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This book is devoted to clustering methods designed specifically for very
large datasets in which the data items are represented by vectors of numerical
attributes. All the methods are designed to take advantage of sparsity in the
data and are particularly well suited for text data represented by a bag-of-words
model. Only clustering, as an unupervised method, is discussed. Experimental
results to illustrate the behavior of the methods is presented. One of the virtues
is that all the methods are tried on the same dataset of text data so that one
can compare the behavior of each method with another, though the dataset
itself is decidedly small by the standards today, having 3891 documents and
4099 words.

Evaluating the performance quality of a clustering method is always prob-
lematic. Often it appears each author chooses his/her own method based on
convenience and it is often difficult to compare the performance of a method
in one paper with that in another paper, even if used on similar data, because
the performance measures used are different. The book includes a description
of a whole variety of measures, giving the reader an overview of the variety of
methods one can use. In a separate chapter on evaluation, the author describes
so-called internal criteria, depending only the same attributes used by the clus-
tering algorithm itself, and so-called external criteria which essentially involves
comparing the clustering results with a previously fixed gold standard labelling.

One internal criterion is the sum of all the distances between data samples
within each individual cluster using an appropriate ”distance” function. In
the case of Euclidean distance or closely related distance measure, this is also
the criterion that K-means tries to optimize. So one ends up with measuring
performance with a criterion that the clustering algorithm itself is trying to
optimize. A second criterion mentioned is the ”silhouette coefficient” that has
been commonly used in Statistics. This criterion has the advantage of comparing
the distances among samples within each cluster against the smallest distance
from each sample to a data item in a different cluster, and reducing this to a
ratio in the interval [-1,1]. This gives some idea on how well the clusters are
separated from each other.

When an external gold standard is available, then many methods exist to
compare the computed results with the so-called ”true” results. The book has
a nice summary of the principal ones used in the literature.

• The confusion matrix (known among statisticians as a contingency table).

• The ”entropy” (actually a relative entropy treating the gold standard as
the ”true” result).
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• A purity measure (for each cluster, what label occurs the most, add up
their respective portions, each weighted by the cluster size).

• From the Information Retrieval community: the precision, recall and F-
measure. These measures are typically used to measure how well queries
into a database return relevant documents, and is only indirectly useful in
measuring the quality of a clustering of a whole data set.

• From Information theory, the mutual information. This is actually closely
related to the entropy measure previously mentioned, though the mutual
information is symmetric between the two labellings being compared (here
the computed vs the gold standard).

• The Rand Statistic and Jaccard coefficients, which are both based on
counting the number of pairs of data samples in which both the computed
clustering and the gold standard are consistent in placing the the two
samples together in the same cluster or not.

All the external methods are based simply on comparing cluster member-
ships, ignoring any intrinsic distance measure among the data items. Hence
they can all be derived from the confusion matrix, which is then a very useful
precursor to all the other measures. In the body of the book, the experimental
results include the confusion matrix and some simple accuracy measures. Hence
it would be theoretically possible for the reader to compute all these other ex-
ternal measures. By sticking to the confusion matrix, however, it is a lot easier
to give the reader some intuition on how well the methods are doing. Whenever
the performance of a clustering method is reduced to a single number, it is easy
to see if one clustering method is doing better than another, but it hard to
get a sense of whether the performance is good enough in an intuitive sense to
capture the ”essence” of the data well enough to be useful in an application.

The table of contents shows which clustering methods are discussed.

K-means - quadratic and spherical. The K-means method is by now a
classical method which is very popular. It is a simple local optimization
method, based on trying the reduce the distances among the data items
within each cluster, which the author observes can get stuck at a local
minimum. The author promotes the use of an ”incremental” procedure
whenever the standard k-means method has stabilized (every data sample
is closer to its own center than to any other center and hence no data
sample is moved). This consists of doing a ”first variation” by attempting
to move a data sample from one cluster to a neighboring cluster and seeing
if the objective function is reduced. The author also observes that the k-
means algorithm is also useful as a postprocessing step after the use of the
other algorithms.

BIRCH (Balanced Iterative Reducing and Clustering) - including a
k-means variant. BIRCH [3] is an incremental algorithm designed to
produce a clustering based on one pass through the data in an incremental
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manner. As each data item is processed, it is either assigned to an existing
cluster or acts as a seed for a new cluster. At the end one has just the
clusters and their centers, but not the original data.

PDDP (Principal Direction Divisive Partitioning) - original and a
spherical version. PDDP [1] is a hierarchical top-down clustering method.
The original method project all the data onto a single line chosen to max-
imize the spread (specifically the variance) among the projections, and
then use this one-dimensional projection to split the dataset in two. This
process is repeated recursively on each half, yielding a tree whose leaves
are the clusters. For text datasets, the author observes that a spherical
variant actually performs much better, and post-processing by K-means
also improves the results.

The rest of the book is devoted to variations to these methods obtained by
varying the measures of distance between the data samples, or other modifica-
tions to the objective function, to achieve either higher quality clusterings or
faster convergence. The main items treated are

Smoothing. K-means is a simple local optimization method which can easily
land at an undesireable local minimum, and a chapter is devoted to a
smoothing method that is designed to promote convergence to the global
minimum. Though the original idea comes from deterministic anneal-
ing [2], this is not the intuition used to derive the method in the book.
Within the K-means algorithm, one must compute the minimum distance
from each data sample to a cluster center. In smoothing methods, such a
discrete minimum is replaced by a parametrized smooth function of these
distances which converge to the discrete minimum as the parameter goes
to infinity. For example, suppose z = (zj)

k
j=1

is a vector of distances
from a given data sample to the j-th cluster center. Instead of computing
minj zj = maxj −zj, we compute

f(s) = − log
(

∑

j exp(−zj/s)
)

and observe that
lim

s→∞

f(s) = max
j

(−zj),

analogous to the definition of the l∞ norm of a vector. For s small enough,
f(s) is convex leading to an easy optimization problem. The parameter s
can then be gradually increased leading in the end to the “best” solution of
the original minimization algorithm, though the details on how to choose
s are left open.

Information Theoretic Measures. Two chapters are devoted to distance
measures derived from Information theory: the Kullback-Liebler distance,
and the more general Bregman divergences. These are generally much bet-
ter suited to bag-of-words text data than using simple Euclidean distance
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measures. Actually, the book discusses a special variant of the Bregman
divergence, namely the Csiszar divergence. A Csiszar divergence starts
with a base function φ(t) which is

• φ has two continuous derivatives on (0, +∞).

• φ is strictly convex on (0, +∞).

• limt→0+ φ(t) = +∞.

• φ(1) = φ′(1) = 0 and φ′′(1) > 0.

Then a Csiszar divergence is the pseudo-distance function

dφ(s, t) = tφ(s/t).

It turns out that dφ(s, t) is convex in both s and t. If φ satisfies only
the first two conditions above, then we have a Bregman divergence, in
which case dφ(s, t) is convex only in s. The Kullback-Liebler distance and
many other information theoretic distances are special cases of Bregman
or Csiszar divergences using a special choice for φ. For vectors, one applies
these divergences elementwise and adds up the results. Even the Euclidean
norm is a Bregman divergence, though in this case, the base function
φ(t) = t2 has domain consisting of (−∞, +∞). For a Kullback-Liebler-like
distance, convex in both parameters, the base function is φ(t) = t log t −
t + 1.

Extensive discussion is carried out on how to adapt the K-means algorithm
to use these information theoretic measures. Even a BIRCH-like method
is presented.

The book is a useful reference for the methods presented and has an extensive
bibliography, including short informative bibliographic notes at the end of each
chapter and pointers to many related methods not treated within this book. The
methods are presented in clear and precise manner, though the reader must get
used to some non-standard notation used in the algorithms and formulas, and
in some cases must hunt around the book to find the definitions for some of the
notation.

References

[1] D.L. Boley. Principal Direction Divisive Partitioning. Data Mining and

Knowledge Discovery, 2:325–344, 1998.

[2] K. Rose, E. Gurwitz, and C.G.Fox. A deterministic annealing approach to
clustering. Pattern Recognition Letters, 11(9):589–594, 1990.

[3] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: A new data clustering
algorithm and its applications. J. of Data Mining and Knowledge Discovery,
1(2):141–182, 1997.

4


