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Abstract

The spatial autoregression (SAR) model is a knowledge dsgdechnique used for mining
massive geo-spatial data in many application domains.ntzgion of the parameters of the exact
SAR model using Maximum Likelihood (ML) theory is compaoiailly very expensive because
of the need to compute the logarithm of the determinant dlexy-of a large matrix in the log-
likelihood function. In this paper, we developed a fasteglable andNOvel pRediction and
estimationTeddnique for the exacBpaTial Auto Regression model solution (NORTHSTAR). In
this heuristic, the SAR model parameters are first estimasaty a computationally more efficient
sum-of-squared errors (SSE) term of the log-likelihoodcimm. Next, starting from an initial
estimate very close to the optimal estimate, the compuiatio more expensive log-det term is
embedded into the estimation process to save log-det catigng. Experimental results show
that the NORTHSTAR algorithm outperformed the previoustéXAR model solutions.

1 Introduction

Explosive growth in the size of spatial databases has Iglgtdd the need for spatial data analysis
and spatial data mining technigues to mine the interestingnplicit spatial patterns within these
large databases. Many classical data mining algorithntty as linear regression, assume that the
learning samples aiadependently and identically distributed (i.i.dT)his assumption is violated
in the case of spatial data due to spatial autocorrelatior2{]. In such cases classical linear
regression yields a weak model with not only low predicticowacy [22] but also residual error
exhibiting spatial dependence. Modeling spatial depecidsnmproves overall classification and
prediction accuracies.

Nasa Relevance: The spatial autoregression model (SAR) [4, 6, 21] is a gdiraten of the
linear regression model to account for spatial autocdiogla The model yields better classifica-
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tion and prediction accuracy [3, 22] for many spatial datsahibiting strong spatial autocor-
relation. NASAs Earth Observing System (EOS) generatesterabyte of data every day with
satellites observing the earth’s surface. Spatial datangirechniques, such as SAR, can provide
a tool to analyze these datasets to extract informationrhuae, land cover, and parameters, such
as temperature, pressure, precipitation, etc.

Challenge: However, it is computationally expensive to estimate theupeeters of SAR. For
example, it can take an hour of computation for a spatialsgataith 10,000 observation points
on a single IBM Regatta processor using a 1.3GHz pSeries 6@@m architecture with 3.2 GB
memory [7, 8]. This has limited the use of SAR to small proldedespite its promise to improve
classification and prediction accuracy for larger spatihsdets.

Related Work: There are two families of SAR model solutions, one based onTkory
[12, 14, 20, 13, 18, 15, 23, 19, 16, 17] and the second base@pesian Statistics [11, 2, 10, 22].
ML Theory-based SAR model solutions can be classified ineceand approximate solutions,
based on how they compute the log-det and least-squareE)(term of the SAR solution pro-
cedure. This study covers only ML based exact SAR modelisoisit Previous approaches first
compute the log-det term of the SAR model to estimate the SARrpeters which is computa-
tionally complex and then compute SSE term of the SAR saluti®o, the previous approaches
are not scalable to the large problem sizes. In this papereaveloped a faster, scalable and
NOvel pRediction and estimatiomeddnique for the exacgparial Auto Regression model solu-
tion (NORTHSTAR). In the NORTHSTAR heuristic, SAR model aareters first estimated using
much less computationally complex SSE term of the log-liadd function. A second compu-
tationally more complex step is required only if the paraenebbtained in the first step are not
accurate enough; in this case, the log-det term is embedtizthie estimation process.

Contributions. A faster, scalable anblOvel pRediction and estimatioi edHnique for the
exactSparial Auto Regression model solution (NORTHSTAR) was developed. Skcae ex-
perimentally showed that the proposed algorithm outperéothe eigen-value approaches (EV)
and straight log-det approach (SLD).

2 Problem Statement and Background on SAR Modd

2.1 Problem Statement

Given a spatial framework for the underlying spatial grap@, a collection of attribute func-
tions fx, over S, a dependent functiorfy, a family F of learning model functions, and the
neighborhood relationship R, build the SAR model and findoasameters by minimizing the
concentrated log-likelihood (objective) function. Caastts are, geographic spases a multi-
dimensional Euclidean Space, the values of the explanatoigblesx and the dependent function
(observed variabley may not be independent with respect to those of nearby $igées, i.e.,
spatial autocorrelation exists, the domain of explanaaoy dependent variables are real numbers,
SAR parametep varies in the rangé), 1), and the neighborhood matrW exhibits sparsity.

2.2 Background on SAR Model

The SAR model [4, 1], also known in the literature as spatigl inodel or mixed regressive
model, is an extension of the linear regression model angéngn equation (1).



Here p is the spatial autocorrelation parameteris ann-by-1 vector of observations on the
dependent variables is ann-by-k£ matrix of observations on the explanatory variablé€,is the
n-by-n neighborhood matrix that accounts for the spatial relatips (dependencies) among the
spatial datag is ak-by-1 vector of regression coefficients, anig ann-by-1 vector of unobserv-
able error. Thespatial autocorrelatiorterm pWy is added to the linear regression model in order
to model the strength of the spatial dependencies amondedheents of the dependent variable,
y. One can use Moran’s | index [5] in order to see whether treesggnificant spatial dependency
in the given dataset.

The neighborhood matrices used by the SAR model are the bailgbod relationships on one-
dimensional regular and irregular grid spaces with two Imleggs and two-dimensional regular or
irregular grid space with ”s” neighbors, where ”s” is fouigl, sixteen, twenty-four and so on
neighbors [5, 9]. The rows of the neighborhood ma¥xsum to 1, which means th&V is row-
standardized. A non-zero entry in tli¢& column of thei** row indicates that thg"* observation
will be used to adjust the prediction of th#& row wherei is not equal tg.

3 Experimental Evaluation

Due to the limited space, the details of the NORTHSTAR atbars are introduced in the ap-
pendix section. We compared the proposed algorithm, NORBRS with the exact EV and SLD
approaches using a real dataset. The dataset is a springdtahdcene, taken May 31, 2000,
satellite remote sensing data which is belong to CarltomB8oinnesota. The region is predom-
inantly forested, composed mostly of upland hardwoods,leweand conifers. This scene was
clipped to the Carlton county boundaries, which resultedrinmage of size 1343 lines by 2043
pixels and 6-bands. Out of this we took a subset image of 1%0IBBO0 to eliminate boundary
zero-valued pixels. This translates t&¥ matrix of size 2.1 million x 2.1 million (2.1M x 2.1M)
points. The observed variahkeis a matrix of size 2.1M by 6. We chose nine thematic classes fo
the classification.

Table 1. The execution time and the memory usage

Problem Sizef) Time

Exact EV | Exact SLD| NORTHSTAR
400x400 (160,000) Intractable | 32 minutes| 24 minutes
1000x1000 (1,000,000) Intractable | 72 hours 45 hours
Problem Sizef) Memory (MB)

Exact EV | Exact SLD| NORTHSTAR
50x50 (2,500) 50 1 1
100x100 (10,000) 2400 4.5 4.5
400x400 (160,000) ~ 6.14 % 10° 70 70
1000x1000 (1,000,000) ~ 8% 10° 450 450
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Figure 1. The savings from log-det computation rho ( p) 4.7293 * 1071,

We, first, tested the scalability (computation time) and mgnusage of the algorithms on an
IBM Regatta 1.3GHz Power4 processor. The computation (Gié) of the NORTHSTAR out-
performs the other algorithms (Table 1). The memory usagerislow due to the sparse represen-
tation of the neighborhood matrW as a sparse matrix. However, this is not possible for the EV
approach since it has to use the dense representation oftine.nds can be seen, NORTHSTAR
is the most scalable algorithm among the exact SAR modelisnki

We compared NORTHSTAR and SLD algorithms to see the saviogs the log-det computa-
tions for various precision of parameter (e.gpe=4.7293 x 10~.) Since step (ii) of NORTHSTAR
starts with an initiap search space @0, p;ni;_es:) Wherep,;; s is the estimate of from the first
step of NORTHSTAR, the algorithm saves from the log-det cotatons (Figure 1). Experiments
showed that when the precision decreased savings fromdbgednputation increases.

4 Accomplishmentsand Future Work

We developed a ML based exact SAR model solution. In thisrdlgn, the SAR model parame-
ter is first estimated using a computationally more effic&®Eerm of the log-likelihood function.
Next, starting from an initial estimate very close to theimpd estimate, the computationally more
expensive log-det term is embedded into the estimationgsto save log-det computations. Ex-
periments show that the NORTHSTAR algorithm outperfornteal previous exact SAR model
solutions.

In the future, we plan to investigate to put bounds toghmarameter, to use optimization algo-
rithms other than GSS to reach the large problem sizes, tadlitfseent neighborhood structures
to evaluate the proposed algorithm, and to test the behavidte NORTHSTAR for different
problem sizes and varyingparameters.
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5 Appendix
51 NORTHSTAR Algorithm

The log-likelihood function of ML based SAR model soluticastically contains two terms, such
as, log-det term and SSE term (Equation 2).

. =2 _ _
ain — ln [ pW]+ In((1— pW)y)" (1~ x(x") " x")' (L x(x"x) ' x")(L— pW)y)
logtdet SEE

(2)

In contrast to the previous studies, in the NORTHSTAR athani the SAR model parame-
ters are first estimated using a computationally more effic&&SEterm of the corresponding log-
likelihood function of SAR model. Next, starting from antial estimate very close to the optimal
estimate, the computationally more expensive log-det isrembedded into the estimation pro-
cess to save log-det computations. NORTHSTAR algorithnitdimange of the SAR parameter
with the initial estimate of the parameter using SSE term. Since the range opthmited, the
number of the log-det computations also decreases.

The pseudocode of NORTHSTAR algorithm is given in Figure Beme GSS stands for golden
section search. Instead of the GSS, which is not sensititleetderivative of the optimized func-
tion, a derivative-sensitive search algorithm can be usethtter convergence to the optimal SAR
parametep but we need to compute inverse of the large maftix pW) which is as costly as
log-det computation in Step (ii). Since the likelihood ftino is uni-modular, the GSS always



InpUt: (Ostart;t()la W)

OUtpUt: (Oopta Bopta ngt)

Steps:

1.  Step (i){

2. Pinit—est=GSSange = [0,1]

3. start = {pstart }

4. frogiike = SSE) }
5. Step (ii){

6. Popt=GSStange = [0, pinit—est)
7. start = {pinitfest}
8. frogiike = =2 - In|I — jW| + SSE)
9. Compute(Bopt, 05,1) }

10.  return Qopt, Bopt; Topt)

Figure 2. The NORTHSTAR algorithm.

finds the global minimum of the log-likelihood function. T jwe have an optimal parameter esti-
mation for the ML-based SAR model solutions. We plotted twelikelihood function in order to
see its extrema for the problem size of 2500 in Figure 3. Weatsmcheck the magnitudes of the
components of the log-likelihood function, namely the bgj-term and th&SEterm, which will
lead to our NORTHSTAR heuristic.

Figure 2 explicitly reveals, first, that the log-likelihoddnction is uni-modular and, second,
that the log-det term in equation 2very smallwith respect to th&SEterm. Table 2 shows the
magnitudes of the log-det ar®SEter ms at the optimab value where log-likelihood function is
minimum for different neighborhood structures. The coshefNORTHSTAR algorithm is dom-
inated by the sparse LU factorization operation, whictyis- m)(2nb,b;) + 9n* + 25 — 3. The
parameter$, andb, correspond to the upper bandwidth and lower bandwidth ohtkighbor-
hood matrixW respectively. The parametéf — m) is the number of log-det computations for
NORTHSTAR algorithm.

Table 2. The magnitudes of the log-det and ~SSEterms at the optimal p value where the log-
likelihood function is minimum

Problem Sizef) | Neighborhood| p,,: | abs(Log-Likelihood)| abs(log-det) absSSH
2500 4-N 0.467 15.185 15.125 0.061
2500 8-N 0.430 15.267 15.238 0.028

The total computational complexity (the operation coumispur NORTHSTAR heuristic is
listed in Figure 4 and it should be noted tha& n. The parameteyf in Figure 4 is around 8 due
to the fact that the estimatedrom step (i) of NORTHSTAR is in the-0.1 range of the optimab
value. The variable: is the number of savings from log-det computations (i.en awerage). EV
computation based SAR model solution cannot go beyond @nolsize ofl0/K due to memory
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Figure 3. The components of the log-likelihood function
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Figure 4. The total computational complexity of NORTHSTAR,

constraints. For large problem sizes, our approach is mwsk somputationally efficient than the

SLD approach and the EV approach.

EV, and SLD




