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ABSTRACT
We consider the problem of finding a suitable common low dimen-
sional subspace for accurately representing a given set of covari-
ance matrices. With one covariance matrix, this is principal com-
ponent analysis (PCA). For multiple covariance matrices, we term
the problem Common Component Analysis (CCA). While CCA can
be posed as a tensor decomposition problem, standard approaches
to tensor decompositions have two critical issues: (i) tensor decom-
position methods are iterative and rely on the initialization; (ii) for a
given level of approximation error, it is difficult to choose a suitable
low dimensionality. In this paper, we present a detailed analysis of
CCA that yields an effective initialization and iterative algorithms
for the problem. The proposed methodology has provable approx-
imation guarantees w.r.t. the global maximum and also allows one
to choose the dimensionality for a given level of approximation er-
ror. We also establish conditions under which the methodology will
achieve the global maximum. We illustrate the effectiveness of the
proposed method through extensive experiments on synthetic data
as well as on two real stock market datasets, where major financial
events can be visualized in low dimensions.
Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications – Data mining
General Terms: Algorithms
Keywords: PCA, Dimensionality Reduction, Tensor Decomposi-
tions, PARAFAC, TUCKER

1. INTRODUCTION
In recent years, simultaneous analysis of multiple high dimen-

sional covariance matrices is becoming increasingly important in
diverse application domains ranging from finance to climate and
environmental sciences [30, 31, 32, 11, 34]. The traditional ap-
proach for finding an accurate low-dimensional approximation to
a high-dimensional covariance matrix is principal component anal-
ysis (PCA) [14, 4]. In particular, PCA finds an orthogonal pro-
jection of a single covariance matrix to a low-dimensional space
while preserving as much of the “energy” or variance as possible.
The problem can be solved by performing the eigenvalue decompo-
sition (EVD) on the single covariance matrix under consideration.
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Given multiple covariance matrices, we consider the problem
of finding a suitable common low-dimensional subspace for accu-
rately representing all the covariance matrices. We term the prob-
lem Common Component Analysis (CCA). PCA is not suitable for
finding such a subspace for multiple covariance matrices, partic-
ularly if the covariance matrices span different subspaces. Exam-
ples include stock market data where financial shocks and volatility
arise from different sources, and yield stock return covariance ma-
trices in different subspaces. The low-dimensional covariance rep-
resentation of the high-dimensional covariance matrices can take
two possible forms: diagonal or full. Existing models where diago-
nal low rank matrices are considered, such as PARAFAC/ CANDE-
COMP [16, 17, 24, 22] and common principal components (CPC)
[12, 13], do not allow interactions among low-dimensional com-
ponents and essentially assume that underlying factors are uncor-
related. Moreover, multiple matrices can be simultaneously diago-
nalized with an orthogonal transformation if and only if they com-
mute [19], which need not be true in general. Consequently, in this
paper, we consider the case where the low-dimensional covariance
matrices are full matrices. Such decompositions have been widely
studied under different names, such as the Tucker2 model [35, 16,
24, 25, 22], tensor PCA [6], 2DSVD [9], GLRAM [37], and ten-
sor decompositions [21, 22, 26, 33]. Variance correlation [11] and
Cholesky decomposition [3, 31] have also been used to simultane-
ously model multiple covariance matrices in low dimensions.

While CCA can be posed as a tensor decomposition problem,
unlike PCA, standard approaches to tensor decompositions have
two critical issues: (i) tensor decomposition methods are iterative
and rely on the initialization; (ii) for a given level of approximation
error, efficiently choosing a suitable low dimensionality is difficult
in general. In this paper, we present a detailed analysis that alle-
viates the two issues in the context of CCA. We start by showing
that our problem is equivalent to maximizing (not minimizing) a
convex function over a compact but non-convex set. As a result,
finding the global maximum is difficult in general. With an anal-
ysis using a simpler variant of CCA, we derive lower and upper
bounds for the CCA objective for any orthonormal matrix. The
bounds naturally lead to corresponding lower and upper bounds for
the global maximum of CCA. We also give sufficient conditions
under which the global maximum will be achieved. In [9], similar
bounds were established for a local maximum of a related problem,
but the closeness of the bounds w.r.t. the global maximum was not
explicitly investigated. Using our bounds, an effective initialization
is proposed. It has been observed that a similar initialization often
leads to the global maximum [37, 9], particularly for rank-1 ap-
proximations [27, 20]. Our analysis shows that instead of starting
with a given low dimensionality, one can start with an approxima-
tion error bound, and appropriately choose a sufficient dimension-



ality for CCA satisfying the given error bound. We present two al-
gorithms to iteratively improve the objective for CCA starting from
the proposed initialization. One algorithm adopts an existing idea
from tensor decompositions [24, 25, 6, 9, 37]. In each iteration,
the update in the standard tensor decomposition algorithm requires
computing the EVD of an n×n matrix, where n is the dimensional-
ity of the observed high-dimensional covariance matrices. We also
propose a novel algorithm based on an auxiliary function [28, 29].
In each iteration, the update in the novel algorithm only requires
performing the singular value decomposition (SVD) of an r × n
matrix, where r is the dimensionality of the latent low-dimensional
covariance matrices. When r ¿ n, the auxiliary-function-based
algorithm is substantially more efficient than the standard tensor
decomposition algorithm.

The remainder of this paper is organized as follows. We formu-
late the common component analysis (CCA) problem in Section 2.
In Section 3, we analyze the problem, establish lower and upper
bounds for the global maximum, introduce the initialization and its
optimality properties, establish sufficient conditions under which
the global maximum will be achieved, and also discuss the connec-
tions to related work. In Section 4, we present two algorithms for
CCA given a suitable initialization, which can work with a given
dimensionality or a given approximation error bound. We report
experimental results on synthetic data as well as two stock mar-
ket datasets to illustrate the performance of the proposed ideas in
Section 5, and conclude in Section 6.

Notation: Matrices are denoted by uppercase bold letters, e.g.,
X,U, etc. The diagonal entries in a diagonal matrix are generally
assumed to be in non-decreasing order, especially if arising from
the EVD or SVD. Ir (with r an integer) denotes a r × r identity
matrix.

2. PROBLEM FORMULATION
Assume we have a set of high-dimensional covariance matrices

Xt ∈ Rn×n, 1 ≤ t ≤ T . The key hypothesis driving our analysis
is that the high-dimensional covariance matrices are indeed linearly
transformed versions of a set of low-dimensional covariance matri-
ces Yt ∈ Rr×r, 1 ≤ t ≤ T . While the linear transformation
U ∈ Rn×r as well as the low-dimensional covariance matrices
Yt, 1 ≤ t ≤ T , are unknown, each Xt is assumed to be well
approximated by UYtU

T . In particular,

Xt = UYtU
T + Et , (1)

where Et is the residual matrix. Without loss of generality, U is
assumed to be orthonormal, i.e., UT U = Ir . The goal is to find U
and Yt, 1 ≤ t ≤ T such that the sum of squares of the Frobenius
norms of all the residual matrices is minimized. The problem can
be formally stated as follows:

min
U,Yt

UT U=Ir

T
X

t=1

‖Xt − UYtU
T ‖2

F . (2)

Since U determines a common subspace for all the covariance ma-
trices, we call the above formulation Common Component Analysis
(CCA). There are several appealing properties for the choices of or-
thonormal matrix U and non-diagonal matrix Yt. First, since U
is orthonormal, the formulation allows one to visualize covariance
matrices in the low-dimensional subspaces (see Figure 4 in Section
5.2). With non-orthonormal U, such low-dimensional covariance
matrices can be difficult to interpret. Second, it turns out that the
choices can reduce CCA to a maximization problem over U (see
Lemma 1) by dropping out Yt, thus facilitating a theoretical anal-

ysis. Further, the full matrix Yt allows interactions among com-
ponents and leads to substantially lower approximation errors (see
Section 5.1 and 5.2).

We make a few observations before continuing with our analy-
sis. If there is only one covariance matrix X1 under consideration,
then the model reduces to standard PCA. If Xt is not a covariance
matrix, i.e., Xt ∈ Rm×n, it is modeled as Xt = UYtV

T + Et,
where U ∈ Rm×r,Yt ∈ Rr×s,V ∈ Rs×n, and the existing lit-
erature on tensor decompositions is relevant [24, 26, 22, 21, 6, 9,
37, 16, 17, 35]. Assuming r = s and restricting Yt to be diago-
nal leads to the PARAFAC/CANDECOMP models [24, 22]. When
such restrictions are not imposed, one gets the Tucker2 model [24,
22]. Iterative algorithms and data mining applications of such de-
compositions have been studied in the literature [24, 22, 23, 9, 37].
Unlike most existing settings, in our model each Xt is a positive
semi-definite matrix, and Yt is also positive semi-definite. In par-
ticular, CCA is different from CPC [12, 13]. While CPC aims to
simultaneously diagonalize a set of strictly positive definite covari-
ance matrices using a maximum likelihood approach [13], CCA is
discussed in a least squares setting. We discuss technical relation-
ships of our analysis to existing models in Section 3.5.

We start the analysis with the following two results. Space does
not permit us to include the proofs, which can be found in [36].

Lemma 1 The optimum Yt in (2) satisfies Yt = UT XtU. Fur-
ther, the optimal U in (2) is the solution to the following problem:

max
UT U=Ir

f(U) = max
UT U=Ir

Tr(UT M(U)U) , (3)

where

M(U) =

T
X

t=1

XtUUT Xt . (4)

Lemma 2 For U ∈ Rn×r (not necessarily orthonormal), f(U) is
a convex function.

Unfortunately, the fact that f(U) is convex does not help us be-
cause we are maximizing f(U) in (3) instead of minimizing it. Fur-
ther, the constraint set UT U = Ir is not convex. As a result, the
problem in (3) is not convex. In fact, the problem is one of maxi-
mizing a convex function over a bounded non-convex feasible set.
As a result, there may be several local maxima. If starting from
an initial guess, the standard approaches to tensor decompositions
will likely get stuck in a local maximum. Furthermore, it is diffi-
cult to characterize the proximity of such solutions in terms of the
function value achieved with respect to the global maximum. In the
next two sections, we develop a simple way to initialize U along
with algorithms for iterative updates with guarantees relative to the
global maximum.

3. ANALYSIS
In this section, we analyze CCA in terms of a simpler model

called common component analysis 1 (CCA1). We show that CCA1
is a PCA-style problem and can be solved using the EVD. More im-
portantly, the solution to CCA1 leads to lower and upper bounds on
the global maximum of CCA and suggests a good initialization for
any iterative algorithm for CCA. We also show how to choose a
suitable dimensionality sufficient to satisfy a given approximation
error bound. In addition, sufficient conditions for a global maxi-
mum and the connections to related work are considered.



Table 1: CCA and CCA1
CCA CCA1

Xt = UYtU + Et Xt = UZt+Et

M(U) =
P

t XtUUT Xt M(In) =
P

t X
2
t

f(U) = Tr(UT M(U)U) f1(U) = Tr(UT M(In)U)

3.1 A Simpler Model: CCA1
Instead of the original problem in (2), we consider a simpler de-

composition given by

Xt = UZt + Et , (5)

where U ∈ Rn×r and Zt ∈ Rr×n. Assuming the residual norms
to be small, the problem of finding U,Zt can be posed as follows:

min
U,Zt

UT U=Ir

T
X

t=1

‖Xt − UZt‖2
F . (6)

We call the above problem CCA1 since it only considers a one-
sided projection compared to the two-sided projection in CCA.
Similar to CCA, the simplified problem CCA1 allows an alterna-
tive characterization as follows:

Lemma 3 The optimal Zt in (6) satisfies Zt = UT Xt. Further-
more, the optimal U in (5) is the solution to the following problem:

max
UT U=Ir

f1(U) = max
UT U=Ir

Tr(UT M(In)U) , (7)

where In is an identity matrix of size n and

M(In) =

T
X

t=1

X2
t . (8)

Note that CCA1 in (7) is a PCA problem on M(In), which can
be solved using the EVD. Table 1 shows a relative comparison be-
tween CCA and CCA1.

3.2 Lower and Upper Bounds
The solution of CCA1 helps significantly in characterizing the

solution to CCA. We focus on developing lower and upper bounds
on the global maximum of CCA based on the solution of CCA1.
Since CCA1 is essentially the PCA problem over M(In) =

P

t X
2
t ,

if U0 denotes the top r eigenvectors of M(In) =
PT

t=1 X2
t , then

U0 is the solution to (7). Let fmax
1 = f1(U0) be the maximum

value of f1(U), and let MT = Tr(M(In)) = Tr
`

P

t X
2
t

´

. With
this notation, we have the following result:

Theorem 1 Let MT = Tr(
P

t X
2
t ). Then, with f1(U) and f(U)

denoting the objective functions for CCA1 and CCA respectively as
in (7) and (3), for any U with UT U = Ir , we have

f2
1 (U)

MT
≤ f(U) ≤ f1(U) . (9)

Definition 1 Let p1 denote the fraction of ‘energy’ in
P

t X
2
t cap-

tured by the rank-r PCA solution U0. In particular,

p1 =
f1

max

MT
=

Tr
`

UT
0

`

P

t X
2
t

´

U0

´

Tr
`

P

t X
2
t

´ , (10)

so that 0 ≤ p1 ≤ 1.

Using this definition and Theorem 1, we have the following result
bounding the value of the global maximum of CCA.

Corollary 1 Let f1
max and fmax be the global maximum of CCA1

and CCA, respectively, over UT U = Ir , and let p1 be defined in
Definition 1. Then, we have

p1f1
max ≤ fmax ≤ f1

max . (11)

Recall that the solution to CCA1 is U0, the top-r eigenvectors
of
P

t X
2
t . Thus, it is easy to compute fmax

1 = f1(U0) and
p1 = fmax

1 /MT . From Theorem 1, it follows that p1f
max
1 ≤

f(U0) ≤ fmax
1 . According to Corollary 1, the relative error of

f(U0) w.r.t. the global maximum is

fmax − f(U0)

fmax
≤ 1 − p1 . (12)

Now if U0 is chosen as the initialization, the iterative updates for
f(U) converge to U∗

0 (see Section 4) and f(U∗
0) satisfies

p1f
max
1 ≤ f(U0) ≤ f(U∗

0) ≤ fmax ≤ fmax
1 . (13)

As a result, we have the following theoretical bound for the relative
error of f(U∗

0) w.r.t. the global maximum.

Corollary 2 Let U0 be the r leading principal eigenvectors of M(In)
=
P

t X
2
t , and f(U∗

0) be the solution to CCA with the initializa-
tion U0. Then, the relative error of f(U∗

0) with respect to fmax

satisfies

fmax − f(U∗
0)

fmax
≤ 1 − p1 . (14)

It is interesting to note that p1 governs the closeness of the local
maximum w.r.t. the global maximum. In PCA, the fraction p1

depends on the choice of dimension r. Empirical studies show that
the upper bound 1 − p1 becomes fairly small for the first r leading
components (see Figure 3 in Section 5.2). On the other hand, if p1

is small (1−p1 is large), r should be increased so that a reasonable
fraction (say, p1 = 0.9) of energy can be preserved. The choice of
r according to p1 in CCA will be discussed in Section 3.3.

Once f(U∗
0) is found, the empirical bound of the relative error

of f(U∗
0) w.r.t. the global maximum becomes

fmax − f(U∗
0)

fmax
≤ 1 − f(U∗

0)

f1
max . (15)

3.3 Approximate Relative Error and Rank
In certain applications, one may have to pick a suitable rank r

to preserve a certain fraction of the observed covariance structure.
The goal is to find the lowest rank r sufficient to explain a given
fraction of the observed covariance, or equivalently to keep the ap-
proximation error below a given threshold. In PCA, since its solu-
tion based on the EVD has a nested structure, one can simply keep
appending principal components until the desired error is reached.
However, such a nested approximation structure is not present in
CCA and more generally in the case of tensor decompositions. In
particular, if the rank (r − 1) solution is insufficient, the computa-
tion must be carried out from scratch to obtain the rank r solution.
In this section, we show that such elaborate calculations can be
avoided by using the bounds relative to the CCA1 problem.

We start by defining the Approximate Relative Error (ARE) as a
measure of quality of the the approximation obtained by CCA. For
any U, we have

ARE(U) =

PT
t=1 ‖Xt − UYtU

T ‖2
F

PT
t=1 ‖Xt‖2

F

. (16)

We define the cumulative percentage of energy captured by the so-
lution to CCA as follows:



Definition 2 Let MT = Tr(M(In)), and let f(U∗
0) be the max-

imum of CCA obtained by an iterative algorithm with the initial-
ization U0 (see Section 4). The cumulative percent of energy p
captured by U∗

0 is defined as

p =
f(U∗

0)

MT
, (17)

so that 0 ≤ p ≤ 1.

For our problem, p defines how much energy over all the covari-
ances is preserved by their corresponding latent covariances. Di-
viding inequality (13) by MT and plugging in p1 = f1

max/MT

yield lower and upper bounds for p:

p2
1 ≤ p ≤ p1 . (18)

In CCA1 (essentially PCA), given a p1, the corresponding rank r
is easy to obtain. Using the bounds for p, one can also develop a
simple way to obtain a suitable rank r for CCA. To do this, we first
relate p to the approximate relative error ARE(U∗

0).

Proposition 1 Let U∗
0 be the solution of CCA. Then ARE(U∗

0) =
1 − p.

Plugging ARE(U∗
0) into inequality (18), it is easy to derive the

following lower and upper bounds for ARE(U∗
0):

1 − p1 ≤ ARE(U∗
0) ≤ 1 − p2

1 . (19)

Given an upper bound δ for ARE(U∗
0), we now show how to ob-

tain a suitable rank r for U∗
0 in CCA. Since ARE(U∗

0) ≤ 1 − p2
1,

it is sufficient to ensure 1 − p2
1 ≤ δ ⇒ p1 ≥

√
1 − δ. Since p1

corresponds to U0 in a PCA setting, one can easily obtain a rank-r
U0 such that p1 ≥

√
1 − δ. Initializing the iterations for CCA with

U0 will lead to a U∗
0 satisfying ARE(U∗

0) ≤ δ. Note that since
the construction is based on a bound, there may be a lower-rank U∗

0

satisfying the constraint.

3.4 Conditions for Global Maximum
We now analyze a condition under which a global maximum of

CCA is achieved for a given rank r. The particular case under
consideration is when equality holds in (13), i.e., f(U∗

0) = fmax
1 ,

where f(U∗
0) is a local maximum, implying f(U∗

0) = fmax.
Let U0 be the initialization consisting of the r principal eigen-

vectors of M(I), we have the following result:

Theorem 2 Let U0 be the r principal eigenvectors of M(In) asso-
ciated with the nonzero r largest eigenvalues, then rank(M(U0)) ≥
r, where M(U0) is defined in Lemma 1.

Based on Theorem 2, we now show that rank(M(U0)) = r is
a necessary and sufficient condition that f(U∗

0) = fmax
1 , thereby

implying that U∗
0 achieves the global optimum. Moreover, in this

situation, the solution achieving the global maximum is the initial-
ization U0 itself.

Theorem 3 Let U0 be the solution to CCA1, i.e., the r principal
eigenvectors of M(I), and let U∗

0 be the solution found in Algo-
rithm 1 with the initialization U0. Then, rank(M(U0)) = r is a
necessary and sufficient condition for f(U∗

0) = fmax
1 . Moreover,

U0 is the solution achieving the global maximum for CCA.

A special case of the result occurs when rank(M(I)) = r.
When rank(M(I)) = r, rank(M(U0)) ≤ rank(M(I)) = r. Ac-
cording to Theorem 2, rank(M(U0)) ≥ r, implying rank(M(U0))
= r. Thus U0 achieves the global maximum. In this case, since

all the eigenvectors are kept, the fraction of energy p1 = 1. The
global optimality then follows in a straightforward manner from the
bounds discussed in Section 3.3.

3.5 Connections to Related Work
Given a set of rectangular matrices Xt ∈ Rm×n, 1 ≤ t ≤ T ,

the Tucker2 model [35, 16, 24, 22], 2DSVD [9], GLRAM [37],
etc., aim to find common components U ∈ Rm×r and V ∈ Rn×s

such that

Xt = UYtV
T + Et , (20)

where Yt ∈ Rr×s, U and V are orthonormal matrices, and Et

is the residual. U and V can be obtained by performing the EVD
iteratively on matrices M1(V) =

P

t XtVVT XT
t ∈ Rm×m and

M2(U) =
P

t X
T
t UUT Xt ∈ Rn×n respectively. An initializa-

tion similar to the one proposed for CCA is usually used in these
methods, e.g., initializing U with the EVD of

P

t XtX
T
t or V with

the EVD of
P

t X
T
t Xt. It has been observed empirically that such

an initialization usually leads to the good solutions [37, 9], particu-
larly in rank-1 approximation experiments [27, 20]. When a locally
optimal solution is found, say (U∗,V∗), Ding et al. [9] established
lower and upper bounds for a local maximum based on the eigen-
values of M1(V

∗) and M2(U
∗), but the bounds w.r.t. the global

maximum were not explicitly given.
In (20), if r = s and Yt is diagonal, it becomes PARAFAC /

CANDECOMP with orthonormal constraints [16, 17, 24, 22], re-
ferred to as PARAFAC in the sequel. If PARAFAC is applied to the
covariance matrices in our case, U and V are the same. In this case,
PARAFAC has the same formula as CCA except that Yt is a diag-
onal matrix in PARAFAC but is a full matrix in CCA. In contrast to
the least squares approach in PARAFAC, CPC [12, 13] simultane-
ously diagonalizes the positive definite matrices using a maximum
likelihood approach [13]. Since the off-diagonal elements are zero
in Yt, PARAFAC and CPC do not allow interactions among com-
ponents in U and V. On the other hand, if covariance matrices are
simultaneously diagonalizable with an orthonormal transformation
[19], it turns out that Yt in CCA is also diagonal. A similar result
has also been noted in the context of CPC [12, 13].

Proposition 2 If covariance matrices Xt are simultaneously diag-
onalizable with an orthonormal transformation, the low-dimensional
covariance matrices Yt in CCA are diagonal.

4. ALGORITHMS
In this section, we present algorithms for solving CCA for a

given dimensionality or a given approximation error bound. For
a given dimensionality, we present two algorithms that iteratively
improve a given initial solution. For a given approximation error
bound, we show how to determine a sufficient dimensionality, re-
ducing the problem to the first case.

4.1 CCA for a Given Dimensionality
Iterative EVD based CCA: For a given dimensionality, EVD can
be used to solve for U in CCA1 in (7). However, CCA in (3) has
four U’s, which cannot be found using the same approach, since
this problem does not correspond to an EVD problem. Instead,
we perform the EVD iteratively by fixing the two inner U’s to the
current iterate Uk. Recall that CCA involves maximizing f(U) =

Tr(UT M(U)U) where M(U) =
PT

t=1 XtUUT Xt is of size
n × n. If Uk is the current iterate, then we compute M(Uk) and
solve the following surrogate problem to obtain Uk+1:

max
UT U=Ir

Tr(UT M(Uk)U) . (21)



Algorithm 1 Iterative EVD (IEVD) Algorithm for CCA

1: Input: Xt, 1 ≤ t ≤ T , initialization U0 ∈ Rn×r

2: Output: U,Yt, 1 ≤ t ≤ T
3: repeat
4: Perform the EVD on M(Uk) =

P

t XtUkU
T
k Xt

5: Choose the leading r eigenvectors Uk+1

6: Compute Yt = UT
k+1XtUk+1

7: until
˛

˛

˛

f(Uk+1)−f(Uk)

f(Uk)

˛

˛

˛

≤ ε

Clearly, Uk+1 can be obtained by applying a rank-r EVD on M(Uk).
The idea behind such an update has been explored in the literature
on tensor decompositions [24, 25, 9, 37]. As the following re-
sult shows, such an update will improve the objective function, i.e.,
f(Uk+1) ≥ f(Uk).

Theorem 4 Let Uk+1 be the r principal eigenvectors of M(Uk),
then f(Uk+1) ≥ Tr(UT

k+1M(Uk)Uk+1) ≥ f(Uk). Equality
holds when Uk+1 and Uk span the same subspace.

Algorithm 1 presents the corresponding algorithm for a given di-
mension r as input. The objective function increases at every step
until a certain stopping criterion is satisfied. If U∗

0 is the final so-
lution, from the analysis of Section 3.3, we know that f(U∗

0) ≥
p1f

max, and the approximate relative error satisfies 1 − p1 ≤
ARE(U∗

0) ≤ 1 − p2
1.

Auxiliary Function based CCA: In the iterative EVD method, the
update has to repeatedly calculate the EVD of an n × n matrix.
If n is large, the update becomes a bottleneck. In this section, we
present an efficient update that only calculates the SVD of an r×n
matrix. To introduce the new update, we first define an auxiliary
function g(U,V) as follows:

g(U,V) = Tr

 

T
X

t

(UT XtU)(VT XtV)

!

. (22)

where UT U = Ir and VT V = Ir . Clearly, g(U,U) = f(U).
Given Uk, if we can find a Uk+1 satisfying g(Uk,Uk+1) ≥

g(Uk,Uk), the auxiliary function increases. Theorem 5 shows that
Uk+1 can be obtained by performing the SVD on an r × n matrix
PT

t Yk
t V

T Xt, where Yk
t = UT

k XtUk. Such a Uk+1 increases
f(U).

Theorem 5 Let Uk+1 = QPT , where P and Q are respectively
the left and right r singular vectors of

PT
t Yk

t U
T
k Xt, where Yk

t =

UT
k XtUk, then

f(Uk) ≤ g(Uk,Uk+1) ≤ f(Uk+1) .

Equality holds when Uk and Uk+1 span the same subspace.

Based on Theorem 5, we propose Algorithm 2 using the auxiliary
function, yielding a solution satisfying the bounds of Section 3.3.
Time Complexity: In both algorithms, the most expensive steps
are the iterative updates. In Algorithm 1, step 4 takes O(Tn2r)
time to compute M(Uk) and O(n3) time for the EVD, and step
6 takes O(Tn2r). Overall, the cost of the updating steps in Algo-
rithm 1 is O(Tn2r+n3). In Algorithm 2, step 5 takes O(Tn2r) to
compute the matrix

P

t Y
k
t U

T
k Xt and O(r2n) for the SVD, and

steps 6 and 7 require O(nr2) and O(Tn2r) respectively. Assum-
ing r ¿ n, the overall cost of the updating steps in Algorithm 2 is
O(Tn2r).

Algorithm 2 Auxiliary Function (AF) Algorithm for CCA

1: Input: Xt, 1 ≤ t ≤ T , initialization U0 ∈ Rn×r

2: Output: U,Yt, 1 ≤ t ≤ T
3: Compute Y0

t = UT
0 XtU0

4: repeat
5: Perform the SVD on matrix

P

t Y
k
t U

T
k Xt = PDQT

6: Compute Uk+1 = QPT

7: Compute Yk+1
t = UT

k+1XtUk+1

8: until
˛

˛

˛

g(Uk+1,Uk+1)−g(Uk,Uk)

g(Uk,Uk)

˛

˛

˛

≤ ε

4.2 CCA for a Given Approximation Error
We consider a setting where instead of the dimension r, an upper

bound δ on the approximate relative error (ARE) is given. In such a
setting, one can choose a sufficient dimension r and a correspond-
ing initialization U0 based on our analysis in Section 3.3, and use
any of the algorithms in Section 4.1 to obtain a U guaranteeing the
error bound. In particular, it is sufficient to choose the dimension
r of the initialization U0 such that the fraction of energy captured

in CCA1 given by p1 =
Tr(UT

0 M(I)U0)

Tr(M(I)) satisfies p1 ≥
√

1 − δ, as
discussed in Section 3.3. Since M(I) is fixed, and CCA1 is an EVD
problem, choosing a suitable dimension r such that p1 ≥

√
1 − δ

is straightforward due to the nested structure in the EVD. If such a
U0 is used to initialize the algorithms in Section 4.1, the final solu-
tion U∗

0 will satisfy f(U∗
0) ≥

√
1 − δfmax and ARE(U∗

0) ≤ δ,
which is the prescribed bound on the approximation error.

5. EXPERIMENTAL RESULTS
In this section, the performance of CCA is evaluated on both

artificial datasets and two real-world stock market datasets, one
spanning 21 years from 1990-2010, and the other 14 years from
1971-1984. Evaluation is done in terms of the Approximate Rela-
tive Error (ARE) (16) for all datasets, and also the ability to track
volatility in low-dimensions for the stock market datasets. The per-
formance of CCA is compared with PARAFAC with orthonormal
constraints, PCA, and Random Projection (RP) [8, 1]. While CCA
and PARAFAC are computed on the entire set of covariance matri-
ces, PCA is computed based on the single aggregated covariance.
For RP, U is generated as follows: (i) each entry of U is generated
via an i.i.d. normal distribution; and (ii) U is normalized via the
classical Gram-Schmidt orthogonalization [15] and normalization.

5.1 Artificial Data
Artificial data were generated following the model in (1). In par-

ticular, Yt and U were generated first, then Xt was calculated by
adding noise to UYtU

T . Yt was generated as the covariance ma-
trix of a set of randomly generated samples. The samples were gen-
erated from the following four Gaussian distributions with means

m1 = [0, 0], m2 = [5, 0], m3 = [0, 5], m4 = [5, 5] ,

and covariances

[Σ1|Σ2|Σ3|Σ4] =

»

4 0 4 0 0.01 0 1 0
0 1 0 0.01 0 2 0 2

–

.

Instead of using a fixed U, it was mildly perturbed as follows:

Ut+1 ← QR(Ut + γEt) , (23)

where γ is a small constant, Et ∈ Rn×r where Eij ∼ N(0, 1),
and Ut+1 is obtained from the QR factorization of (Ut +γEt). In
(23), U1 was randomly generated, r = 2, and we considered two
values of the high-dimensionality n = 5, 10. The experiment was
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(b) n = 10
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Figure 1: (a)-(b) Approximation Relative Error (ARE) on artificial data in different dimensions r and increasing noise level γ. CCA
outperforms PARAFAC, PCA and RP, especially with high noise levels. (c) 2D latent covariances. CCA tracks the true covariance
better than PCA.
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(a) S&P500
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(b) NYSE

Figure 2: Approximation Relative Error (ARE) on S&P 500
and NYSE in different dimensions r. CCA outperforms
PARAFAC, PCA and RP.

repeated 50 times, and the final results reported were the average
over the 50 runs.
Results: Figure 1 (a)-(b) shows the comparative performance of
CCA, PARAFAC, PCA, and RP in terms of the ARE (lower is
better) across different noise levels γ for fixed low-dimensionality
r = 2. As the figures show, CCA outperforms PARAFAC and
PCA, and significantly outperforms RP. The improvement of CCA
over other methods is more pronounced for high noise levels (high
γ). For low noise levels, CCA and PARAFAC are competitive
since all the covariance matrices are nearly diagonal. Due to the
structure of the covariance matrices (nearly diagonal but different),
PARAFAC outperforms PCA which maximizes the total covariance
instead.

Figure 1(c) shows the shape of 2-dimensional covariances when
n = 10, γ = 0.1. For each Gaussian distribution, covariance of the
samples is its ground truth, which is plotted in black. The latent
covariances for CCA and PCA, shown respectively in magenta and
cyan, are calculated based on the leading 2 components. Since the
black ellipses are entirely overlapped by the red ones, the ground
truth is not visible. While CCA is able to recover the ground truth,
PCA seems to find a subspace that maximizes the total covariance
but is not suitable for separate covariances.

5.2 Stocks Data
We considered two real world stock market datasets. The first

dataset, S&P500, is based on daily closing prices of the 263 stocks
in the current S&P500 index from 1990 to 2010. The second dataset,
NYSE, is a widely used dataset of daily closing prices of 36 stocks
at daily resolution spanning from 1971 to 1984 [18, 2, 7].
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(b) NYSE

Figure 3: The upper bound of the relative error of the CCA
results w.r.t. the global maximum on S&P 500 and NYSE in
different dimensions r. The theoretical bound in (14) and em-
pirical bound in (15) are in green and red, respectively. The
upper bounds are very small for the first r principal compo-
nents.

Methodology: For the experiments, the covariance of the daily log-
return was considered for both datasets, where returnt = log xt

xt−1
×

100%, xt is the daily closing stock price. For each dataset, we con-
structed the monthly average of the daily covariances, and each
average monthly covariance was considered as an observed co-
variance matrix Xt. For S&P500, there are 21 × 12 = 252 ob-
served covariance matrices Xt ∈ R263×263. For NYSE, there are
14 × 12 = 168 covariance matrices Xt ∈ R36×36.
ARE: The performance of the four methods is evaluated in terms
of the ARE on S&P500 and NYSE, as shown in Figure 2. On both
datasets, CCA outperforms PARAFAC and PCA, and significantly
outperforms RP. Interestingly, the performance of PARAFAC does
not improve with increasing r (dimensionality) possibly because
the covariances cannot be simultaneously diagonalized. PCA per-
forms much better than PARAFAC, which is in direct contrast with
the observed results for the artificial dataset. Note that CCA per-
forms the best on both types of data, which illustrates the flexi-
bility of the model. PCA is competitive with CCA on NYSE but
worse on S&P500, especially for low dimensions. There are two
possible explanations: NYSE is a low-dimensional dataset with
n = 36, whereas S&P500 is a relatively high-dimensional dataset
with n = 263; and the stock market has been more volatile in the
1990-2010 range (S&P500) as compared to the 1971-1984 range
(NYSE).
Quality of CCA Solution: Figure 3 shows the upper bounds of the
relative error of CCA results w.r.t. the global maximum value. The
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Figure 4: Latent Covariances over time for S&P500 from 1990
to 2010. The two financial meltdowns in 2001 and 2008 are
prominently captured in the latent low-dimensional space.

green curve is the theoretical upper bound 1 − p1 in (14), which
depends on the choice of dimensionality r and the dataset. When
r = 1, the theoretical bound is fairly good on S&P500 but bad
on NYSE. However, as r increases, the bounds decrease rapidly.
When r = 10, the theoretical upper bounds are already approx-
imately 10% on both datasets. After a local maximum f(U∗

0) is
found, the empirical upper bound in (15) is plotted in red. On both
datasets, the empirical upper bounds provide significant improve-
ments over the theoretical upper bounds, especially for low values
of r. For example, the empirical upper bound on NYSE decrease
to 20% when r = 1. When r = 10, the empirical bounds further
decrease to 5% on both datasets.
Volatility: In Figures 4 and 5 we plot the latent covariance matrices
(level sets) obtained from CCA in dimensions r = 1, 2 for S&P500
and NYSE, and compare them to the volatilities [5, 11, 10] of their
proxies. The proxy of the S&P 500 dataset is the S&P500 index,
while the proxy of NYSE is the average of 36 stocks. The reason
we expect Yt to track volatility well is as follows: For n stocks, the
trace of the covariance Xt is equal to nσ2, where σ is the volatil-
ity (standard deviation) of the proxy. If Yt approximates Xt well,
the trace of

p

Yt/n should approximate σ. In both datasets, for
1D (r = 1),

p

Yt/n tracks the volatility almost exactly. For 2D
(r = 2),

p

Yt/n are ellipses that change shape/size over time, and
the volatility (black curve) is always on the circumference of the
ellipses. It is interesting to note that the latent covariances for S&P
500 (Figure 4 ) seem to capture the two major financial meltdowns,
viz the dot-com bubble around 2001 and the major financial cri-
sis around 2008, even in such a low dimensionality. The crisis in
2008 looks significantly worse, and the ellipses in the 2D plot have
different shapes possibly indicating different market segments be-
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Figure 5: Latent Covariances over time for NYSE from 1970 to
1984. The stock market crash of 1974 is captured in the latent
low-dimensional space.

ing more adversely affected. Similarly, the latent covariances for
NYSE (Figure 5 ) capture the stock market crash around 1973-1974
resulting from the collapse of the Bretton Woods system along with
the ‘Nixon Shock’ and the devaluation of the US dollar. Such in-
terpretable results show the potential of CCA in high-dimensional
real world problems.
Choose r given ARE: We also evaluated our method in choosing
the dimensionality r given an ARE upper bound. The results on
the S&P 500 dataset are shown in Table 2. The first row is the
given ARE upper bound δ, the second row shows the sufficient r
computed as in Section 4.2 and the corresponding ARE, and the
third row shows the smallest r that would have satisfied the bound
and the corresponding ARE. The chosen r satisfies the bound, but
can be conservative at times especially when the ARE decreases
rapidly with increasing r.

δ(%) 30 20 10 5
Chosen r (ARE) 3(21.50) 10(14.18) 45(7.58) 97(4.20)
Smallest r (ARE) 2(24.67) 4(19.70) 26(9.88) 81(5.00)

Table 2: Choosing r given an ARE upper bound on S&P 500.

Running Time: Figure 6 compares the running times (in seconds)
of Algorithm 1 and Algorithm 2 on the S&P 500 dataset. The ex-
periments were run in Matlab 7.1 on an Intel P8600 2.4GHz PC
with 2G memory. When r is small, i.e., low-dimensional projec-
tions, Algorithm 2 is much faster than Algorithm 1. As r increases,
Algorithm 2 possibly spends more time on the SVD step, and prob-
ably requires more steps to converge, so the superiority in running
time decreases.
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Figure 7: Optimizing f(U) in CCA based on CCA1 initialization and iterative updates. Objective f(U) for CCA is shown in red;
the lower and upper bounds based on f1(U) for CCA1 are shown in green and cyan respectively. Three scenarios are shown: (a)
iterations converge to a global maximum, (b) iterations converge to a local maximum, and (c) initialization is a global maximum.
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Figure 6: Running times of Algorithm 1 and Algorithm 2
on S&P 500 in different dimensions r. The auxiliary func-
tion based method (Algorithm 2) is distinctly faster for low-
dimensional projections.

5.3 Additional Numerical Simulations
We study CCA (Algorithm 1) on low-dimensional problems to

better understand the proposed ideas, including cases where the
approach can and cannot find the global maximum of f(U). It is
important to recall that while f(U) is a convex function for uncon-
strained U, the model requires maximizing f(U) on the domain
of U determined by UT U = Ir , and the problem may thus have
multiple local maxima.

We illustrate different scenarios for using Algorithm 1 to solve
CCA in Figure 7. In Figure 7(a), we consider 3 time steps for a
2-dimensional covariance matrix, with

X = [X1|X2|X3] =

»

1 0 0 0 0.22 0.22
0 0.25 0 1 0.22 0.22

–

.

The vector u is parameterized as u = [sin(θ), cos(θ)]T , and the
x-axis denotes θ. Note that f(u) is convex in u but not θ, which
explains the nonconvex plot of the objective (in red). Further, the
domain of θ is in [−π, π], and the function is periodic beyond that
domain. Algorithm 1 is used to find the best rank-1 approxima-
tion u. In particular, the initialization u0 is the optimal solution
of f1(u), denoted by a small blue circle ◦. The searching trajec-
tory is denoted by magenta +, and the optimal solution of f(u) by
a green ¤. The upper and lower bounds are plotted in cyan and
green respectively. For this scenario, with the proposed initializa-
tion, a global maximum can be found, as illustrated in Figure 7(a).
However, the initialization does not always lead to a global maxi-
mum as shown in Figure 7(b). In Figure 7(b), we consider

X1 =

"

29.7995 2.5707 1.7377
2.5707 30.1445 −0.0292
1.7377 −0.0292 24.1799

#

,

X2 =

"

21.8515 −2.2068 2.0377
−2.2068 22.8371 0.0490
2.0377 0.0490 21.1336

#

,

X3 =

"

8.5273 −2.5322 1.1011
−2.5322 9.6724 −0.9796
1.1011 −0.9796 6.4754

#

,

and the vector u is parameterized as u = [sin(θ), cos(θ) sin(φ),
cos(θ) cos(φ)]T . In Figure 7(b), θ and φ are the x-axis and y-axis
respectively, and f(u) is shown in the z-axis. For this scenario, the
final solution is a good local maximum but is not a global maxi-
mum, which is also marked in the figure. Finally, Figure 7(c) shows
a case where the initialization itself achieves a global maximum of
CCA. In Figure 7(c), we consider

X = [X1|X2] =

»

1 0 0 0
0 0 0 1

–

,

and u is parameterized as in Figure 7(a). For this scenario, if u0

denotes the initialization obtained from CCA1, we see that fmax
1 =

f1(u0) = f(u0), implying f(u0) = fmax.

6. CONCLUSIONS
In this paper, we introduced a framework called CCA for si-

multaneously modeling multiple covariance matrices in low dimen-
sions. While the framework has similarities with existing approaches
to tensor decompositions, we presented a novel and unique analy-
sis of CCA in terms of a more tractable PCA framework called
CCA1, which provides lower and upper bounds for the global max-
imum for CCA. The bounds also lead to an effective initialization
scheme so that the results of CCA have clear approximation guar-
antees w.r.t. the global maximum. We also discussed non-trivial
conditions under which the global maximum will be achieved. We
proposed two algorithms: a standard tensor decomposition algo-
rithm and an efficient auxiliary function based algorithm. They can
work with either a fixed dimensionality or an approximate relative
error. We illustrated the effectiveness of our approaches on syn-
thetic data and on two real world stock market datasets.

While CCA can be considered as a special case of classical ten-
sor decomposition methods, the analysis presented in this paper
discusses two important issues encountered in the general case.
Such an analysis can potentially be extended to more general set-
tings considered in the tensor decomposition literature, and will be



considered in future work. In the present analysis, all covariance
matrices were assumed to be available. In real life domains such as
finance and climate sciences, the observed covariance matrices be-
come available over time. We plan to investigate extensions of the
CCA framework to the online setting where the observed matrices
become available over time.
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