
Clustering Very Large Data Sets with

Principal Direction Divisive Partitioning

David Littau1 and Daniel Boley2

1 University of Minnesota, Minneapolis MN 55455 littau@cs.umn.edu
2 University of Minnesota, Minneapolis MN 55455 boley@cs.umn.edu

1 Introduction

One of the challenges in data mining is the clustering of very large data sets.
We define a very large data set as a data set which will not fit into memory at
once. Many clustering algorithms require that the data set be scanned many
times during the clustering process. If the data cannot fit into memory, then
the data must be repeatably re-scanned from disk, which can be expensive.

One approach to clustering large data sets is to adapt clustering algorithms
suitable for small data sets to much larger data sets. There are two popular
methods used to adapt clustering algorithms to large data sets. The first
technique is to extract a sub-sample of the data, such that the sub-sample is
small enough to fit into available memory and be clustered. Other techniques
to accelerate the clustering process are often applied at the same time. Once
a clustering is obtained, the remaining data points can be assigned to the
clusters with the closest centroid. The major drawbacks to sampling are that
it can be difficult to know if a given subsample is a representative sample and
therefore provides an accurate clustering, and that the outliers will usually be
ignored.

The second technique commonly used to adapt clustering algorithms to
large data sets, as in [5, 6, 21], is to approximate a given data item by assigning
it to a single representative vector. One representative vector may take the
place of an arbitrary number of data items. Once a data item has been assigned
to a representative, it is no longer possible to differentiate it from any other
data item assigned to the same vector. Thus, the resolution of any clustering
of the data is limited by the granularity of the representatives.

We propose an alternate approach to adapt the Principal Direction Divi-
sive Partitioning (PDDP) clustering method [3] to very large data sets. We
create a Low-Memory Factored Representation (LMFR) of the data, and then
cluster the LMFR using PDDP. Every data point has a unique representation
in the LMFR, and every data point is examined during the construction of
the LMFR. The LMFR is constructed piecewise using samples of the data,

2 David Littau and Daniel Boley

such that the samples will fit into memory. The samples are selected without
replacement, and selection continues until the data set is exhausted. Once an
approximation has been constructed for each sample, the approximations are
assembled into an LMFR representing the entire data set.

The LMFR avoids what we claim are the major drawbacks to other tech-
niques. All data are examined during the construction of the LMFR, which
is not the case when sub-samples are clustered as representative of the entire
data set. Each data item has a unique representation in the LMFR, so the
granularity of the clustering can be finer than that achieved by a method
which assigns many data items to a single representative vector. Every data
item is examined and participates in the construction of the LMFR, so outliers
will not be ignored. Furthermore, since the method is deterministic, we need
not be concerned that other, perhaps better clusterings could be constructed.

The remainder of the chapter is as follows. First, we provide some back-
ground on a few of the methods available to cluster large data sets. Next, we
describe the technique used to construct the LMFR. Then, we describe how
the original representation of the data can be easily replaced by the LMFR in
the PDDP method, a process we call Piecemeal PDDP (PMPDDP). Finally
we show some experimental results which demonstrate that the clustering
quality of the PMPDDP method is similar to PDDP, and that PMPDDP
maintains the scalability of PDDP.

2 Background

The problem of clustering very large data sets is an active area of research.
Many approaches adapt existing clustering methods such as hierarchical ag-
glomeration [11] and k-means[9, p201] to much larger sets. There are also
clustering methods which were specifically designed from the ground up to be
used for large data sets. Note that the following is a sketch of some clustering
methods for large data sets, and is not intended to be taken as exhaustive.

2.1 Sampling

Before we describe any specific methods, we describe sampling. Sampling is a
general approach to extending a clustering method to very large data sets. A
sample of the data is selected and clustered, which results in a set of cluster
centroids. Then, all data points are assigned to the closest centroid. Many
large data set clustering methods use sampling to overcome time and memory
limitations.

2.2 Hierarchical Agglomeration and its Variants

Hierarchical agglomeration [11] produces a hierarchy of clusters, such that
any given level of cluster refinement can be selected from the results. It starts

Clustering Very Large Data Sets with PDDP 3

with singleton clusters, and produces the hierarchy of clusters by successively
merging the two clusters which are closest. Typically, the distances between
clusters are determined by computing the distance from every point in a given
cluster to every other point in every other cluster. The expense of computing
the distances between all points is the most serious drawback to the method.

Scatter/Gather [6] speeds up agglomeration by dividing the data into buck-
ets and agglomerating individual buckets until the number of clusters in a
given bucket is reduced by a specific amount. The clusters are replaced by
their weighted centroids, and the centroids from all buckets are then placed in
a smaller set of buckets and agglomerated again. The process continues until
a specified number of centroids are created, after which all data are assigned
to the closest centroid. While this method was specified as a speed-up for data
sets which would fit into memory, combining Scatter/Gather with sampling
would make it appropriate for large data sets. Alternately, the amount of data
in a given bucket could be sized to fit into memory, and only one bucket of data
would appear in memory and be agglomerated at a given time. The resulting
centroids could be saved to disk, and another bucket of data could then be
loaded and agglomerated, and so on. This would require some additional disk
access, but would result in a method which could work for arbitrarily large
data sets.

Cure [12] adapts hierarchical agglomeration by using a small set of well-
scattered points to compute the distances between clusters, rather than con-
sidering all the points in a cluster when computing the distances between
clusters. This significantly speeds up the procedure. Sub-sampling the data
was also specified when the data set was too large.

There are other extensions of hierarchical agglomeration. For instance, [10]
uses maximum likelihood determined by a multivariate Gaussian model to de-
cide which two clusters should be merged. The work in [15] uses a heap to
store the distances between all pairs to speed up access to distance informa-
tion. Refinement of the clusters to increase quality is described in [14]. While
these methods were designed to enhance the speed and quality of hierarchical
agglomeration, combining them with sub-sampling the data would make them
suitable for clustering very large data sets.

2.3 K-means and its Variants

K-means produces clusters using an iterative method. A random set of start-
ing centroids is selected from the data set, and all data points are assigned to
the closest centroid. Then, new centroids are computed using the data points
in each cluster, and again all data points are assigned to the closest centroid.
The process continues until there is no further data movement. Multiple passes
with random restarts are usually performed to ensure a good clustering has
been found.

One adaptation of k-means to very large data sets is provided in [5]. Sam-
ples are drawn from the data set, without replacement, and clustered. The

4 David Littau and Daniel Boley

data points in a given cluster are replaced by a representative which is much
like a weighted centroid, but provide a bit more information. This is done for
all current clusters. Then more samples are drawn from the data set, and are
clustered along with the weighted centroids. The process continues until the
data set is exhausted or the centroids stop moving.

It is difficult to know good choices for initial centroids for k-means. In-
stead of repeating k-means with random restarts, [4] provides a technique to
generate good candidate centroids to initialize k-means. The method works
by selecting some random samples of the data and clustering each random
sample separately using k-means. The centroids from each clustering are then
gathered into one group and clustered to create a set of initial centroids for a
k-means clustering of the entire data set.

There are other variants of k-means. The work in [19] uses a k-d tree
to organize summaries of the data. It is fast, but does not perform well for
dimensions higher than eight. The work in [1] used a k-d tree to cut down
on the number of distance computations required, though it isn’t clear if the
application is limited to spatial data. We assume it is, since they are using the
same kind of data structure as in [19], and their experiments were conducted
on low-dimension data. Therefore these methods are more appropriate for
large low-dimension data sets.

Very fast k-means (VFKM) [8] takes a different approach from other clus-
tering methods. The stated desire is to produce a model (clustering) using a
finite amount of data that cannot be distinguished from a model constructed
using infinite data. The error is bounded by comparing the centroids result-
ing from different k-means clusterings using different sample sizes. Stated in
a very simplified manner, if the centroids from the different clusterings are
within a specified distance of each other, they are considered to be the correct
centroids. Otherwise a new, larger sample is drawn from the data set and clus-
tered, and the resulting centroids are compared to the centroids obtained from
the previous run. The authors suggest that this method is not a reasonable
approach unless the database begin clustered contains millions of items.

2.4 Summary of Cited Clustering Methods

Most of the extensions of hierarchical agglomeration were designed to speed
up the process for data sets which can fit into memory. Sampling was indicated
when the data sets grew too large. Sampling the data ignores outliers, which
may be interesting data items in some circumstances. Also, it is difficult to
know whether a truly representative sample has been drawn from the data
set.

The extensions of k-means to large data sets either drew samples or as-
signed many data points to one representative vector. Using one vector to
approximate many data items, as in [5, 6, 21], is a relatively popular tech-
nique when constructing approximations to the data. However, once the as-
signments have been made, there is no way to distinguish between the data

Clustering Very Large Data Sets with PDDP 5

items assigned to a given representative. The resolution of any clustering of
the data is limited by the resolution of the representatives.

In the clustering method we present in this chapter, no sampling of the
data is necessary. All data items are exposed to the method. Each data item
has a unique representation in the approximation we construct. Therefore,
the resolution of the clustering is not limited by the approximation of the
data. We believe these differences result in a method which provides a useful
alternative to other large data set clustering methods.

3 Constructing a Low-Memory Factored Representation

The Low-Memory Factored Representation (LMFR) is comprised of two ma-
trices. The first matrix contains representative vectors, and the second matrix
contains data loadings. The representative vectors are the centroids obtained
from a clustering of the data. The data loadings are a least-squares approx-
imation to each data item using a small number of selected representative
vectors.

Since the data set is assumed to be too large to fit into memory, we divide
it up into smaller samples we call sections. Each data item from the original
representation appears once and only once across all sections. We individually
compute a LMFR for each section.

First, we describe the method used to obtain the LMFR for one section
of data. Then, we describe how we assemble the LMFRs for each section into
one LMFR which represents the entire data set.

3.1 Constructing an LMFR for One Section

Suppose we have an n×m matrix A of data samples, such that A comfortably
fits into memory at once. We want to compute the factored representation

A ≈ CAZA, (1)

where CA is an n×kc matrix of representative vectors and ZA is a kc×m ma-
trix of data loadings. Each column zi of ZA approximates the corresponding
column ai of A using a linear combination of the vectors in CA.

The first step in computing this factored form of A is to obtain the ma-
trix of representative vectors CA. To accomplish this, we partition A into
kc clusters and compute the kc centroids of the clusters. These centroids are
collected into a n × kc matrix CA,

CA = [c1 c2 . . . ckc
]. (2)

We use the PDDP method to compute the clustering of A and therefore obtain
CA, since PDDP is fast and scalable. In principle, any clustering method could
be used to obtain the components of CA.

6 David Littau and Daniel Boley

The matrix of data loadings ZA is computed one column at a time. In
approximating each column ai of A, we use only a small number (kz) of the
representatives in CA. Therefore, each column zi in ZA has only kz nonzero
entries. For example, to approximate ai, we choose the kz columns in CA

which are closest in Euclidean distance to ai and implicitly collect them into
an n× kz matrix Ci. Then the nonzero entries in the column zi are obtained
by solving for the kz-vector ẑi:

ẑi = arg min
z

||ai − Ciz||
2

2. (3)

If the kz vectors in Ci are linearly independent, we use the normal equations
with the Cholesky decomposition to solve the least-squares problem. If the
normal equations fail, we use the more expensive SVD to get the least-squares
approximation of the data item. Even though there has been no attempt to
create orthogonal representative vectors, in the majority of cases the normal
equations are sufficient to solve the least-squares problem. The LMFR algo-
rithm is shown in Figure 1.

Algorithm LMFR.
0. Start with a n × m matrix A, where each column of A

is a data item, and set the values for kc, the number
of representative vectors in C, and kz, the number of
representatives used to approximate each data item.

1. Partition A into kc clusters
2. Assemble the kc cluster centroids from step 1 into

an n × kc matrix CA (eqn. (2) in the text).
3. For i = 1, 2, . . . , m do

4. Find the kz columns in CA closest to ai

5. Collect the kz columns found in step 4
as the n × kz matrix Ci

6. Compute ẑi = arg minz ||ai − Ciz||
2

2

7. Set the ith column of ZA = ẑi

8. Result CA and ZA, which represent a factorization of A

Fig. 1. LMFR algorithm.

When kz = kc, this factorization of A is essentially identical to the concept

decomposition [7], except that we use PDDP to obtain the clustering rather
than spherical k-means. We typically select a value for kz such that kz ≪ kc,
which can result in significant memory savings. Since the memory savings are
dependent on Z being sparse, we also require the condition that kz ≪ n.
Thus a low-dimension matrix is not a good candidate for this factorization
technique from a memory-savings standpoint.

To obtain memory savings, it is also necessary to control the size of CA,
which is done by making kc as small as possible. There is a trade-off between

Clustering Very Large Data Sets with PDDP 7

the two parameters kc and kz , since for a given amount of memory avail-
able to contain the LMFR CAZA, increasing one of the parameters requires
decreasing the other.

3.2 Constructing a LMFR of a Large Data Set

Once a LMFR has been computed for each section, they are assembled into
a single factored representation of the entire original data set. A graphical
depiction of this technique is shown in Figure 2. What follows is a formal
definition of the entire process of constructing the LMFR of a large data set.

m

M m

n

n

C Z

.
kc

.

k

dk

kd
1 2 ks

c z nonzeros per columnk

section section section section section section

section representatives

data loadings

Clustering
Least Squares

very sparse

Fig. 2. Construction details of the low-memory representation. M is divided into
ks sections, and the low-memory representation of each section is computed without
referring to any other section. Each section is associated with a subdivision of C

and Z. The columns of a subdivision of C are the cluster centroids resulting from
a clustering of the associated section. A column of a subdivision of Z is computed
with a least-squares approximation to the corresponding column of M, using the kz

closest centroids from the associated subdivision of C.

We consider the original representation of the data set as an n×m matrix
M, such that M will not fit into memory at once. We seek the single factored

8 David Littau and Daniel Boley

representation CZ such that
M ≈ CZ, (4)

where C and Z will fit into memory and can be used to cluster the data in
M. Since M cannot fit into memory at once, M is divided into ks disjoint
sections

M = [M1 M2 . . . Mks
], (5)

such that each section Mj of M will fit into memory. This partitioning of
M is virtual since we assume only one section Mj will be in memory at any
given instance. We also assume that the ordering of the columns of M is
unimportant. We can now construct a LMFR

Mj ≈ CjZj (6)

for each section Mj of M using the technique from §3.1. After computing the
approximation (6) for each section of data, they can be assembled into the
two-matrix system

C = [C1 C2 . . . Cks
]

Z =









Z1

Z2
0

0

. . .

Zks









,
(7)

where C has dimension n × kskc and Z has dimension kskc × n. We call this
system a general LMFR. The parameters used to construct the general LMFR
are summarized in Table 1.

Table 1. Definition of the parameters used in constructing a general LMFR.

parameter description

m total number of data items

n number of attributes per data item

γ1 fill fraction of the attributes in M

ks number of sections

kd number of data items per section

kc number of centroids per section

kz number of centroids approximating
each data item

Note that the idea of processing the data in separate pieces and assembling
the results has been done previously in the context of principal component
analysis [13]. However, in that case the application was intended for situations
in which different sets of attributes for a given data point were distributed
across separate databases. The LMFR construction method is designed to
process data points that have all attributes present.

Clustering Very Large Data Sets with PDDP 9

3.3 Applications of the LMFR

The only application of the LMFR which we will be covering in this work is
using the LMFR to extend PDDP to large data sets. However, this is not the
only successful application of the LMFR in data mining. In [18] we showed an
adaptation of the LMFR to general stream mining applications. The LMFR
allows for more of the stream to be exposed to a given stream mining method
at once.

Another application we have investigated is using the LMFR for document
retrieval [16]. We demonstrated that we could construct an LMFR of a given
data set that had better precision vs. recall than an SVD of a specific rank,
while taking less time to construct and occupying less memory than the SVD.
Specifically, the LMFR with kz = 5 and kc = 600 for a 7601 item data set took
187 seconds to construct and occupied 11.32 MB of memory, while a rank 100
SVD took 438 seconds to construct and occupied 40.12 MB of memory. Given
the advantage in construction time and memory used, the LMFR appears to
be a viable alternative to the SVD for document retrieval.

4 Complexity of the LMFR

We now provide a complexity analysis of the cost of computing the LMFR.
To make the explanation simpler, we will make the following assumptions: the
data set represented by M is evenly distributed among the sections so that
kc and kd are the same for each section, and kz is the same for each section
ks, kdks = m, and m >> n. These are not necessary conditions to construct
an LMFR, but they do make the explanation clearer.

4.1 Cost of Obtaining the Section Representatives

The first step in computing the LMFR CjZj for a given section of data Mj

is to obtain the section representatives which comprise Cj . These are found
via a clustering of Mj. We assume that PDDP will be used to obtain the
clustering. To simplify the analysis, we assume that we will create a perfectly
balanced binary tree. This means that all of the leaf clusters in a given “level”
will have the same cardinality, and that all of the clusters on a given level will
be split before any clusters on the next level.

The majority of the cost of computing the PDDP clustering is the cost
of computing the principal direction of the data in the current cluster being
split. The principal direction is determined by the rank 1 SVD of the cluster.
The rank 1 SVD is computed using the iterative procedure developed by
Lanczos. The majority of the cost in finding the rank 1 SVD is computing a
matrix-vector product of the form Mjv twice each iteration

PDDP starts with the root cluster, which is all of the data being clustered.
In this case, the root cluster is the n× kd matrix Mj, where n is the number

10 David Littau and Daniel Boley

of attributes and kd is the number of data items in the section. Computing
the product of one row in Mj with a right vector v takes kd multiplications
and additions. There are n rows in Mj . Therefore, the cost of computing a
single matrix-vector product is

γ1nkd, (8)

where γ1 is the fill fraction of Mj . If the data in M are dense, γ1 = 1. The
overall cost of determining the principal direction of the root cluster Mj is

c1γ1nkd, (9)

where c1 is a constant encapsulating the number of matrix-vector products
computed before convergence.

After splitting the root cluster, we have two leaf clusters. Due to our
assumption that we are creating a perfectly balanced binary tree, each of the
two current leaf clusters contains the same number of data items, and the next
two clusters chosen to be split will be the two current leaf clusters. Therefore,
the cost of splitting the next two clusters is

2c1γ1n

(

kd

2

)

= c1γ1nkd, (10)

which is the same as the cost of computing the splitting of the root cluster.
The PDDP tree now contains four leaf clusters. The cost of splitting these
four leaf clusters is

4c1γ1n

(

kd

4

)

= c1γ1nkd. (11)

This result and the previous result indicate that the cost of computing a given
level in the binary tree is the same for all levels. Every new level created in
the perfectly balanced binary tree increases the number of leaf clusters by a
power of 2. This progression is shown in Figure 3.

The cost of obtaining the kc section representatives for the section Mj is

c1γ1nkd log2 (kc) , (12)

assuming that the number of section representatives kc is an integer power
of 2. If we have a total of ks sections with kd data points per section, and
we obtain the same number of section representatives kc for each section, the
total cost of obtaining all section representatives for the entire data set will
be

costC = c1γ1nkskd log
2
(kc) = c1γ1nm log

2
(kc) . (13)

For clarity, we reproduce all of the assumptions involved in the formulation,
as well as the final result for the cost of computing the section representatives,
in Figure 4.

Clustering Very Large Data Sets with PDDP 11

Number of clusters Cost

2 c1γ1nkd

4 c1γ1nkd + 2c1γ1n

(

kd

2

)

= 2c1γ1nkd

8 c1γ1nkd + 2c1γ1n

(

kd

2

)

+ 4c1γ1n

(

kd

4

)

= 3c1γ1nkd

16 c1γ1nkd + 2c1γ1n

(

kd

2

)

+ 4c1γ1n

(

kd

4

)

+ 8c1γ1n

(

kd

8

)

= 4c1γ1nkd

kc c1γ1nkd log
2
(kc)

Fig. 3. Complexity for the PDDP tree computation, shown for the number of
clusters computed for a given section of data. The value of kc is assumed to be an
integer power of 2, and the tree is assumed to be perfectly balanced.

Assumptions:

1. PDDP is used to obtain the section representatives
2. a perfectly balanced binary tree is created
3. each section has the same value of kd and kc

4. kdks = m

5. kc is an integer power of two
Result: Cost of obtaining C is

costC = c1γ1nm log
2
(kc)

Fig. 4. Summary of the cost of obtaining C.

4.2 Computing the Data Loadings

Computing the data loadings in Zj is a multi-step process. To find the least-
squares approximation to a given data item xi in Mj, it is necessary to find
the distance from xi to every section representative cl in Cj , select the kz

section representatives cl that are closest to xi, and compute the least-squares
approximation using the normal equations.

Computing the distance from xi to a single representative in Cj requires
γ1n multiplications and subtractions. Since there are kc representatives in
Cj , the total cost of computing the distances for one data item xi is γ1nkc.
We assume that the number of representatives kz used to approximate xi is
very small, so that it will be less expensive to directly select the kz closest
representatives, rather than sorting the distances first. Therefore, it takes kckz

searches through the representatives to find the kz closest representatives,
which are used to form the n × kz matrix Ci as in §3.1.

12 David Littau and Daniel Boley

The final step is to compute the least-squares approximation for each data
item using the kz centroids obtained in the previous step. The normal equa-
tions are used to obtain the least-squares approximation. The cost of comput-
ing a least-squares approximation for the n × kz system is:

γ1nk2

z +
1

3
k3

z ,

if we ignore lower order terms. The total combined cost for obtaining the
loadings for one data item xi is

γ1nkc + kckz + γ1nk2

z +
1

3
k3

z , (14)

and the cost of obtaining all data loadings for all sections is

costZ = m

(

γ1nkc + kckz + γ1nk2

z +
1

3
k3

z

)

. (15)

The assumptions and final cost for computing the data loadings which
comprise the Z matrix are shown in Figure 5.

Assumptions:

1. kz ≪ kc, so direct search for kz closest representatives
in C is less expensive than sorting

2. same value for kz is used for all sections
3. normal equations are used to obtain least-squares
4. additional lower-order terms from least squares are ignored

Result: Cost of obtaining Z is

costZ = m
(

γ1nkc + kckz + γ1nk2

z + 1

3
k3

z

)

Fig. 5. Summary of the cost of obtaining Z.

5 Clustering Large Data Sets Using the LMFR

Now that we have an LMFR of the entire data set, we can replace the orig-
inal representation of the data with the LMFR to obtain a clustering using
PDDP. We call the extension of PDDP to large data sets Piecemeal PDDP
(PMPDDP). The piecemeal part of the name is from the fact that the LMFR
is constructed in a piecemeal fashion, one section at a time, and from the
fact that PDDP is used to compute the intermediate clusterings used in the
construction of the LMFR.

The PMPDDP clustering method is straightforward. The process is to first
construct the LMFR of the data, and then cluster the LMFR using PDDP.

Clustering Very Large Data Sets with PDDP 13

Algorithm PMPDDP.
0. Start with a n × m matrix M, where each column of M is a data item,

and set the values for ks, kc, kz (see Table 1) and kf , the number
of final clusters computed

1. Partition M into ks disjoint sections, |M1 M2 , . . . , Mks |.
2. For j = 1, 2, . . . , ks do

3. Compute the LMFR (cf. Fig. 1) for the section Mj using
PDDP to compute Cj (cf. §3.2)

4.. Assemble the matrices C and Z as in (7) in the text, using all the
matrices Cj and Zj from all passes through steps 2-3

5.. Compute the PDDP tree with kf clusters for the entire system CZ.
6. Result: A binary tree with kf leaf nodes forming a partitioning

of the entire data set.

Fig. 6. PMPDDP algorithm.

The PMPDDP algorithm is shown in Figure 6. An earlier version of PMPDDP
appeared in [17].

PDDP is useful for producing the section representatives in C because it
is fast and scalable. Since we are only interested in finding suitable represen-
tatives, we do not require the optimal clustering of the data in a section, just
an inexpensive one. More expensive clustering algorithms will probably not
significantly alter the results, though of course the values in the factoriza-
tion would change. However, we could replace PDDP with any other suitable
clustering algorithm without difficulty, since when we compute the section
representatives we are dealing with a piece of the original data that will fit
into memory. K-means, especially bisecting k-means [20], for example, would
be candidate methods to replace PDDP at this stage.

However, when clustering the factored form, the situation is different. Any
clustering algorithm which uses a similarity measure, such as the aforemen-
tioned k-means method, would require that the data be reconstructed each
time a similarity measure was needed. Reconstructing the entire data set at
once requires at least as much memory as the original data set, defeating the
purpose of the LMFR. Reconstructed sparse data will take up more space
than the original data, since the section representatives will be denser than
the original data items. The LMFR only saves memory as long as it remains
in factored form. Naturally, small blocks of the original data could be recon-
structed on the fly every time a similarity measure is required, but that could
add considerable additional expense.

PDDP does not use a similarity measure when determining the cluster-
ing. Instead, PDDP uses the principal direction of the data in a cluster to
determine how to split that cluster. The principal direction is computed using
an iterative procedure developed by Lanczos which computes products of the
form:

(

M − weT
)

v = Mv − w
(

eTv
)

, where w =
1

m

(

MeT
)

, (16)

14 David Littau and Daniel Boley

where v is some vector. We can replace M by the factored form CZ, group
the products accordingly, and compute:

C (Zv) − ŵ
(

eTv
)

, where ŵ =
1

m
C
(

ZeT
)

, (17)

and in doing so we never explicitly reconstruct the data. Therefore, the LMFR
is well-suited to being clustered using the PDDP method.

5.1 Scatter Computation

There is one other aspect of PMPDDP to consider. PDDP normally chooses
the next cluster to split based on the scatter values of the leaf clusters. Com-
puting the scatter when clustering the LMFR CZ would require that the data
be reconstructed. For a scatter computation, this could be done in a block-
wise fashion without too much difficulty. However, we wish to have a method
which does not require reconstruction of the data.

Instead of reconstructing the data to directly compute the scatter, we
estimate the scatter. If we could compute all of the singular values σi, we
could compute the exact scatter s as

s = σ2

1
+ σ2

2
+ . . . + σ2

n. (18)

This formula can be re-written as

s = σ2

1

(

1 +
σ2

2

σ2

1

+
σ2

3

σ2

1

+ . . . +
σ2

n

σ2

1

)

. (19)

Now, we can use the two leading singular values to estimate the scatter as

s ≈ σ2

1

(

1 +
σ2

2

σ2
1

+

(

σ2

2

σ2
1

)2

+ . . . +

(

σ2

2

σ2
1

)n−1
)

= σ2

1





1 −
(

σ2

2

σ2

1

)n

1 −
σ2

2

σ2

1



 , (20)

where σ1 is the leading singular value of the cluster and σ2 is the next singular
value. The estimate assumes that the singular values are decreasing geometri-
cally, which from empirical observation seems to be a reasonable assumption.
Note that if we computed all of the singular values, we could compute the
exact scatter. However, computing all or even a significant number of the sin-
gular values would be prohibitively expensive. A high degree of accuracy is
not necessary, since this scatter computation is only used to determine which
cluster to split next. The estimate needs only to be consistent with the data
being clustered. Presumably, if the estimate is either too low or too high, the
same type of estimation error will exist for all clusters.

The leading singular value is associated with the principal direction, and
an estimate of the second singular value is available without much additional
cost. Estimating the scatter requires that the principal direction of all leaf
clusters needs to be computed, whether they are split or not. We could choose
another splitting criteria, but from previous results with PDDP on various
data sets, scatter seems to be a very good way to select the clusters to split.

Clustering Very Large Data Sets with PDDP 15

6 Complexity of a PMPDDP clustering

In the following we develop some formulas for the cost of a general PMPDDP
clustering. We will use the same assumptions as we did for the analysis used
to get the section representatives comprising C (cf. §4.1). We assume we will
produce a completely balanced binary tree with a number of leaves being an
integer power of 2, and that the cost of clustering is basically the cost of
obtaining the principal directions which determine how each cluster is split.

Replacing the original matrix M with the approximation CZ in the PDDP
method changes the calculation in the splitting process from a matrix-vector
product to a matrix-matrix-vector product. This product can be written as
C(Zv), where v is a “generic” m × 1 vector, C is a n × kskc matrix and Z

is a kskc × m matrix. Note that we group the product such that the matrix-
vector product is computed before multiplying by the other matrix. We must
avoid explicitly forming the product CZ, since the result of that product will
not fit into memory. Z is a sparse matrix with kz non-zeroes per column,
and therefore the only computation cost with respect to Z is incurred when
computing the product of the non-zero elements in Z with the elements in v.
We show all the parameters involved in a PMPDDP clustering in Table 2.

Table 2. Definition of the parameters used in PMPDDP.

parameter description

m total number of data items

n number of attributes per data item

γ1 fill fraction of the attributes in M

γ2 fill fraction of the attributes in C

ks number of sections

kd number of data items per section

kc number of centroids per section

kz number of centroids approximating
each data item

kf number of final clusters

Again, we start the analysis with the root cluster. The cost of computing
the principal direction of the root cluster is

c2(γ2nkskc + mkz), (21)

where γ2 is the fill fraction of C and c2 is a constant encapsulating the number
of matrix-matrix-vector products required to convergence. The mkz portion
of the formula is the contribution from forming the product Zv, where v is
some vector, and nkskc is the cost of multiplying C by the resultant of the
product Zv.

At this point, we have two leaf clusters. One might be tempted to assume
that the expense would follow the same relationship as in regular PDDP, and

16 David Littau and Daniel Boley

that the cost of splitting these two clusters is the same as the cost of splitting
the root cluster, but that is incorrect. The reason for the difference is that
while the cost of forming the product Zv decreases with decreasing cluster
size, the cost of multiplying C by the resultant of the product Zv does not
decrease with decreasing cluster size. As a result, the cost of splitting these
two clusters is

2c2γ2nkskc + 2c2

(m

2

)

kz = 2c2γ2nkskc + c2mkz. (22)

It might be possible to reduce the computational expense associated with
C by only considering the columns of C which actually participate in the
product when splitting the leaf clusters. However, there does not appear to
be an inexpensive way to determine which columns in C would be required
at each step, so we leave the method as stated and accept the expense.

Following the pattern to its conclusion, as shown in Figure 7, we have the
result for the cost of clustering CZ,

c2γ2nkskc(kf − 1) + c2mkz log2(kf). (23)

Number of clusters Cost

2 c2γ2nkskc + c2mkz

4 c2γ2nkskc + c2mkz + 2c2γ2nkskc + 2c2

(

m

2

)

kz

= 3c2γ2nkskc + 2c2kzm

8 c2γ2nkskc + c2mkz + 2c2γ2nkskc + 2c2

(

m

2

)

kz

+ 4c2γ2nkskc + 4c2

(

m

4

)

kz

= 7c2γ2nkskc + 3c2mkz

16 c2γ2nkskc + c2mkz + 2c2γ2nkskc + 2c2

(

m

2

)

kz

+ 4c2γ2nkskc + 4c2

(

m

4

)

kz

+ 8c2γ2nkskc + 8c2

(

m

8

)

kz

= 15c2γ2nkskc + 4c2mkz

kf c2γ2nkskc(kf − 1) + c2mkz log
2
(kf)

Fig. 7. Complexity for the PMPDDP tree computation, shown for the number of
clusters computed. The additional expense of computing the estimated scatter is
not considered.

We have not yet considered the fact that PMPDDP uses the estimated
scatter to determine which cluster is split next. To obtain the estimated scat-

Clustering Very Large Data Sets with PDDP 17

ter, it is necessary to compute the principal direction of all the leaf clusters
before we split them. We effectively incur the expense of computing an addi-
tional level in the PDDP tree, which doubles the number of splits computed.
Therefore, the actual cost of computing a PDDP clustering of CZ when using
the estimated scatter is

costclusterCZ = c2γ2nkskc(2kf − 1) + c2mkz log
2
(2kf). (24)

For clarity, we reproduce all of the costs of computing a PMPDDP cluster-
ing in Table 3, and all of the assumptions used to write the formulas in Figure
8. Note that the costs are higher than computing a PDDP clustering. This is
expected since we already incur more cost than a PDDP clustering just by
obtaining the section representatives which comprise C, assuming kc > kf .

Table 3. Collected costs of PMPDDP, including the costs of obtaining the LMFR.
See Table 2 for a definition of the parameters, and Figure 8 for the assumptions
made when writing the formulas.

operation amortized cost

clustering sections to obtain C c1γ1nm log
2
(kc)

find distance from data points to centroids γ2nmkc

find kz closest centroids mkckz

compute best least-squares approx m(γ2nk2

z + 1

3
k3

z)

cluster the representation CZ using PDDP c2γ2nkskc(2kf − 1) + c2mkzlog2(2kf)

Compare cost of PDDP c1γ1nm log
2
(kf)

6.1 Complexity for One Varying Parameter

In this section, we produce the PMPDDP complexity formulas for the case in
which we vary then number of representatives kz used to approximate each
data item and the number of representatives kc produced for each section of
data, while leaving all other parameters fixed. We also produce formulas for
the cost of PMPDDP with respect to the number of data items m and the
number of attributes n.

Before we proceed further, we collect the results from the formulas in (13,
15, 24) and write the total cost of PMPDDP as:

m (c1γ1n log
2
(kc) + γ2nkc + kckz + γ2nk2

z

+ 1

3
k3

z + c2γ2
n
m

kskc(2kf − 1) + c2kz log
2
(2kf)). (25)

We will use this result when computing the formulas for each instance.

18 David Littau and Daniel Boley

Obtaining C:
1. PDDP is used to obtain the section representatives
2. a perfectly balanced binary tree is created
3. each section has the same value of kd and kc

4. kdks = m

5. kc is an integer power of two
Obtaining Z:

6. kz ≪ kc, so direct search for kz closest representatives
in C is less expensive than sorting

7. same value for kz is used for all sections
8. normal equations are used to obtain least-squares
9. additional O(k2

z) term from least squares is ignored
Clustering CZ:

11. PDDP is used to obtain the clustering
12. a perfectly balanced binary tree is created
13. scatter is estimated by pre-computing the splits for all leaves
14. kf is an integer power of 2

Fig. 8. Summary of the assumptions used to obtain the formulas in Table 3.

Varying kz

In this section, we show the cost of PMPDDP when all parameters except kz

are fixed. This will demonstrate the effect on the overall cost of PMPDDP
when changing the number of representatives used to approximate each data
item. Since kz is independent from all other parameters, it is possible to fix
the remaining parameters to constant values.

We start by examining (25) and extracting only those components which
depend on kz. Note that while the other components may contribute a very
high cost, that cost will be fixed. The resulting formula is

m

(

(kc + c2 log
2
(2kf)) kz + γ2nk2

z +
1

3
k3

z

)

. (26)

This formula indicates that there may be a strong linear component in kz

when the quantity γ2nk2
z is relatively small, as would probably be the case for

relatively low-dimension dense data sets. In the general case, since we expect
kz to be small, the square term will dominate the costs. With kz sufficiently
large, the cost will grow cubicly.

Increasing kz is expensive from a memory standpoint, since each column
of Z has kz non-zero entries. Keeping kz small controls both the computation
cost and memory footprint of the LMFR.

Varying kc

The other PMPDDP parameter we will consider is the number of representa-
tives per section kc. We demonstrated in [16] that kc is important to clustering

Clustering Very Large Data Sets with PDDP 19

accuracy, so it is useful to know the trade-off in cost. As before, if we only
consider the elements of the formula (25) that involve kc, we have the result

m
(

c1γ1n log
2
(kc) + γ2nkc + kckz + c2γ2

n

m
kskc (2kf − 1)

)

.

If we factor out the kc term, we have the result

m
(

c1γ1n log
2
(kc) + kc

(

γ2n + kz + c2γ2

n

m
ks (2kf − 1)

))

. (27)

We expect that the cost of PMPDDP will increase slightly more than linearly
with kc due to the logarithmic term.

Varying n

We now consider the contribution to the cost from the number of attributes
n. Taking all of the terms from (25) which involve n, we have

m
(

c1γ1n log
2
(kc) + γ2nkc + γ2nk2

z + c2γ2

n

m
kskc (2kf − 1)

)

.

We can factor n from this formula with the resulting cost being

nm

(

c1γ1 log
2
(kc) + γ2kc + γ2k

2

z + c2γ2

1

m
kskc (2kf − 1)

)

. (28)

From this result, we expect the cost of PMPDDP to be linear in the number
of attributes.

Varying m

The final result we will consider is the cost in terms of the number of data
items m. Note that in (25), all terms inside the outermost parenthesis are
dependent on m except

c2γ2

n

m
kskc (2kf − 1) ,

since this term will be multiplied by m. With this consideration, and with all
values fixed except m, and rather than re-writing the entire formula, we can
recast (25) as

c3m + c4, (29)

where c3 and c4 encompass the appropriate parameters in (25). From this
result we can expect that PMPDDP is linear in the number of data items m.

20 David Littau and Daniel Boley

7 Experimental Results

In this section we show some experimental results for the PMPDDP clustering
method for both a dense and a sparse large data set. We sub-sampled each
data set so that we could directly compare the results of a PDDP clustering
with a PMPDDP clustering. We compare the quality of the two clusterings
using scatter and entropy as measures.

Recall from §5.1 that PMPDDP uses an estimated scatter value to deter-
mine which cluster is split next. To determine the effect on clustering quality
of using the estimated scatter, we include results for clustering quality using
the computed scatter. Computing the scatter required that the data be re-
constructed. To minimize the amount of additional memory, we reconstructed
50 data points at a time. When we used the computed scatter to select which
cluster to split next, we did not pre-compute the splits of the leaf clusters.

The algorithms were implemented in MATLAB and the experiments were
performed on a AMD XP2200+ computer with 1 GB of memory and 1.5 GB
of swap space.

7.1 Data Sets

We used two data sets to evaluate the method, one dense and one sparse.
The dense data set was the KDD Cup 1998 data set [2], which consists of
network connection data. Since the data set was designed to test classification
algorithms, it was labeled. Connection types were either “normal” or some
kind of attack. We combined both the training and test data into one large
data set. Categorical attributes were converted to binary attributes as needed.
Each attribute was scaled to have a mean of zero and a variance of one. Post-
processing, the entire data set occupied over 4 GB of memory.

The sparse data set was downloaded from the web. Topics were selected
so that a google search on a given topic would return at least 200 hits. We
assumed that the top 200 documents returned were relevant to the search
topic. Each web page was treated as a document. Any word that only appeared
in one document was removed from the dictionary, as were all stop words. The
words were also stemmed using Porter’s stemming algorithm. Each document
vector was scaled to unit length.

The data sets are summarized in Table 4. A more in-depth description of
how the data were processed is available in [16].

7.2 Performance Measures

We used two different performance measures to evaluate the comparative qual-
ity of the clustering. Those measures were scatter and entropy.

The scatter sC of a cluster MC is defined as:

sC
def

=
∑

j∈C

(xj − wC)
2 = ‖MC − wCe

T ‖2

F , (30)

Clustering Very Large Data Sets with PDDP 21

Table 4. Summary of the Data Sets Used in the Experiments. The KDD data set
is the KDD Cup 1998 data set from the UCI:KDD machine learning repository [2],
and the web data was produced at the University of Minnesota.

data set KDD web

number of samples m 4898431 25508

number of attributes n 122 733449

number of categories 23 1733

where wC is the mean of the cluster, e is the m-dimensional vector [1 1 . . . 1]T

and ‖ ‖F is the Frobenius norm. For some n × m matrix A, the Frobenius
norm of A is

‖A‖F =

√

√

√

√

∑

1≤i≤n

1≤j≤m

a2

i,j , (31)

where ai,j is the entry in the ith row and jth column of A. A low scatter value
indicates good cluster quality. Since scatter is a relative performance measure,
it only makes sense to use the scatter to compare clusterings having the same
cardinality.

The entropy ej of cluster j is defined by:

ej
def

= −
∑

i

(

c(i, j)
∑

i c(i, j)

)

· log

(

c(i, j)
∑

i c(i, j)

)

, (32)

where c(i, j) is the number of times label i occurs in cluster j. If all of the
labels of the items in a given cluster are the same, then the entropy of that
cluster is zero. Otherwise, the entropy is positive. The total entropy for a
given clustering is the weighted average of the cluster entropies:

etotal
def

=
1

m

∑

i

ei · ki. (33)

The lower the entropy, the better the quality. As with the scatter, entropy is
a relative performance measure, so the same caveats apply.

7.3 KDD Results

The KDD intrusion detection data were divided into 25 random samples. It
was only possible to compute a PDDP clustering of the data up to a combina-
tion of the first 5 samples of data. After that, the amount of memory required
for data and overhead exceeded the capacity of the computer.

The parameters and results for the KDD intrusion detection data set are
summarized in Table 5. We show the results for the combinations through the
first five pieces of data and the results for the entire data set. The clustering

22 David Littau and Daniel Boley

quality from PMPDDP is comparable to PDDP in both the scatter and en-
tropy performance measures. The memory savings are significant. The costs
are higher for PMPDDP, but the majority of the time is spent computing the
factored representation of the data. Once the factored representation is avail-
able, clusterings of different sizes can be computed relatively inexpensively.

Table 5. Comparison of a PDDP clustering with a PMPDDP clustering of the KDD
data for various sample sizes. It was not possible to compute a PDDP clustering
past the largest sample size shown since the data would not fit into memory. It
was not possible to compute the scatter for PMPDDP for the entire data set, since
it wouldn’t fit into memory. Also including are results for a modified PMPDDP
clustering method which uses the computed scatter (c.s.) rather than using the
estimated scatter. See Table 2 for a definition of the parameters, and §7.1 for a
description of the data.

data set KDD

m 195937 391874 587811 783748 979685 4898431

ks 5 10 15 20 25 125

kc 392 392 392 392 392 392

kz 3 3 3 3 3 3

kf 36 36 36 36 36 36

Normalized Scatter Values, lower is better

PDDP 3.179e-04 3.279e-04 3.276e-04 3.290e-04 3.288e-04 won’t fit

PMPDDP 3.257e-04 3.236e-04 3.271e-04 3.250e-04 3.275e-04 N.A.

PMPDDP c.s. 3.271e-04 3.258e-04 3.250e-04 3.245e-04 3.255e-04 N.A.

Entropy Values, lower is better

PDDP .127 .130 .129 .124 .120 won’t fit

PMPDDP .0590 .0585 .0546 .120 .114 .113

PMPDDP c.s. .125 .127 .126 .112 .120 .113

Time taken by experiments, in seconds, on XP 2200+

PDDP 39.72 89.68 140.45 204.87 282.44 won’t fit

Compute CZ 216.66 450.41 674.49 872.15 1108.56 5652.59

Cluster CZ 15.63 32.71 52.67 69.07 89.62 492.81

Cluster CZ c.s. 20.20 45.18 73.59 96.42 120.69 447.36

PMPDDP totals 232.29 483.12 727.16 941.22 1198.18 6145.40

Memory occupied by representation, in MB

M 191.2 382.4 573.6 764.9 956.2 4780

CZ 8.24 16.48 24.72 39.00 48.75 206

Examining the results for the PMPDDP clustering using the computed
scatter as compared to PMPDDP using the estimated scatter, we can see that
the scatter values are similar for the two approaches. The entropy is better
for the smaller sample sizes when using the estimated scatter, but this could
be a results of some bias in the data set. A few labels are assigned to most

Clustering Very Large Data Sets with PDDP 23

of the data points, while the remaining labels are assigned to relatively few
data points. A small number of data points can move and change the entropy
results significantly. In any case, once more data are present, the advantage
in entropy values for the estimated scatter is no longer present. As such, this
anomaly probably does not represent any significant advantage in general to
using the estimated scatter. Also, we can see that the clustering times are
close enough that there is no advantage in speed when using the estimated
scatter for this dense data set.

The entire KDD intrusion detection data set in its original representation
would occupy 4.78 GB of memory, beyond the limits of most desktop work-
stations. The factored representation of the data only requires about 206 MB
of memory for the PMPDDP parameters selected, leaving plenty of memory
space for clustering computation overhead on even a 512 MB workstation.

The time taken as the number of data items increased is shown in Figure
9. For this data set, PMPDDP costs scale linearly with the number of data
items. This agrees with the complexity analysis in §6.1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

0

1000

2000

3000

4000

5000

6000

7000

number of data items

tim
e

to
 c

lu
st

er
 in

 s
ec

on
ds

Time to cluster Kdd data, increasing number of data items

Fig. 9. Time taken for a PMPDDP clustering of the KDD data set with an increas-
ing number of data items. The parameters used in the experiments are shown in
Table 5.

7.4 Web

The web data were divided into 8 random samples. It was not possible to
compute a PDDP clustering for more than a combination of 6 samples of the
data, since after that point the program terminated abnormally due to lack
of swap space.

The parameters and results are shown in Table 6, including the results for
the entire data set. The PMPDDP and PDDP clusterings again have similar
quality with respect to the scatter and entropy. Note that the memory savings

24 David Littau and Daniel Boley

are not as significant as those for the dense data set. The sparse data already
uses a representation which saves a considerable amount of memory. Plus, the
C matrix is considerably more dense than the original representation of the
data. This is due to the fact that the C matrix is comprised of cluster centroids.
A centroid of any given cluster must contain a word entry for any data point
in the cluster which has that word as an element. Therefore, the centroid of
a cluster of sparse data is usually denser than any given item in the cluster.
The higher density also accounts for some of the additional expense incurred
during clustering, since the greater density is associated with an increase in
the number of multiplications required to obtain the principal direction of the
cluster.

Table 6. Comparison of a PDDP clustering and a PMPDDP clustering of the web
data set for various sample sizes. The entire data set wouldn’t fit into memory, so
it wasn’t possible to perform a PDDP clustering for the entire data set. Since the
data wouldn’t fit, it was not possible to compute the scatter of PMPDDP for the
entire data set. Also including are results for a modified PMPDDP clustering method
which uses the computer scatter (c.s.) rather than using the estimated scatter. See
Table 2 for the parameter definitions and §7.1 for a description of the data.

data set Web

m 40688 81376 122064 162752 203440 244128 325508

ks 5 10 15 20 25 30 40

kc 81 81 81 81 81 81 81

kz 3 3 3 3 3 3 3

kf 200 200 200 200 200 200 200

Normalized Scatter Values, lower is better

PDDP .7738 .7760 .7767 .7778 .7789 .7787 won’t fit

PMPDDP .7762 .7792 .7802 .7809 .7819 .7829 N.A.

PMPDDP c.s. .7758 .7788 .7796 .7800 .7812 .7817 .7820

Entropy Values, lower is better

PDDP 5.043 5.483 5.692 5.836 5.922 5.990 won’t fit

PMPDDP 5.168 5.624 5.843 6.004 6.094 6.175 6.869

PMPDDP c.s. 5.127 5.598 5.842 5.987 6.088 6.161 6.253

Time taken by experiments, in seconds, on an XP 2200+

PDDP 1461 2527 3421 4359 5277 6286 won’t fit

Compute CZ 5909 11783 17648 23508 29414 35288 47058

Cluster CZ 9174 17654 26278 34565 43591 51992 68416

Cluster CZ c.s. 15192 30208 44908 59634 74542 89614 119762

PMPDDP total 15083 29437 43926 58073 73005 87279 115475

Memory occupied by representation, in MB

M 115.3 227.3 339.9 451.4 563.6 674.6 897.3

CZ 43.54 84.72 126.0 167.0 208.5 248.9 330.3

Clustering Very Large Data Sets with PDDP 25

It was not possible to cluster the entire data set using the original repre-
sentation of the data, which occupied 897 MB of memory, while the LMFR
at 330 MB left sufficient memory space for clustering overhead.

The comparison between clustering quality and cost between standard
PMPDDP and PMPDDP using the computer scatter is much more pro-
nounced than for the dense data. Using the estimated scatter saves a sig-
nificant amount of time during the clustering process, even though it requires
computing twice the number of splits. The scatter values when clustering using
the computed scatter are slightly better than those for the estimated scatter.
The entropy values are better as well. However, the amount of time saved
when using the estimated scatter is enough that we would still recommend
using it over the computed scatter.

The time taken as the number of data items increased is shown in figure
10 (a). As with the KDD data set, the time taken to compute a complete
PMPDDP clustering of the web data is linear in the number of data items.
This agrees with the complexity analysis in §6.1.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

2

4

6

8

10

12
x 10

4

number of data items

tim
e

to
 c

lu
st

er
 in

 s
ec

on
ds

Time to cluster Web data, increasing number of data items

Fig. 10. Time taken for a PMPDDP clustering of the web data with an increasing
number of data items. The results are a graphical representation of the times from
Table 6.

8 How to Apply PMPDDP in Practice

We realize that while the experiments demonstrate that PMPDDP is a scal-
able extension of PDDP, they do not give much intuition on how to select the
parameters. There are much more extensive experiments in [16], and using
those results, we can provide some guidelines on how to apply PMPDDP in
practice.

The LMFR construction is the point where the parameter choices are most
relevant. Results indicate that even for an LMFR with the exact same memory

26 David Littau and Daniel Boley

footprint, minimizing the number of sections is beneficial. In other words, it is
best to process the original data in pieces which are as large as can be fit into
memory while still allowing room for overhead and room for the new matrices
being created. Realize that it is not necessary for the sections to have the
same size, so if there is some remainder data, it can be used to construct a
smaller section, with the remaining parameters adjusted accordingly.

There is a trade-off when selecting the values of kc and kz, since those
are the two user-selectable parameters which control the size of the LMFR.
The experimental results indicated that increasing kz to numbers above 7 or 8
does not increase clustering quality, and values of 3 to 5 provide good results
in most cases.

The single most important parameter is kc, the number of representatives
produced per section. The accuracy of the clustering, and the approximation
accuracy of the LMFR, are both strongly influenced by the value of kc. There-
fore, kc should be chosen such that it will maximize the memory footprint of
the global LMFR.

Using the above information, we recommend starting with a small value for
kz and then selecting kc to maximize memory use. If the data set in question
is sparse, it would be advisable to test the parameter choice on a small piece
of data to determine the increase in density so some estimate of the final
memory footprint of the LMFR could be obtained.

Note that applying the above technique may produce an LMFR which
is much larger than the size necessary to obtain good clustering quality. For
instance, the experimental results in §7.3 were good with an LMFR that did
not occupy as much memory as possible. However, it is difficult to know be-
forehand how much reduction a given data set can tolerate. The optimum
memory reduction, if there is such a result, would be strongly data depen-
dent. Therefore, it is difficult to do other than suggest making the LMFR as
large and, correspondingly, as accurate a representation of the original data
as available memory allows.

9 Summary

In this chapter we presented a method to extend the Principal Direction Divi-
sive Partitioning (PDDP) clustering method to data sets which cannot fit into
memory at once. To accomplish this, we construct a Low-Memory Factored
Representation (LMFR) of the data. The LMFR transparently replaces the
original representation of the data in the PDDP method. We call the com-
bination of constructing an LMFR and clustering it using PDDP PieceMeal
PDDP (PMPDDP).

The LMFR is comprised of two matrices. The LMFR is computed in-
crementally using relatively small pieces of the original data called sections.
Each section of data is clustered, and the centroids of the clusters form the

Clustering Very Large Data Sets with PDDP 27

first matrix Cj . The centroids are then used to construct a least-squares ap-
proximation to each data point. The data loadings from the least-squares
approximation are used to construct the second matrix Zj . Memory is saved
since only a small number of centroids are used to approximate each data
item, making Z very sparse. Z must be represented in sparse matrix format
in order to realize the memory savings. Once a Cj and Zj is available for
each section, they are assembled into a global representation of all the data,
CZ. The matrices CZ can then be used in place of the original representation
of the data. The product CZ is never computed explicitly, since the prod-
uct would take up at least as much space as the original data. Unlike many
other approximating techniques, the LMFR provides a unique representation
of each data item.

We provided a complexity analysis of the cost of constructing the LMFR.
This provides a useful guide when determining how to choose the parameters
if the time of computation is critical. In the process, we showed that PDDP is
theoretically linear in the number of data items and the number of attributes,
which has been shown to be the case experimentally.

We then described the PMPDDP clustering algorithm. PMPDDP uses the
LMFR in place of the original data to obtain a clustering of the data. Since
each original data item has a corresponding column in the LMFR, mapping the
clustering of the LMFR to the original data is trivial. Therefore, a clustering
of the LMFR is a clustering of the original data.

PDDP is uniquely suited to clustering the LMFR since PDDP does not
require similarity measures to determine the clustering. Therefore, no data
need to be reconstructed and no full or even partial products of CZ are
computed. To avoid reconstructing the data, an estimate of the scatter is
used in place of the computed scatter when determining which cluster in the
PDDP tree is split next.

With the complexity analysis, we showed PMPDDP is linear in the number
of data items and the number of attributes. Thus, PMPDDP extends PDDP
to large data sets while remaining scalable.

Next, we provided some experimental results. The experiments demon-
strated that it is possible to produce a PMPDDP clustering which has quality
comparable to a PDDP clustering while saving a significant amount of mem-
ory. Therefore, it is possible to cluster much larger data sets than would
otherwise be possible using the standard PDDP method. Additional data sets
were shown to be clustered successfully using PMPDDP in [16].

We also showed the effect of replacing the estimated scatter, as used in
PMPDDP, with the computed scatter, when determining which cluster to
split next. For the dense data set, the difference was neutral with respect
to clustering quality and clustering time. However, for the sparse data set,
a significant amount of time can be saved during clustering by using the
estimated scatter. Clustering quality was slightly inferior, but the reductions
in clustering times more than made up for the differences in clustering quality.

28 David Littau and Daniel Boley

Finally, we described how we would expect PMPDDP would be applied
by a casual user. While we cannot guarantee that our suggestions provide an
optimal balance between memory used and clustering quality, we believe that
using our suggestions would provide the best clustering quality obtainable
considering the amount of memory available on the workstation being used.

10 Acknowledgment

This work was partially supported by NSF grant 0208621.

References

1. K. Alsabti, S. Ranka, and V. Singh. An efficient k-means clustering algorithm.
In Proceedings of IPPS/SPDP Workshop on High Performance Data Mining,
1998.

2. C. Blake, E. Keogh, and C. J. Merz. UCI repository of machine learning
databases. http://www.ics.uci.edu/∼mlearn/MLRepository.html, 1998.

3. D. L. Boley. Principal direction divisive partitioning. Data Mining and Knowl-
edge Discovery, 2(4):325–344, 1998.

4. P. Bradley and U. Fayyad. Refining initial points for k-means clustering. In
J. Shavlik, editor, Proceedings of the Fifteenth International Conference on Ma-
chine Learning (ICML), San Francisco, CA, pages 91–99. AAAI Press, 1998.

5. P. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to large
databases. In Proceedings Fourth International Conference on Knowledge Dis-
covery and Data Mining. AAAI Press, 1998.

6. D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey. Scatter/gather: A
cluster-based approach to browsing large document collections. In ACM SIGIR,
1992.

7. I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text
data using clustering. Machine Learning, 42(1):143–175, January 2001. Also
appears as IBM Research Report RJ 10147, July 1999.

8. Pedro Domingos and Geoff Hulten. A general method for scaling up machine
learning algorithms and its application to clustering. In Proceedings of the 18th
International Converence on Machine Learning, pages 106–113. Morgan Kauf-
mann, 2001.

9. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley,
1973.

10. Chris Fraley. Algorithms for model-based Gaussian hierarchical clustering.
SIAM Journal on Scientific Computing, 20(1):270–281, 1999.

11. Earl Gose, Richard Johnsonbaugh, and Steve Jost. Pattern Recognition and
Image Analysis. Prentice Hall, 1996.

12. Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: an efficient cluster-
ing algorithm for large databases. In Proc. of 1998 ACM-SIGMOD Int. Conf.
on Management of Data, pages 73–84, 1998.

13. Hillol Kargupta, Weiyun Huang, Krishnamoorthy Sivakumar, and Erik L.
Johnson. Distributed clustering using collective principal component analysis.
Knowledge and Information Systems, 3(4):422–448, 2001.

Clustering Very Large Data Sets with PDDP 29

14. G. Karypis, E.-H. Han, and V. Kumar. Multilevel refinement for hierarchical
clustering. Technical Report 99-020, 1999.

15. T. Kurita. An efficient agglomerative clustering algorithm using a heap. Pattern
Recognition, 24(3):205–209, 1991.

16. David Littau. Using a Low-Memory Factored Representation to Data Mine
Large Data Sets. PhD Dissertation, University of Minnesota, Department of
Computer Science, 2005.

17. David Littau and Daniel Boley. Using low-memory representations to cluster
very large data sets. In D. Barbará and C. Kamath, editors, Proceedings of the
Third SIAM International Conference on Data Mining, pages 341–345, 2003.

18. David Littau and Daniel Boley. Streaming data reduction using low-memory fac-
tored representations. Journal of Information Sciences, Special Issue on Mining
Stream Data, to appear.

19. D. Pelleg and A. Moore. Accelerating exact k-means algorithms with geometric
reasoning. In Proceedings of the 5th ACM SIGKDD, pages 277–281, San Diego,
CA, USA, 1999.

20. M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering
techniques. In 6th ACM SIGKDD, World Text Mining Conference, Boston, MA,
USA, 2000.

21. T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clus-
tering method for very large databases. In Proceedings of the ACM SIGMOD
Conference on Management of Data, Montreal, Canada, 1996.

