18.87 11.37 6.93 4.53 3.21 2.50

E. coli

original gen. cand 117.46 58.85 29.52 14.86 7.55 3.97 2.14 1.24 188,729
50 × 66(19) sorting 7.24 3.67 1.89 0.97 0.50 0.27 0.15 0.9
compressed rank tests 51.81 39.50 27.13 17.01 9.81 5.60 2.93 1.41
27 × 43(13) comm 0.00 0.01 0.02 0.02 0.02 0.02 0.04 0.04

merge 0.00 0.37 0.57 0.71 0.79 0.85 0.87 0.92
total 180.92 105.95 62.17 35.98 20.96 12.51 7.91 5.59

E. coli

original gen. cand 6599.20 3319.78 1672.14 840.44 424.64 215.29 109.75 56.47 1,224,785
50 × 66(28) sorting 10.38 8.61 5.90 3.78 2.25 1.29 0.73 0.40
compressed rank tests 552.02 425.86 296.53 189.23 108.91 61.12 31.30 16.89
29 × 45(19) comm 0.0 0.10 0.20 0.43 1.03 1.14 0.93 0.95

merge 0.0 3.81 5.89 6.95 7.25 7.87 8.40 9.05
total 7174.93 3776.32 1999.33 1062.70 567.08 307.20 173.04 103.76

‘

A-5


