
Analytical Potential Fields and ControlStrategies for Motion Planning?Seung-Woo Kim and Daniel BoleyDepartment of Computer Science and EngineeringUniversity of MinnesotaMinneapolis, Minnesota 55455Abstract. We present a novel method for robot motion planning thatconstructs a network of collision free paths using a randomized searchover a potential �eld in Con�guration Space. Our method �nds local min-ima and then connects them to form a graph, which we call a roadmap.We use a gradient search scheme to �nd the local minima very e�cientlyand accurately. To �nd a path between two con�gurations, it is thena simple matter to connect given start and goal con�gurations to theroadmap and to use a standard graph search algorithm to search theroadmap. The construction of the roadmap can be done in parallel withvery little communication.1 Introduction and BackgroundMotion planning for multi-jointed robotic manipulators is an important areaof research for which a large number of algorithms have been developed [11].Application domains include industrial robots, teleoperation [12], and controlof redundant robots [10]. However, the computational complexity of many ofthese algorithms can be quite substantial, severely limiting their use in practice[6]. The major objective of the present paper is to propose a novel method forcomputing paths for multi-jointed robot arms. The method proposed is fast evenwith a large number of degrees of freedom and can easily be parallelized.Robot motion planning is based on the use of two spaces, the Workspace(W-space), which is the physical space through which the robot moves, and theCon�guration space (C-space), which is the space of all robot con�gurations. TheC-space has dimension equal to the number of degrees of freedom (dof) of therobot. Many algorithms operate by computing the set of infeasible con�gurations(obstacles) and then searching the remaining C-space for feasible paths. To makethe methods tractable, various devices have been proposed in the past, includingdiscretizing the C-space into cells [2], computing an arti�cial potential functionto avoid collisions with obstacles or to �nd the goal [2, 7], and random search[8, 9]. Using a discretized C-space requires the pre-computation of a large numberof potential values at the cells, and su�ers from artifacts such as missing or? This research was partially supported by NSF grants CCR-9405380 and CCR-9628786.

�
�
�
�

valley

shallow slope

steep slope

l
0

θ
0

θ
1

i
θ

l
i

Base

j-th obstacle
i-th link

0-th link

P d
Q

i,j
i,j

i,j

Fig. 1. Valley: arrows point down hill, circles Fig. 2. Computing Potential Fieldsmark cells, black is discrete minimum.spurious local minima over the cells that do not correspond to local minima ofthe continuous potential (e.g. �g. 1).To obtain acceptable performance, some methods do a signi�cant amountof preprocessing of the con�guration space (C-space) [8], or place landmarksin C-space that are then used by a local planner [3, 5]. In Kavraki's approach[8, 9], a large number of randomly computed straight line collision-free partialpaths are generated until the C-space is covered su�ciently, and the individualpartial paths are connected into a single graph. This method requires a verylarge number of partial paths, and may have di�culties in traversing narrowpassageways in the C-space. Other methods make assumptions on the type ofrobot (for instance, [1] takes advantage of the symmetry of the workspace withrespect to the �rst axis of the robot), or use a coarse discretization of C-Space.The method proposed here uses arti�cial potential �elds and performs asubstantial amount of computation during a preprocessing phase using a gradientbased search algorithm for both descent and ascent, combined with a randomizedsearch strategy.1.1 Analytical Potential FieldsAnalytical potential �elds were used in [7] to allow the use of traditional gradientdescent algorithms to �nd the goal and stay clear of obstacles. We use a similaridea in our work. A set of panels (line segments in 2D workspace) were usedto represent obstacles. Each joint was represented by a point robot, and thepotential was computed for each joint independently. The total potential wasa linear combination of the individual potentials. The potential also included a\sink" at the goal to promote movement toward the goal.

In our work, we consider the entire robot as a point in C-space. At anygiven con�guration (point in C-space), we compute the potential using repulsiveforces between the obstacles and the robot in the workspace. This potential iscomputed between each link and each obstacle, both of which are representedby line segments in a 2D workspace (an obstacle is a panel in a 3D workspace).For every link-obstacle pair, there is a closest point Pi;j on the link i and acorresponding closest point Qi;j on the obstacle j, and the distance betweenthose points determines this pair's contribution to the overall potential value.This is illustrated in Figure 2. The details are given in section 2.1.2 Current WorkWe propose a method to build a collision free roadmap for a given static envi-ronment and an articulated robot. Once this roadmap is built, we attach anyinitial and goal con�gurations to this roadmap. Having attached these con�gu-rations to the roadmap, we can �nd a path between them extremely fast sincethe roadmap has been precomputed. The roadmap consists of nodes and edgeswhich are collision free paths between adjacent nodes.Rather than using thousands of random con�gurations for the nodes in thegraph, we use the local minima for a potential �eld which is used to guide anarticulated robot. We use an algebraic formula to compute the energy functionwhich is di�erentiable with respect to joint angles in order to follow the negativegradient of the potential �eld. As mentioned above, we represent links as linesegments and obstacles as line segments in 2D workspace and as
at panels in3D workspace. An analytical approach is used in order to calculate clean localminima. By choosing the local minima as the nodes in the roadmap, we havebeen able to reduce the number of nodes under 1000, substantially less than in[8, 9]. A strategy to connect adjacent local minima to form the edges in parallelis also investigated. In our method, we (a) limit the situations where a randommovement is necessary, (b) we use a potential �eld to guarantee collision-freepaths, (c) we have a systematic strategy for climbing out of local minima to �nda path to another, and (d) we use a Gauss-Newton direction to follow a shallowslope very accurately.2.1 Basic MethodsGenerating Potential Fields In order to compute the potential for a givencon�guration, Euclidean geometry is used to compute a pair of closest points foreach link and obstacle segment. We denote those points as Pi;j (on the link) andQi;j (on the obstacle) as the closest points between the i-th link and the j-thobstacle segment. Then the distance between them is di;j = kPi;j �Qi;jk. If weput m = number of links, n = number of obstacles, and de�ne ri+j�m = 1=di;j ,then the overall potential E for the con�guration is as follows:E = 12 mn�1Xi=0 r2i (1)

This potential function enjoys several useful properties. (1) As the robot getsclose to the obstacles, the potential becomes in�nitely large. Therefore, it iscollision free as long as it follows a gradient descent direction. (2) The gradientof the potential �eld can be derived directly from the above equation by ananalytic formula. (3) Equation (1) is a nonlinear least squares problem for whichthere are many e�cient and well-studied algorithms [4].Computing the Gradient The gradient is computed directly from the aboveequation. Even though the link length li and closest obstacle point (p; q) changeas the robot moves, they are �xed for the simplicity of the computation of thepotential. Let us put Pi;j = (xi;j ; yi;j) and Qi;j = (p; q). Also, the k-th joint isat (xk ; yk). Then the gradient of the potential at � = (�0; : : :; �m�1)T isrE(�) = J T r (2)where J � Rmn�m is the Jacobian matrix of r, de�ned by J i;j = @ri@�j . Thecomputation of J is done as follows:J i+jm;k = @ri+jm@�k = @@�k � 1di;j� = @@�k kPi;j �Qi;jk�1= @@�k �(xi;j � p)2 + (yi;j � q)2��1=2= � (xi;j � p)@xi;j@�k + (yi;j � q)@yi;j@�k�p(xi;j � p)2 + (yi;j � q)2�3 (3)@xi;j@�k is calculated as follows (see Fig. 2):@xi;j@�k = @@�k "x0 + iXu=0 lucos(uXv=0 �v)#= � iXu=k lusin(uXv=0 �v)= (yk � yi;j) (4)Similarly, @yi;j@�k = xi;j � xk (5)Therefore, J i+jm;k = (xi;j � p)(yi;j � yk)� (yi;j � q)(xi;j � xk)�p(xi;j � p)2 + (yi;j � q)2�3 (6)Computation of the terms in the above equation is straightforward and is alreadyneeded for collision checking. However, the dimension of the Jacobian matrixincreases with the number of obstacles, resulting in higher computation costs.

Computing the Descent Direction The simplest way to obtain a descentdirection is simply to follow the direction of the negative gradient (2). This yieldsthe method of steepest descent. However it is well known that simple steepestdescent, though robust, can be very slow [4]. We use the Gauss-Newton method[4] to speed up the process. The Gauss-Newton method is based on a sequenceof linear approximations of r(�). If �k denotes the current approximation, thena correction pk is computed as a solution to the linear least squares problemminp kr(�k) +J (�k)pk2; p � Rm; (7)and the new approximation is �k+1 = �k + �kpk, where �k is a step lengthto be determined. This linear least squares problem is solved using the QR de-composition of J (�k) [4]. One of the important properties of the Gauss-Newtondirection is that if �k is not a critical point, then pk is a descent direction [4].Determining the Step Length Because we want to �nd a path to the lo-cal minima, �k must be determined in such a way to limit the maximum stepmovement of the robot as well as not to overshoot over the hills in �k+1 =�k + �kp, where p is search direction obtained by any descent method men-tioned above. At �rst, �0 is set to 1=kpk and the di�erence in energy is com-puted, E(�k) � E(�k+1). If it is negative, we divide it by two and repeat theprocess until it becomes positive. If it is positive at the �rst step, we multiply itby two until the maximum movement of each joint in workspace reaches a certainlimit, or the di�erence becomes negative. Calculating the Euclidean distance inworkspace is necessary because a small amount of rotation at the base resultsin a much larger movement at the tip than the same rotation in a joint near thetip.Locating Local Minima In order to �nd a local minimum from any initialcon�guration, a combination of the methods stated above are used to take ad-vantage of each method's particular advantages while mitigating each method'sdisadvantages. Steepest descent method works well to repel the robot from theobstacles. Gauss-Newton method may not be accurate where it is too close to theobstacle. Steepest Descent method is used �rst in order to place the robot rela-tively far away from the obstacles. Once it is away from obstacles, Gauss-Newtonconverges rapidly to the nearby local minimum. In most cases, this combinationworks well except a few special cases, where we must use random probing ofnearby con�gurations to �nd a lower potential.In our actual experimentation, we added more constraints to avoid self col-lision. The repulsive forces between the robot links are computed and addedto Equation (1). These terms are treated similarly because they are also repre-sented as a nonlinear least squares problem, and omitted for the brevity of thepaper.

2.2 Building the GraphOur goal is to build a connected graph whose vertices are all the local minimaas well as possible way points in between. To do this, we use an upstream ascentprocess to climb away from a given local minimum and �nd a path to anotherlocal minimum. Our process continues to �nd new local minima, connecting themto the local minima just passed through to form a partial path in the overallgraph, in such a way as to avoid doubling back to a local minimum alreadyvisited. This search process terminates when a local minimum is reached thatis in a previously found partial path or an obstacle is encountered. A new localminimum is found by descending from a randomly chosen con�guration, and anew partial path is constructed using the same upstream ascent process startingfrom this new local minimum.Moving Upstream in the Potential Field The task here is to �nd a collisionfree path from one local minimum to another. This path will form part of apartial path, which will eventually be connected to other partial paths to formone overall connected graph encompassing all the local minima. Starting at alocal minimum, we select a random coordinate direction to move along. Whilemoving in this direction, we also move \laterally" to avoid obstacles. The basicstep is summarized as follows:1. Select a coordinate direction.2. Follow the selected direction for a small distance.3. Find the local minimum in the hyperplane normal to the chosen coor-dinate direction starting from the current con�guration (the \lateral"movement).4. If the hyperplane local minimum in step 3 has a potential value less thanthe potential at the previous hyperplane local minimum, we have founda \hill" from which we can use a normal descent method to �nd theneighboring overall local minimum.5. Steps 2, 3 are repeated from the point in step 3 using the same selectedcoordinate direction to �nd new hills until an obstacle is encountered.As the above process proceeds, we obtain a sequence of points on the \hills"connected by the path we just traversed. We continue the search from each \hill"to �nd the next \hill." From each \hill" we also use a descent method to �ndthe nearby local minimum. All these local minima and \hills" are connectedto form a partial path of the overall graph. If a local minimum already in theoverall graph is encountered, then the partial path currently being constructedcan be connected to the rest of the graph. When a partial path ends becausean obstacle is encountered, a new random starting con�guration and randomlyselected coordinate direction is selected and a new partial path is constructed.Parallel Implementation of Generating the Graph In order to constructthe roadmap, we need to glue the generated partial paths together. Each partial

path can be generated independently. The only communication required occurswhen a partial path is complete and must be connected to the existing graph.Hence this process is quite suitable for parallel processing. We use master-slavescheme for the parallel implementation of constructing the graph. One masterprogram is responsible for accepting partial paths and glueing the nodes andedges to the graph, and the slave programs keep generating and sending partialpaths to the master program. Generating each partial path takes a few secondsfor a single processor, while glueing a path to the graph takes on the order ofmilliseconds. The messages from the slaves are very short. Therefore we expectlinear speedup for up to at least a few hundred processors.A variation of the Graph Build method After a few minutes of generatingand glueing the partial paths to the graph, there emerges a large graph consistingof more than 70% of all the nodes, while a few dozen other graphs have just acouple of nodes. If we detect this situation, it is much more e�cient to switchto concentrating on connecting the small graphs to the largest one. However, ifwe switch prematurely, the resulting graph may be too sparse, making it moredi�cult to �nd paths when the input query is given. The appropriate switchingpercentage depends on the speci�c W-space con�guration.2.3 Finding a Path from Start to Goal Con�gurationOnce the roadmap is constructed, the start and goal con�gurations are attachedto the graph by using the descent algorithm to locate their respective localminima. Once they are attached to the graph, we can use any standard graphsearch algorithm to �nd a path. We are using breadth-�rst search, whose memoryrequirements are feasible in our cases, given that we have on the order of a fewhundred to one thousand nodes. We also tried iterative deepening depth-�rstsearch, but performance su�ered due to the high branching factor.3 Experimental ResultsWe are using SGI Challenge Clusters consisting of 3 Challenge L machines and1 Challenge XL machine. Each Challenge L machine has 4 R10000 processorsand Challenge XL has 8 R10000 processors. We used PVM3 (Parallel VirtualMachine) for the parallel processing.In Table 1, each experiment was run 10 times. Along with the average value,standard deviation and worst case are shown. P represents the ratio of the largestgraph vs the total number of nodes, at which we stop random generation andtry to connect disconnected components. LM is the total number of nodes. ATbis the graph build time, ATs is the average time required to connect Figure 3(a)and Figure 3(h). ATr is the average time to actually regenerate the path. Ittook about 7 minutes to compute the graph for Figure 3 with the switch-overpercentage of 60%. The time for connecting the Figure 3(a) and Figure 3(h) tothe graph after pre-processing was 2 seconds. Regenerating the path in W-space

(a) (b) (c) (d)

(e) (f) (g) (h)Fig. 3. a 7 dof robot example from start(a) to goal(h) con�gurationP LM SDlm ATb SDb WTb ATs SDs WTs ATr SDr WTrratio node count graph build time graph search time path regen. time30% 698 105 237 85 350 3 2 6 10 10 2160% 954 162 463 144 634 2 2 5 8 6 1580% 993 83 482 97 620 2 1 3 8 2 11Table 1. performance for Figure 3 wrt switch-over ratio with 16 processors,SD =standard deviation, WT =worst case; times are in seconds.took about 8 seconds because the partial paths are not stored when the graphis generated to reduce the memory requirement. If the partial paths were storedduring pre-processing, the time required for regenerating the path would be 0.The unit of each column except LM is in seconds. SD and WT represents stan-dard deviation and worst case respectively. For this example, the performance ofactually �nding the path is quite consistent because obstacles are rather evenlydistributed in the W-space. Changing switch-over ratio directly a�ects the num-ber of nodes generated and it also a�ects the path regeneration time. If the ratiois set too low, the resulting graph has fewer nodes and the path generated maynot be optimal.For the second example(Figure 4), the fastest pre-processing time for Fig-ure 4 was 47 seconds when the switch-over ratio was set to 60%. However, theperformance of �nding the actual path varied more depending on where the in-put con�guration is set because if the input con�guration is placed where it'sdi�cult to �nd by randomization, the corresponding local minimum may not bein the graph. In that case, the planner must search for the nodes that are in thegraph from that point. Nevertheless, it never exceeded more than 10 seconds toconnect to the graph because the algorithm's ability to connect local minima is

(a) (b) (c) (d)

(e) (f) (g) (h)Fig. 4. an 8 dof robot example from start(a) to goal(h) con�gurationP LM SDlm ATb SDb WTb ATs SDs WTs ATr SDr WTrratio node count graph build time graph search time path regen. time60% 182 25 87 11 96 12 10 23 6 7 1670% 193 26 93 14 105 11 8 22 5 3 1080% 257 171 209 155 442 10 3 14 5 1 7Table 2. performance for Figure 4 wrt switch-over ratio with 16 processors,SD =standard deviation, WT =worst case; times are in seconds.NP ATb SDb WTb SU SCno. procs graph build time speedup e�ciency1 6684 913 7692 1.00 1.004 1750 280 2120 3.82 0.958 921 153 1100 7.26 0.9116 482 97 620 13.87 0.87Table 3. graph build time for Figure 4 wrt number of processorsvery robust.Table 3 shows the graph build time for Figure 4 with the varying numberof processors used. The switch-over ratio was set to 80%. NP is the numberof processors, SU represents the speed-up, and SC = SU=NP . The scalabilityis quite good as expected up to 16 processors. More processors will be tried tomeasure the scalability in the future.

4 Conclusion and Future WorkIn this paper, we presented a novel method to combine randomized search andpotential �elds to solve motion planning problems in 2 dimensional W-spaceand high dimensional C-space. The experimental results show that this methodis very e�cient even for very di�cult problems with a short period of prepro-cessing. The di�erentiable potential function and the upstream ascent strategiesused in this paper are easily adaptable to 3D W-spaces. Hence we expect thatour methods to be easily extended to a 3D workspace environment in a verystraighforward way. This is focus of our future research.References1. P. Adolphs and H. Tolle. Collision-free real-time path-planning in time varyingenvironment. In Proc. IEEE/RSJ Int'l Conf. on Intelligent Robots and Systems,pages 445{452, 1992.2. J. Barraquand, B. Langlois, and J. C. Latombe. Numerical potential �eld tech-niques for robot path planning. IEEE Trans. Systems, Man, and Cybernetics,SMC-22(2):224{241, March/April 1992.3. Pierre Bessiere, Juan-Manuel Ahuactzin, El-Ghazali Talbi, and Emmanuel Mazer.The Ariadne's Clew algorithm: Global planning with local methods. In Proc.IEEE/RSJ Int'l Conf. on Intelligent Robots and Systems, 1993.4. �A. Bj�orck. Numerical Methods for Least Squares Problems. SIAM, 1989.5. Pang C. Chen and Yong K. Hwang. SANDROS: a motion planner with perfor-mance proportional to task di�culty. In Proc. IEEE Int'l Conf. on Robotics andAutomation, pages 2346{2353, 1992.6. Y.K. Hwang and N. Ahuja. Gross motion planning { a survey. ACM ComputingSurveys, 24(3):219{291, 1992.7. Jin-Oh Kim and Pradeep K. Kohsla. Real-time obstacle avoidance using harmonicpotential functions. IEEE Trans. Robotics and Automation, 8(3), June 1992.8. L. Kavraki. Randomized preprocessing of C-space for fast path planning. In Proc.IEEE Int'l Conf. on Robotics and Automation, pages 2138{2145, 1994.9. Lydia Kavraki, J.C. Latombe, Petr Svestka, and M.H. Overmars. Probabilisticroadmaps for path planning in high-dimensional con�guration spaces. IEEE Trans.Robotics and Automation, 12(4):566{580, 1996.10. Thierry Laliberte and Clement Gosselin. E�cient algorithms for the trajectoryplanning of redundant manipulators with obstacle avoidance. In Proc. IEEE Int'lConf. on Robotics and Automation, pages 2044{2049, 1994.11. J. C. Latombe. Robot Motion Planning. Kluwer Academic Publ., Norwell, MA,1991.12. V. Lumelsky and Edward Cheng. Real-time collision avoidance in teleoperatedwhole sensitive robot arm manipulators. IEEE Trans. Systems, Man, and Cyber-netics, SMC-23(1):194{203, Jan/Feb 1993.This article was processed using the LATEX macro package with LLNCS style

