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Abstract

The spatial autoregression (SAR) model is a knowledge discovery technique used for mining
massive geo-spatial data in many application domains. Estimation of the parameters of the exact
SAR model using Maximum Likelihood (ML) theory is computationally very expensive because
of the need to compute the logarithm of the determinant (log-det) of a large matrix in the log-
likelihood function. In this paper, we developed a faster, scalable andNOvel pRediction and
estimationTecHnique for the exactSpaTial Auto Regression model solution (NORTHSTAR). In
this heuristic, the SAR model parameters are first estimatedusing a computationally more efficient
sum-of-squared errors (SSE) term of the log-likelihood function. Next, starting from an initial
estimate very close to the optimal estimate, the computationally more expensive log-det term is
embedded into the estimation process to save log-det computations. Experimental results show
that the NORTHSTAR algorithm outperformed the previous exact SAR model solutions.

1 Introduction

Explosive growth in the size of spatial databases has highlighted the need for spatial data analysis
and spatial data mining techniques to mine the interesting but implicit spatial patterns within these
large databases. Many classical data mining algorithms, such as linear regression, assume that the
learning samples areindependently and identically distributed (i.i.d.). This assumption is violated
in the case of spatial data due to spatial autocorrelation [1, 21]. In such cases classical linear
regression yields a weak model with not only low prediction accuracy [22] but also residual error
exhibiting spatial dependence. Modeling spatial dependencies improves overall classification and
prediction accuracies.

Nasa Relevance: The spatial autoregression model (SAR) [4, 6, 21] is a generalization of the
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tion and prediction accuracy [3, 22] for many spatial datasets exhibiting strong spatial autocor-
relation. NASA’s Earth Observing System (EOS) generates one terabyte of data every day with
satellites observing the earth’s surface. Spatial data mining techniques, such as SAR, can provide
a tool to analyze these datasets to extract information on land use, land cover, and parameters, such
as temperature, pressure, precipitation, etc.

Challenge: However, it is computationally expensive to estimate the parameters of SAR. For
example, it can take an hour of computation for a spatial dataset with 10,000 observation points
on a single IBM Regatta processor using a 1.3GHz pSeries 690 Power4 architecture with 3.2 GB
memory [7, 8]. This has limited the use of SAR to small problems, despite its promise to improve
classification and prediction accuracy for larger spatial datasets.

Related Work: There are two families of SAR model solutions, one based on MLTheory
[12, 14, 20, 13, 18, 15, 23, 19, 16, 17] and the second based on Bayesian Statistics [11, 2, 10, 22].
ML Theory-based SAR model solutions can be classified into exact and approximate solutions,
based on how they compute the log-det and least-squares (SSE) term of the SAR solution pro-
cedure. This study covers only ML based exact SAR model solutions. Previous approaches first
compute the log-det term of the SAR model to estimate the SAR parameters which is computa-
tionally complex and then compute SSE term of the SAR solution. So, the previous approaches
are not scalable to the large problem sizes. In this paper we developed a faster, scalable and
NOvel pRediction and estimationTecHnique for the exactSpaTial Auto Regression model solu-
tion (NORTHSTAR). In the NORTHSTAR heuristic, SAR model parameters first estimated using
much less computationally complex SSE term of the log-likelihood function. A second compu-
tationally more complex step is required only if the parameters obtained in the first step are not
accurate enough; in this case, the log-det term is embedded into the estimation process.

Contributions: A faster, scalable andNOvel pRediction and estimationTecHnique for the
exactSpaTial Auto Regression model solution (NORTHSTAR) was developed. Second, we ex-
perimentally showed that the proposed algorithm outperforms the eigen-value approaches (EV)
and straight log-det approach (SLD).

2 Problem Statement and Background on SAR Model

2.1 Problem Statement

Given a spatial frameworkS for the underlying spatial graphG, a collection of attribute func-
tions fxk over S, a dependent functionfy, a family F of learning model functions, and the
neighborhood relationship R, build the SAR model and find itsparameters by minimizing the
concentrated log-likelihood (objective) function. Constraints are, geographic spaceS is a multi-
dimensional Euclidean Space, the values of the explanatoryvariablesx and the dependent function
(observed variable)y may not be independent with respect to those of nearby spatial sites, i.e.,
spatial autocorrelation exists, the domain of explanatoryand dependent variables are real numbers,
SAR parameter� varies in the range[0; 1), and the neighborhood matrixW exhibits sparsity.

2.2 Background on SAR Model

The SAR model [4, 1], also known in the literature as spatial lag model or mixed regressive
model, is an extension of the linear regression model and is given in equation (1).



y = �Wy + x� + � (1)

Here� is the spatial autocorrelation parameter,y is ann-by-1 vector of observations on the
dependent variable,x is ann-by-k matrix of observations on the explanatory variable,W is then-by-n neighborhood matrix that accounts for the spatial relationships (dependencies) among the
spatial data,� is ak-by-1 vector of regression coefficients, and� is ann-by-1 vector of unobserv-
able error. Thespatial autocorrelationterm�Wy is added to the linear regression model in order
to model the strength of the spatial dependencies among the elements of the dependent variable,y. One can use Moran’s I index [5] in order to see whether there is significant spatial dependency
in the given dataset.

The neighborhood matrices used by the SAR model are the neighborhood relationships on one-
dimensional regular and irregular grid spaces with two neighbors and two-dimensional regular or
irregular grid space with ”s” neighbors, where ”s” is four, eight, sixteen, twenty-four and so on
neighbors [5, 9]. The rows of the neighborhood matrixW sum to 1, which means thatW is row-
standardized. A non-zero entry in thejth column of theith row indicates that thejth observation
will be used to adjust the prediction of theith row wherei is not equal toj.
3 Experimental Evaluation

Due to the limited space, the details of the NORTHSTAR algorithms are introduced in the ap-
pendix section. We compared the proposed algorithm, NORTHSTAR, with the exact EV and SLD
approaches using a real dataset. The dataset is a spring Landsat 7 scene, taken May 31, 2000,
satellite remote sensing data which is belong to Carlton County, Minnesota. The region is predom-
inantly forested, composed mostly of upland hardwoods, andlow-land conifers. This scene was
clipped to the Carlton county boundaries, which resulted inan image of size 1343 lines by 2043
pixels and 6-bands. Out of this we took a subset image of 1200 by 1800 to eliminate boundary
zero-valued pixels. This translates to aW matrix of size 2.1 million x 2.1 million (2.1M x 2.1M)
points. The observed variablex is a matrix of size 2.1M by 6. We chose nine thematic classes for
the classification.

Table 1. The execution time and the memory usage
Problem Size(n) Time

Exact EV Exact SLD NORTHSTAR
400x400 (160,000) Intractable 32 minutes 24 minutes
1000x1000 (1,000,000) Intractable 72 hours 45 hours

Problem Size(n) Memory (MB)
Exact EV Exact SLD NORTHSTAR

50x50 (2,500) 50 1 1
100x100 (10,000) 2400 4.5 4.5
400x400 (160,000) � 6:14 � 105 70 70
1000x1000 (1,000,000) � 8 � 106 450 450
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Figure 1. The savings from log-det computation rho ( �) 4:7293 � 10�1.

We, first, tested the scalability (computation time) and memory usage of the algorithms on an
IBM Regatta 1.3GHz Power4 processor. The computation (CPU)time of the NORTHSTAR out-
performs the other algorithms (Table 1). The memory usage isvery low due to the sparse represen-
tation of the neighborhood matrixW as a sparse matrix. However, this is not possible for the EV
approach since it has to use the dense representation of the matrix. As can be seen, NORTHSTAR
is the most scalable algorithm among the exact SAR model solutions.

We compared NORTHSTAR and SLD algorithms to see the savings from the log-det computa-
tions for various precision of� parameter (e.g.�=4:7293 � 10�1.) Since step (ii) of NORTHSTAR
starts with an initial� search space of(0; �init�est) where�init�est is the estimate of� from the first
step of NORTHSTAR, the algorithm saves from the log-det computations (Figure 1). Experiments
showed that when the precision decreased savings from log-det computation increases.

4 Accomplishments and Future Work

We developed a ML based exact SAR model solution. In this algorithm, the SAR model parame-
ter is first estimated using a computationally more efficientSSEterm of the log-likelihood function.
Next, starting from an initial estimate very close to the optimal estimate, the computationally more
expensive log-det term is embedded into the estimation process to save log-det computations. Ex-
periments show that the NORTHSTAR algorithm outperformed the previous exact SAR model
solutions.

In the future, we plan to investigate to put bounds to the� parameter, to use optimization algo-
rithms other than GSS to reach the large problem sizes, to usedifferent neighborhood structures
to evaluate the proposed algorithm, and to test the behaviorof the NORTHSTAR for different
problem sizes and varying� parameters.
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5 Appendix

5.1 NORTHSTAR Algorithm

The log-likelihood function of ML based SAR model solution basically contains two terms, such
as, log-det term and SSE term (Equation 2).

minj�j<1 �2n ln jI� �Wj| {z }log�det + ln((I� �W)y)T (I� x(xTx)�1 xT )T (I� x(xTx)�1 xT )((I� �W)y)| {z }SSE
(2)

In contrast to the previous studies, in the NORTHSTAR algorithm, the SAR model parame-
ters are first estimated using a computationally more efficient SSEterm of the corresponding log-
likelihood function of SAR model. Next, starting from an initial estimate very close to the optimal
estimate, the computationally more expensive log-det termis embedded into the estimation pro-
cess to save log-det computations. NORTHSTAR algorithm limits range of the SAR parameter�
with the initial estimate of the� parameter using SSE term. Since the range of the� limited, the
number of the log-det computations also decreases.

The pseudocode of NORTHSTAR algorithm is given in Figure 2, where GSS stands for golden
section search. Instead of the GSS, which is not sensitive tothe derivative of the optimized func-
tion, a derivative-sensitive search algorithm can be used for faster convergence to the optimal SAR
parameter� but we need to compute inverse of the large matrix(I � �W) which is as costly as
log-det computation in Step (ii). Since the likelihood function is uni-modular, the GSS always



Input: (�start,tol,W)
Output: (�opt; �opt; �2opt)
Steps:
1. Step (i)f
2. �init�est=GSS(range = [0; 1℄
3. start = f�startg
4. floglike = SSE) g
5. Step (ii)f
6. �opt=GSS(range = [0; �init�est℄
7. start = f�init�estg
8. floglike = �2n � ln jI� �̂Wj+ SSE)
9. Compute(�opt; �2opt) g
10. return (�opt; �opt; �2opt)

Figure 2. The NORTHSTAR algorithm.

finds the global minimum of the log-likelihood function. Thus, we have an optimal parameter esti-
mation for the ML-based SAR model solutions. We plotted the log-likelihood function in order to
see its extrema for the problem size of 2500 in Figure 3. We canalso check the magnitudes of the
components of the log-likelihood function, namely the log-det term and theSSEterm, which will
lead to our NORTHSTAR heuristic.

Figure 2 explicitly reveals, first, that the log-likelihoodfunction is uni-modular and, second,
that the log-det term in equation 2 isvery smallwith respect to theSSEterm. Table 2 shows the
magnitudes of the log-det andSSEter ms at the optimal� value where log-likelihood function is
minimum for different neighborhood structures. The cost ofthe NORTHSTAR algorithm is dom-
inated by the sparse LU factorization operation, which is(j �m)(2nbubl) + 9n2 + 2j � 3. The
parametersbu and bl correspond to the upper bandwidth and lower bandwidth of theneighbor-
hood matrixW respectively. The parameter(j � m) is the number of log-det computations for
NORTHSTAR algorithm.

Table 2. The magnitudes of the log-det and SSEterms at the optimal � value where the log-
likelihood function is minimum

Problem Size(n) Neighborhood �opt abs(Log-Likelihood) abs(log-det) abs(SSE)
2500 4-N 0.467 15.185 15.125 0.061
2500 8-N 0.430 15.267 15.238 0.028

The total computational complexity (the operation counts)of our NORTHSTAR heuristic is
listed in Figure 4 and it should be noted thatj � n. The parameterj in Figure 4 is around 8 due
to the fact that the estimated� from step (i) of NORTHSTAR is in the�0:1 range of the optimal�
value. The variablem is the number of savings from log-det computations (i.e., 3 on average). EV
computation based SAR model solution cannot go beyond problem size of10K due to memory
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Figure 3. The components of the log-likelihood function

Problem Size NORTHSTAR EV SLDn (j �m)(2nbubl) + 9n2 + 2j � 3 23n3 + 529n2 + j j(2nbubl) + 9n2 + j
Figure 4. The total computational complexity of NORTHSTAR, EV, and SLD

constraints. For large problem sizes, our approach is much more computationally efficient than the
SLD approach and the EV approach.


