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ABSTRACTThis paper proposes a simple method for estimating the position of a robot from relatively fewsensor readings. Our algorithms are intended for applications where sensor readings are expensiveor otherwise limited and the readings that are taken are subject to considerable errors or noise.Our method is capable of converging to a position estimate with greater accuracy using fewermeasurements than other methods often used for this type of application, such as the Kalmanand extended Kalman �lters. Our approach is validated using a mobile robot on which a camerais used to obtain bearing information with respect to landmarks in the environment.0This research was supported in part by NSF grant CCR-9405380 and Minnesota Dept. of Transportation grant71789-72996-173.
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1. Introduction and Background1.1. IntroductionIt is often the case that the environment in which a mobile robot must navigate is not conduciveto the taking of multiple sensor readings. One example is an outdoor, unstructured environmentin which beacons are non-existent and the few existing natural landmarks are widely spaced anda signi�cant distance from the viewpoint. We propose a simple method for successfully navigatingin environments of this type, where sensor readings are expensive or otherwise limited and thereadings that are taken are subject to considerable errors or noise.The method we propose converges rapidly using only a few readings, would be exact if therewere no errors in the data, and is relatively e�cient. We use a variation on a least squaresformulation to minimize a residual, and carry out the computations in a recursive manner. Oursimple least squares formulation not only gives quite satisfactory results, but converges fasterthan the commonly used Kalman �lter at approximately the same cost per step. In addition, itdoes not su�er from the problem of non-convergence often seen when the extended Kalman �lteris used in this type of application.To demonstrate the algorithms, we use a mobile robot platform on which is mounted a camera.The sensor readings are obtained by viewing one or more landmarks in the visual images obtainedas the robot moves. The images yield bearings to the landmarks, which are then used to estimatethe position of the robot. The bearings are subject to considerable noise, both from the coarsenessof the image resolution and from odometry error in �xing the base line. In spite of the noise inthe data, our algorithms were able to �x the location of the robot with relatively high accuracy.We show how the task of estimating robot positions from bearing data can be formulated directlyas a simple overdetermined system of linear equations, which is not a local linearized approxi-mation, but is valid globally. We then show how the resulting system of linear equations can besolved in either a least squares sense or by using a total least squares approach, which has theadvantage over least squares of admitting errors anywhere in the equations.This paper is organized as follows. After the rest of this introduction, in which we describe thelimitations of the Kalman �lter for this particular application, we de�ne in Section 2 the navigationproblem we wish to address and show how it can be set up as a set of linear equations whichwould be exact if the data were error-free. In Section 3 we review the theory which guarantees the{ 2 {



existence, uniqueness and sensitivity of the solution to the overdetermined system of equations setup in Section 2. In Section 4 we show how the system of linear equations can be solved e�cientlyin a recursive manner, in both a least squares (LS) and total least squares (TLS) sense. In Section5 we illustrate the behavior of the method with some experiments, and we end in Section 6 withsome concluding remarks.1.2. The Kalman Filter and Extended Kalman FilterThe discrete Kalman �lter (Kalman 1960), commonly used for prediction and detection of signalsin communication and control problems, has more recently become a popular method of reducinguncertainty in robot navigation. One of the main advantages of using the �lter is that it isrecursive, eliminating the necessity for storing large amounts of data. The �lter is basicallya recursive weighted least squares estimator of the state of a dynamical system using a giventransition rule. Suppose we have a discrete dynamical system xi = Fi�1xi�1 + ei�1, where xi isthe state vector, ei is the noise vector, and Fi�1 is the state transition matrix at time step i. Weare given a sequence of measurements bi obeying the model bi = Aixi+ �i, where Ai is the givendata matrix and �i is measurement noise. The Kalman �lter is used to �nd an estimate of thestate vector xi from the measurement data that minimizes the noise in a least squares sense. TheKalman �lter equations and a schematic diagram of the �lter are in the Appendix. A completedescription of the �lter can be found in (Gelb 1974). It requires an initial estimate of the solutionand assumes that noise is weighted white gaussian. The discrete Kalman �lter is guaranteed tobe optimal in that it is guaranteed to �nd the best solution in the least squares sense.Although originally designed as an estimator for dynamical systems, the �lter is used in manyapplications as a static state estimator (Smith & Cheeseman 1986). In the static problem, thestate transition matrix Fi�1 is the identity matrix I, so the problem is reduced to �nding thestate vector x minimizing the weighted Euclidean norm of the measurement noisekW�ik2 = kW (bi �Aixi)k2;where W is an optional weighting matrix (usually the inverse of the covariance matrix of mea-surement noise).Also, due to the fact that functions are frequently non-linear, the extended Kalman �lter (EKF) isused (Ayache & Faugeras 1989; Kosaka & Kak 1992). The EKF formalism linearizes the function{ 3 {



by taking a �rst order Taylor expansion around the current estimate of the state vector (Gelb1974). Assuming that the function is represented by a set of non-linear equations of the formfi(yi;x) = 0 where x is the state vector and yi represents random parameters of fi of whichestimated measures, ŷi, are taken, the �rst order Taylor expansion is given by:fi(yi;x) = 0 ' fi(ŷi; x̂i�1) + (yi � ŷi)@f̂i@y + (x� x̂i�1)@f̂i@xwhere x̂i is the i-th estimate of the state vector and the derivatives are estimated at (ŷi; x̂i�1).This equation can be rewritten as: bi = Aix+ �iwhere: bi = �fi(ŷi; x̂i�1) + (x̂i�1)@f̂i@xAi = @f̂i@x�i = (yi � ŷi)@f̂i@yThis linear approximation function is then used as the Kalman �lter equation.1.3. Limitations of the Kalman FilterThere are several basic problems which can occur when using either the Kalman or extendedKalman �lter in robot navigation applications:� The �lter was developed for applications such as those in signal processing in which manymeasurements are taken (Kalman 1960). Sensing in robot navigation is often done usingcamera images. The gathering and processing of each image is a time consuming process soa successful method must make do with relatively few readings.� The Kalman �lter assumes a starting estimate is available. Convergence can be adverselya�ected by a poor starting estimate. The method we propose does not require any startingestimate, but rather is capable of producing one with relatively few readings.� The Kalman �lter implicitly assumes the errors in the data are Gaussian or approximate aGaussian distribution. The accuracy can be degraded if this assumption is violated by, forexample, the presence of systematic errors.{ 4 {



� An underlying assumption in least squares estimation is that the entries in the data matrixare error-free (Golub & Van Loan 1989). In many actual applications, the errors in thedata matrix can be at least as great as the measurement errors. In such cases, a Total LeastSquares (TLS) approach can give better results.Two additional problems occur when using the EKF:� The linearization process itself has the potential to introduce signi�cant error into the prob-lem.� The EKF is not guaranteed to be optimal or to even converge (Sorenson 1970). It can easilyfall into a local minimum when an initial estimate of the solution is poor, often the type ofsituation faced by robot navigators.
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Figure 1: (a) In an LS solution, the sum of the squared vertical distances to the line of best �t isminimized. (b) In a TLS solution, the sum of the squared perpendicular distances to the line ofbest �t is minimized.Although limited modi�cations can be made to the Kalman approach to improve robustness tonoise (Schneiderman & Nashman 1994), our work in outdoor navigation (Sutherland & Thompson1993), where measurements are expensive to obtain and have very signi�cant nongaussian errorinherent to the system, motivated us to look for another �ltering method. Navigation algorithmssuch as those developed by (Hanebeck & Schmidt 1996) using a set theoretic framework are ableto handle nongaussian noise. However, they require that a signi�cant number of landmarks be{ 5 {



available. We sought a method capable of converging with only a few measurements from as fewas one or two landmarks.As the interesting work by Mintz et. al. (Hager & Mintz 1991; McKendall & Mintz 1990) in robustestimation and modeling of sensor noise has demonstrated, the criterion of optimality dependscritically on the speci�c model being used. Given two methods, the �rst may produce optimalityin one sense but not do as well as the second in another sense. When error exists in both themeasurement and the data matrix, the best solution in the least squares sense is often not as goodas the best solution in the eigenvector sense, where the sum of the squares of the perpendiculardistances from the points to the lines are minimized (Duda & Hart 1973) (Fig. 1). This secondmethod is known in the statistical literature as orthogonal regression and in numerical analysis astotal least squares (TLS) (Van Hu�el & Vandewalle 1991).2. Problem Formulation2.1. Single LandmarkWe �rst discuss the case where one uses bearings to a single landmark. In order to �x theposition in a ground coordinate system, it is necessary to assume that we can obtain the directionof motion (\vehicle heading") from another sensor. This case is useful if, for example, the vehiclehas a compass yielding directional information. It also serves to illustrate the general paradigm.2.1.1. Equation for Single Landmark at Each Time IntervalWe set up a virtual coordinate system with the landmark located at (0; 0), and the x coordinatealong the direction of motion of the robot, as illustrated in Figure 2.At any step i, we have: cot(�i) = x0 + diy0 ; (1)where (x0; y0) is the unknown robot start position, �i is the measured angle, and di is the distancetraveled by the robot since starting at position (x0; y0). The distance di may be estimated fromodometry or by integrating the velocity over time. The goal is to solve for the unknown coordinates(x0; y0). We can rewrite (1) assin(�i) � x0 � cos(�i) � y0 = �sin(�i) � di: (2){ 6 {
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1 2 3 4Figure 2: Coordinate system for single landmark situation.2.1.2. Row by Row Collection into Overdetermined Matrix Equation Ax = b.Over several time intervals, we read new angles yielding new coe�cients for the equation (2). Weassemble all these equations into a single matrix equation of the form Ax = b where each row ofA and b are respectivelyaTi = ( sin(�i) �cos(�i) ) ; bi = �sin(�i) � di; (3)and x = (x0; y0) is the vector of unknowns. Since the angle readings are subject to noise, we mustsolve the equations Ax = b in a least squares sense. This is discussed below. It will be seen thatwe can encode this information in such as way that the amount of storage does not grow as morereadings are entered.Notice that equations Ax = b set up in this way are linear in the unknowns (x0; y0), but we havenot made any kind of linearized approximation. If there were no error in the angles �i or thedistances di, the true start position would exactly satisfy the equations.
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Figure 3: Two Landmark Virtual Coordinate System.2.2. Two Landmarks2.2.1. Equations Using Two Landmarks.We show how to set up the equations analogous to (3), but for two landmarks. In general,two landmarks are su�cient to determine one's position without using any prior knowledge ondirection of motion, once one has taken readings from at least two positions. In handling twolandmarks, we set up a virtual coordinate system in which one landmark is placed at the origin asbefore, the x axis is placed parallel to the direction of motion, and the second landmark is placedat coordinates (l;m). The unknown quantities to be solved for are the starting robot position(x0; y0) and the position of the second landmark (l;m). The coordinates (l;m) are then usedto map the virtual coordinate system to the ground coordinate system using the known groundcoordinates of the two landmarks. The coordinate system is illustrated in Figure 3.Applying the single landmark equations to each landmark here, we obtain the equationssin(�1i) � x0 � cos(�1i) � y0 = �sin(�1i) � di; (4)sin(�2i) � x0 � cos(�2i) � y0 � sin(�2i) � l + cos(�2i) �m = �sin(�2i) � di; (5)2.2.2. Collection into Overdetermined Matrix Equation.Equations (4) and (5) yield two rows for the matrix least squares problem Ax = b we have tosolve, where the vector of unknowns is xT = (x0; y0; l;m). We append the following two rows to{ 8 {



the coe�cient matrix AAi =  aT1iaT2i! =  sin(�1i) �cos(�1i) 0 0sin(�2i) �cos(�2i) �sin(�2i) cos(�2i)! (6)and two new entries to the right hand side vector bbi =  b1ib2i ! =  �sin(�1i) � di�sin(�2i) � di ! : (7)Notice we have again constructed a system of equations that are linear in the unknown quantities,but which are still exact in the sense that if the coe�cients are obtained without error, the solutionwill be exact.2.2.3. Collecting Rows when Only One Landmark is Visible at a Time.Besides being linear in the unknowns, equation (7) also yields an interesting property when thelandmarks are not visible at the same time. If only the �rst landmark is visible, it su�ces toappend only the �rst row of (6) and (7). When the second landmark is visible, it su�ces to appendonly the second row of (6) and (7). Alternatively, a row of all zeroes can be used for the missinglandmark. This comment also applies if the angles to each landmark are not read simultaneously.For example, if two di�erent sensors are used, each devoted to its own landmark, and thesetwo sensors are not synchronized, then we can append the appropriate row corresponding to alandmark whenever an angle to that landmark is obtained from the sensor, without regard to theother landmark. Each reading would include the correct current value for the distance di measuredat the time the reading is taken. A unique least squares solution to Ax = b will exist as long asA has full column rank. In this case of two landmarks, this means that the rank of A should be4, and this will occur when we have readings of at least two di�erent angles from landmark 1 plustwo di�erent angles from landmark 2, regardless of the order in which the readings are obtained.2.2.4. Mapping Back to Ground Coordinate SystemOnce we compute the estimated values for the unknown quantities x0; y0; l;m, the coordinates(l;m) can be used to map the virtual coordinate system back to the ground coordinate system.Suppose for simplicity that the ground coordinate system also has the origin at the �rst landmark,but with the directions of the axes de�ned a-priori (possible by a simple translation of the groundcoordinate system). The distance between the landmarks in both coordinate systems must match{ 9 {



in theory, and in practice a small mismatch in this inter-landmark distance can be used to correctscaling errors in the odometry used to obtain the distances di. As a result, it is not necessary tocalibrate the odometry very accurately, as long as it is internally consistent. After this scaling,the two coordinate systems can be matched by rotation.3. Least Squares and Total Least Squares: Theory3.1. When Does Least Squares Problem Admit Unique Solution?To account for noise in the data, we estimate the starting position using the best least squares �t.In this section we determine when the overdetermined system of equations we have constructedhas a unique least squares solution by applying the general theory for least squares problems.When we state that we wish to solve the matrix equations Ax = b in a least squares sense,what we mean precisely is to minimize the residual minx kAx� bk2. If there are no errors in thecoe�cients A;b, then there should be a solution x for which the residual is zero (i.e. the equationsare satis�ed exactly). But in the presence of errors in the coe�cients, the equations will not besatis�ed exactly. The following is well known from the theory of linear least squares (Golub &Van Loan 1989, p222):THEOREM T1. The least squares problemminx krk = minx kAx� bk2 (8)admits a unique solution if and only if A has full column rank. If A is rank de�cient, then thereare multiple solutions. 2The issue we address here is under what conditions does the A matrix constructed by either (3)or (6) have full column rank.In the single landmark case, if we are moving directly toward or away from the landmark, thenthe angles will be constant. Hence every row of A will be the same and the rank of A will be 1,not 2. On the other hand, it is simple matter to see that if we have at least two readings with atleast two di�erent angles, then the corresponding rows computed according to (3) will be linearlyindependent, and hence A will have full column rank 2.In the two landmark case, a similar argument applies. If we have readings with at least twodi�erent angles to landmark 1 and two di�erent angles to landmark 2, for a total of at least 4{ 10 {



readings, then the the 4 rows computed according to (6) will be linearly independent and theresulting matrix A will have full column rank 4. If, however, we are moving directly toward one ofthe landmarks in such a way that the angles remain constant, then the rows generated accordingto (6) corresponding to that landmark will all be the same. The rows corresponding to the otherlandmark taken alone yield a rank of at most 2, so the entire matrix A can have a rank of at most3.So we may conclude the followingTHEOREM T2. The least squares problems constructed from the single landmark case (3) or thetwo landmark case (6), (7) have unique solutions if and only if the robot vehicle is not movingdirectly toward or away from either landmark, and readings with at least two di�erent angles areobtained. 23.2. Sensitivity of Least Squares SolutionWe examine the sensitivity of the solution to the Least Squares problem, assuming that it is afull rank problem satisfying the conditions of Theorems T1 and T2. All the algorithms in thispaper are backward stable in the sense that they compute the exact solution for a problem thatis a small perturbation of the problem originally presented to the algorithm. Thus there are twosources of perturbations to the \exact" set of equations to be solved: sensor errors and round-o�errors. Both types of perturbations are subject to ampli�cation due to the conditioning of thesystem of matrix equations, as shown by the following result (Golub & Van Loan 1989, p228):THEOREM T3. Consider the exact and perturbed least squares problem:minx krk = minx kAx� bk2 and minx̂ kr̂k = minx̂ k(A+�A)x̂� (b+�b)k2 (11)where A is n� p with n � p with singular values �1 � � � � � �p > 0. Assume that� = max�k�AkkAk ; k�bkkbk � < �p�1 and krkkbk � sin � < 1: (11a)Then the error in the solution to the perturbed problem relative to the solution to the exact problemis kx̂� xkkxk � 8<: 2cos � � �1�p + tan � �  �1�p!29=; � �: (11b)2 { 11 {



We interpret this result by noting �rst that the sensitivity depends on the inverse of the conditionnumber �(A) � �1=�p. The smaller is this condition number, the less sensitive the least squaressolution is to perturbations in the coe�cients, whether from round-o� errors or sensor errors.Thus, there are three factors giving rise to errors in the least squares solution: conditioning of thematrix, sensor errors yielding errors in the coe�cients, and round-o� arising during computations.Of these three factors, the round-o� error is typically much less than the sensor errors, especiallyif normal 
oating point is used. The conditioning of the matrix can be controlled by increasingthe range of angles over which the landmarks are visible. If the vehicle is moving almost but notexactly directly toward a landmark, a solution will exist in theory, but the matrix will be veryill-conditioned and the computed solution may be subject to much uncertainty. We note �nallythat whether or not any of these factors can be controlled, the residual vector obtained from anactual computed solution can be used to measure the impact of these factors in any particularcase. Speci�cally, the computed residual yields the angle � from (11a) which can be used tocompute the upper bound to the relative error in (11b).3.3. Total Least Squares { Application and MotivationThe ordinary least squares solution assumes all the error lies in the right hand side vector b. Theerrors arise from both the distance data and the angle data. Hence the matrix A is subject to thesame sources of errors as the right hand side. To allow for errors in the matrix A, we want to �ndthe smallest perturbation E; f to both A and b so that the perturbed system (A+ E)x = b� fhas a solution. This is in contrast to ordinary least squares in which we �nd only the smallest fsuch that Ax = b� r has a solution, the r being the residual. Admitting both perturbations E; fgives rise to the Total Least Squares (TLS) solution Speci�cally the TLS solution is obtained by�nding the minimizing solution tominkE; fk2 such that (A+E)x = b� f : (9)In this way, we may admit errors anywhere in the system. Columns scaling may be used to weighterrors in some columns more than others.The easiest way to solve (9) is to use the Singular Value Decomposition (SVD). The SVD of ann�(p+1) matrixM is the factorization U�V T =M where U; V are orthogonal matrices and � isnon-negative diagonal with the diagonal entries in descending order. For simplicity in exposition,{ 12 {



assume without loss of generality that n � (p+ 1). The diagonals �1 > � � � > �p+1 � 0 of � arethe singular values, and the columns of V = (v1; : : : ;vp+1) are called the corresponding singularvectors.3.4. When Does Total Least Squares Admit Unique Solution?Regarding existence and uniqueness of a solution to (9), the theory of TLS (Bjorck 1996, p178)provides us with this theoremTHEOREM T4. The system (9) admits a minimizing solution x if and only if the last componentvp+1;p+1 of the right singular vector vp+1 corresponding to the smallest singular value �min =�p+1 of M = (A;�b) is nonzero. The solution is unique if and only if this singular value hasmultiplicity 1. Then the TLS discrepancy is (E; f) = ��p+1up+1vTp+1 and the TLS solution is x =(v1;p+1; : : : ; vp;p+1)T =(vp+1;p+1). If the smallest singular value is multiple, then the correspondingsingular vectors are not uniquely de�ned, and any choice of those corresponding singular vectorswill yield a TLS solution. 2The previous theorem gives very general technical conditions for the existence and uniquenessof solutions to the TLS problem based on quantities appearing during the computation of theTLS solution itself. It is more di�cult to obtain such conditions in terms of quantities moreeasily available from the data, especially in the context of the robot localization problem we areconsidering. However, a su�cient condition for the existence and uniqueness of a TLS solutioncan be expressed in terms of the solution and residual, x; r from the ordinary least squares problem(8).THEOREMT5. If the least squares residual r from (8) is su�ciently small to satisfy krk=k(xT ;�1)k <�min(A), then the TLS solution is guaranteed to exist and be unique, where x is the correspondingleast squares solution and �min(A) denotes the smallest singular value of A.PROOF: Let �i; i = 1 : : : ; p and ��i; i = 1; : : : ; p + 1 be the singular values of the matrix A andthe augmented matrix (A;b), respectively. From the interlacing property of the singular values(��i � �i � �i+1), ��p � �p > 
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 ;hence ��p+1 is strictly less than �p. This su�cient to guarantee a unique solution to the TLSproblem (Bjorck 1996, p179). 2 { 13 {



To interpret this result, if the matrix A of coe�cients is well conditioned enough (i.e. �min(A) islarge enough) and the least squares residual (from (8)) is small enough (i.e. the e�ective noiseintroduced into the right hand side vector b is small enough), then the TLS solution exists andis unique. Here \small enough" means the least squares residual is small relative to the smallestsingular value of A.4. E�cient Solution of Overdetermined Matrix ProblemThe least squares problem (8) can be solved by a variety of methods. The two most popularmethods are based on, respectively, the Normal Equations and the QR Decomposition. We verybrie
y sketch the methods in their traditional form, and then later indicate how these methodsmay be adapted to recursive computation. Details can be found in (Bjorck 1996).The Normal Equations arising from (8) is the p� p matrix equationATAx = ATb: (12)The solution of this system of equations yields the least squares solution to (8), assuming A hasfull column rank. This method has the disadvantage that the conditioning of ATA is the squareof that of A.The QR Decomposition of A is the factorization QR = A where Q is an n � p matrix withorthonormal columns and R is a p � p upper triangular matrix. This can be computed bystandard algorithms (Bjorck 1996, sec. 2.3{2.4). Once computed, the least squares solution canbe obtained by solving the square, triangular systemRx = QTb: (13)This method has the advantage that R has the same conditioning as A, but it is slightly moreexpensive if A has many rows.4.1. Recursive Solution of Least Squares ProblemWhen determining the robot vehicle's position, each set of angles gives rise to a new row in thematrix A. We note that the systems (12) or (13) to be solved to obtain the positions are all�xed size p� p as new rows are added to A. The key to the e�cient solution to the least squares{ 14 {



cost coststep (non-recursive) (recursive update)Assemble (12) np2 + npUpdate RHS in (12) 2pCholesky Factorization p3=3 + p2=2 + p=6 2p2 + 10ptwo triangular solves 2p2 + 4p 2p2 + 4pTotals np2 + np+ p3=3 + 5p2=2 + p=6 4p2 + 16pwhen p = 2 6n+ 13 48when p = 4 20n+ 62 128Table 1: Costs for Normal Equations in Floating Point Operations (Flops).problem is to show how to update the matrices and right hand sides in (12) and (13) withoutrecomputing them from scratch.4.1.1. Normal Equations, Updating ATA and ATb at Each Step.Let A;b be the matrix and right hand side obtained after several readings, and suppose we mustnow incorporate a new set of readings which form a new row aT for A and a new entry b for b.Observe that the updated matrix for the Normal equations,(AT a ) AaT ! = ATA+ aaT ; (14)is a rank one update on the original matrix for the Normal Equations. Likewise, the new righthand side consists of just the old right hand side plus a simple correction:(AT a ) bb ! = ATb+ ab (15)Since the Normal Equations are a symmetric positive de�nite system, they are solved via theCholesky factorization (Bjorck 1996, sec. 2.2.2), A = LLT , which is essentially a symmetricversion of Gaussian Elimination when pivoting is necessary, where L is lower triangular. Insteadof updating the matrix ATA, we would really like to update its Cholesky factor, and the cost ofthis is p2 
oating point operations (multiplies and adds). We refer the reader to (Bjorck 1996,sec. 3.2) for the details. Updating the right hand side costs 2p operations. Solving the newNormal Equations, given the new Cholesky factorization, requires two triangular solves costing a{ 15 {



total of 2p2 operations. So the total cost for each update is approximately 3p2+2p 
oating pointoperations. We summarize the steps in Table 1.4.1.2. QR Method, Updating Q and R at Each Step.The update process for the QR Decomposition is similar to that for the normal equations. LetbQ; bR be the updated QR factors. ThenbQ bR =  AaT ! =  QRaT ! =  Q 00 1! RaT ! : (16)Moving Q to the left hand side we get a QR Decomposition of a (p+ 1)� p matrix:( QT 00 1! bQ) bR = eQ bR =  RaT ! : (17)The eQ bR factorization of (17) can be computed fast (4p3=3), independent of the number of samplestaken), and in fact one can speed it up to 2p2 operations by taking advantage of the fact that Ris already upper triangular (Bjorck 1996, p136). The right hand side is then updated by applyingthe updating transformation eQ from (17) to the old right hand side QTb:bQT  bb ! = ( eQT  QT 00 1!) bb ! = ( eQT  QTbb !) : (18)If eQ is stored as a sequence of the p elementary rotations arising from the QR Decomposition, thiscosts about 4p operations, so the total cost (including the one triangular solve) is approximately3p2 + 16p operations. We summarize the steps in Table 2.4.1.3. Theorem: Fast Solution of Exact Least Squares Problem.We note that the updating formulas (15)-(18) are all exact. Hence we have the following simpleresult, which we state formally in order to contrast these methods with other approximate meth-ods. Both the recursive and non-recursive methods involve the computation of a factorization,in one case from scratch and in the other by updating using elementary transformations. Therecursive algorithms yield the same exact factorizations as the non-recursive algorithms, exceptthat the transformations are accumulated in a di�erent way. So the results will di�er only withinrounding errors.THEOREM T6. The solutions to the recursively updated least squares problems obtained usingformulas (15) through (18) are identical to the solutions obtained by solving the full least squares{ 16 {



cost coststep (non-recursive) (recursive update)Get QR Decomp 2np2 � 2p3=3 +O(l:o:t)Update (17) 2p2 + 10pget right hand side of (13) 2npUpdate (18) 4pone triangular solve p2 + 2p p2 + 2pTotals 2np2 � 2p3=3 +O(l:o:t) 3p2 + 16pwhen p = 2 approx 8n� 16=3 44when p = 4 approx 32n� 128=3 112Table 2: Costs for QR Decomposition in Floating Point Operations (Flops).problem (8) by the corresponding non-recursive method (whether Normal Equations or QR De-composition), within rounding errors. 24.2. Recursive Total Least SquaresAs previously mentioned, errors are present in the matrix A of coe�cients as well as the righthand side of the least squares problem (8) arising from the robot navigation problem. To accountfor this, a Total Least Squares (TLS) solution is desirable. In this section we sketch the stepsnecessary to update a TLS solution as new readings are obtained without having to repeat thecomputation from scratch. The paradigm is similar to the recursive least squares solution in thesense that we use a fast update of a suitable decomposition, which is then used to obtain the newsolution.4.2.1. SVD Method, Updating only � and V in U�V T = (A;�b).The primary method for obtaining the TLS solution is via the SVD: U�V T = (A;�b), whereA is n � p with n >> p. In this case, only the (p + 1) � (p + 1) matrices � and V are needed;hence the n� (p+ 1) matrix U may be omitted from the computation. The updating problem isthen the following, using the notation similar to that in the previous section. Given the SVD of
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(A;�b), compute the SVD of the updated matrix( bA; b�b) = � AaT !  �b�b !� : (19)We have the following identitiesbU b�bV T = ( bA;�bb) =  A �baT �b ! =  U�V T(aT ; b) ! =  U 00 1! �(aT ; b)V !V T : (20)Since the U matrix is not needed, the new b�; bV can be computed by �nding the SVD of the p+1�pmatrix  �(aT ; b)V ! and using the result to update the V matrix. Unfortunately, it is not obvioushow to compute this SVD in less than O(p3) operations, so this algorithm is practical only forsmall values of p (as encountered here), depending on the power of the underlying computer.4.2.2. ULV Method, an SVD Approximation.In cases such as the applications considered in this paper where the exact TLS solution is stillcorrupted by external e�ects such as noise, it su�ces to obtain an approximate TLS solution atmuch less cost. We seek a method that can obtain a good approximation to the TLS solution, butwhich admits rapid updating as new data samples arrive. One such method is the so-called ULVDecomposition, �rst introduced by Stewart (Stewart 1993) as a means to obtain an approximateSVD which can be easily updated as new data arrives, without making any a priori assumptionsabout the overall distribution of the singular values. The ULV Decomposition of a real n� (p+1)matrix M (where n � (p + 1)) is a triple of 3 matrices U , L, V plus a rank index r, whereM = ULV T , V is (p+ 1)� (p+1) and orthogonal, L is (p+ 1)� (p+1) and lower triangular, Uhas the same shape as M with orthonormal columns, and where L has the formL =  C 0E F ! (21)where C (r � r) encapsulates the \large" singular values of M , (E;F ) ((p + 1 � r) � (p + 1))approximately encapsulate the p + 1 � r smallest singular values of M , and the last p + 1 � rcolumns of V encapsulate the corresponding trailing right singular vectors. To solve the TLSproblem, the U matrix is not required, hence we need to carry only L, V , and the e�ective rankr. Therefore, a given ULV Decomposition can be represented just by the triple [L; V; r].The feature that makes this decomposition of interest is the fact that, when a new row ofcoe�cients is appended to the M matrix, the L, V and r can be updated in only O(p2) op-erations, with L restored to the standard form above, as opposed to the O(p3) cost for an{ 18 {



coststep (recursive update)Compute aTV 2p2Absorb One 8p2 + 20p+ 6Extract Info 2p2 + 4pDeflate One 8p2 + 20pTotals 20p2 + 44p+ 6when p = 2 174when p = 4 502Table 3: Estimated Costs for ULV Update in Floating Point Operations (Flops).SVD (though still more than the least squares updates (12) through (18)). In this way, itis possible to track the leading r-dimensional \signal subspace" or the remaining \noise sub-space" relatively cheaply. Details on the updating process can be found in (Stewart 1993;Hosur, Tew�k, & Boley 1995). Brie
y, the steps are as follows: Absorb One to absorb the newrow (aT ; b) into L, restoring the triangular form, Extract Info to estimate the smallest singularvalue and corresponding singular vector of the new L, and Deflate One to decouple the singularvalue just estimated by a change in bases (i.e. expose the blocks E;F of small entries in (21)).The respective costs are given in Table 3.We can adapt the ULV Decomposition to solve the Total Least Squares (TLS) problem Ax � b,where new measurements b are continually being added, as proposed in (Boley, Steinmetz, &Sutherland 1995). The adaptation of the ULV to the TLS problem has also been analyzedindependently in great detail in (Van Hu�el & Zha 1993), though the recursive updating processwas not discussed at length. For our speci�c purposes, let A be an n � p matrix and b be ann-vector, where p is �xed and n is growing as new measurements arrive. Then given a ULVDecomposition of the matrix (A;b) and an approximate TLS solution to Ax � b, our task is to�nd a TLS solution bx to the augmented system bAbx � bb, wherebA =  �AaT ! and bb =  �bb ! ;and � is an optional exponential forgetting factor (Haykin 1991).The RTLS Algorithm: { 19 {



� Start with [L; V; r], the ULV Decomposition of (A;b), and the coe�cients aT ; b for the newincoming equation aTx = b.� Compute the updated ULV Decomposition for the system augmented with the new incomingequation. Denote the new decomposition by [bL; bV ; br].� Partition bV =  bV11 bV12bV21 bV22 ! ;where bV22 is 1� (p+ 1� br).If k bV22k is too close to zero (according to a user supplied tolerance), then we can adjust therank boundary br down to obtain a more robust, but approximate solution (Boley, Steinmetz,& Sutherland 1995; Hosur, Tew�k, & Boley 1995).� Find an orthogonal matrix Q such that bV22Q = (0; : : : ; 0; �), and let v be the last columnof bV12Q. Then compute the new approximate TLS solution according to the formula bx =�v=�.This RTLS Algorithm makes very few assumptions about the underlying system, though the usermust supply a zero tolerance and a gap tolerance for k bV22k. For the application here, it su�ced toset the zero tolerance to zero and depend on just the gap tolerance of 1.5. Under the conditionsof Theorem T5, the block bV22 above is just a scalar, and Q = 1.4.3. Pros and Cons for various methods.The theory we have developed so far has assumed that the least squares problem to be solved hasfull rank. If the rank is de�cient, then at most only a partial solution can be obtained. In generalmultiple solutions exist to the mathematical problem and geometric or physical considerationsmust be used to determine which of the many solutions to correct. However, an alternative is toreject the solution if the system is rank de�cient, and furthermore to use the distance to rankde�ciency as a measure of the well-posedness of the geometric problem to be solved. The relativedistance to rank de�ciency is simply the ratio of the smallest to the largest singular value, whichis exactly the reciprocal of the condition number of the underlying matrix (the matrix A in thecase of the LS problem and the augmented matrix (A;b) for TLS). For the least squares problem,we have already seen that the sensitivity of the result is closely related to exactly this condition{ 20 {



number (11b). Hence not only do the schemes proposed here provide fast estimates of the robotposition, they also provide estimates of the error in the computed position.The recursive TLS method based on the recursive update of the SVD is computing exactly thesame solution as the nonrecursive TLS method, since we are computing the same partial SVDin both cases. When the ULV approximation is used, we are computing only an approximatesolution, but we note that the computed L and V satisfy the relation ULV = (A;b) exactly atevery stage. Hence if the exact solution is ever desired, it can be recovered at any stage by takingthe SVD of the L matrix, which would yield the exact SVD of the full A matrix. Hence even withthe approximate ULV decomposition, we have not lost any information.The choice of method to use in any particular situation depends on the size of the errors in the dataobtained from the sensors, the conditioning of the equations which depends on the geometry ofthe system, and the computing power available on board the vehicle. If the errors are modest andthe system geometry leads to a reasonably well-conditioned system, then any of the methods wehave proposed will yield reasonable position estimates, so the choice can be made entirely on cost.However, if the sensors have low resolution or high noise, then a TLS solution may better capturethe e�ect of such errors throughout the whole system of equations. The improvement from TLSmay be more noticeable when the geometry of the system leads to moderately ill-conditionedsystems of equations. But if the conditioning of the system becomes signi�cant compared tothe precision of the underlying arithmetic (because the underlying navigation problem becomesill-posed), then none of the methods will yield useful position estimates. But estimates of thecondition number can be obtained from the SVD for free and from the triangular factors in allthe other methods with low additional cost (Higham 1987), and these condition number estimatesare reliable indicators of ill-posedness of the underlying problem.5. Experiments.To compare the performance of the Kalman �lter and RTLS in practice, we ran three sets ofexperiments, the �rst with a physical mobile robot and camera and a single landmark, the secondin simulation with two landmarks, and the third with a physical robot and two landmarks notvisible simultaneously.
{ 21 {



5.1. One Landmark.In this experiment, a physical robot viewed a single landmark with a camera, and used thebearing information derived from the images to compute its location. The setup in the �rstset was modeled after the problems faced by an actual mobile robot (Ayache & Faugeras 1989;Durrant-White, Bell, & Avery 1995; Kosaka & Kak 1992). The robot did not know its ownposition on the map, but did know the location of a single landmark. The robot moved in astraight line taking a series of images. Its task was to �nd the landmark in each image, and usethe results to determine its start position relative to the landmark.A Panasonic WV-BL202 camera was mounted on a TRC Labmate at an angle of 90� to robotbearing, so that each image yields an angle �i, as shown in Figure 2. Horizontal �eld of viewwas 50�440, limiting the angles � to the range �25�220. \Landmarks" were mini Maglite highintensity 
ashlight candles. The angular position of the landmark was measured in a sequence ofimages taken while the robot moved across the room at a constant velocity. In addition to theerror in angle measure, error also occurred in velocity, robot bearing and in the times at whichthe images were taken. It is not possible to predict and model these errors. For example, velocitywas set at 20mm/second, but average true velocity across runs ranged from 21.4mm/second to22.5mm/second. In addition, the supposed constant velocity was not constant throughout a singlerun, varying in an unpredictable manner. It would be unrealistic to assume any of these errors ortheir combined result to have a gaussian distribution.The Kalman �lter was given an arbitrary start position of (0,0) (the location of the landmark),so that the deviation at time 0 for the Kalman �lter is the initial distance from the robot to thelandmark.Figure 4 shows a comparison of four of the robot runs. The robot velocity was set to 20mm/sec.Five images were grabbed 12 seconds apart. The robot start position relative to the landmark usedfor localization was di�erent in each run. The deviations d of the estimate of start location fromactual start location at each 12 second time interval t are compared. The RTLS �lter convergedfaster and to more accuracy than did the Kalman, often requiring only 2 or 3 steps to achieve fullaccuracy.
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Figure 4: Performance of RTLS (black) and Kalman �lter (grey) on runs using the TRC Labmate startingwith 4 di�erent landmark locations. Images were grabbed at time intervals t (horizontal axis) 12 secondsapart. The vertical axis gives the deviation of the estimated start position from the actual start positionin millimeters.5.2. Two Landmark Simulation.The second set of experiments was run in simulation, but used two landmarks. We assumedthat the robot has no instrument such as a compass which could be used to register its heading.Such instruments can give varying, incorrect readings in outdoor, unstructured environments(Sutherland & Thompson 1994), so it is useful to design and evaluate methods to obtain headinginformation from external sources. If such heading information was available, it could be usedindependently or as a correction to estimates from internal sources. The robot knows the locationof the two landmarks on a map (ground coordinate system). A coordinate system is arbitrarilycentered at one landmark. The goal is to determine the robot start position plus the locationof the second landmark. Knowing which landmark is which in the view will allow the robotto uniquely determine its starting position from multiple readings along a baseline of unknowndirection, except for certain degenerate con�gurations. Even if the robot does not know the orderof the two landmarks in its view, it can limit its start position to only two possible locations in theground coordinate system, symmetrically located on either side of the line joining the landmarks,without any a priori knowledge of direction.Figure 5 summarizes the results in an example where the two landmarks and the robot were placedat positions (�200; 0), (0; 0), and (�200;�200), respectively, in the ground coordinate system.{ 23 {



When the angle error is negligible, the TLS method provides uniformly good estimates. Whenthe angle error is moderate, the error from TLS method su�ers from an initial jump, but quicklyrecovers because it needs no initial estimate. Furthermore, in the regions where the RTLS errorexceeds the Kalman �lter error, neither �lter yields any accuracy at all, since both errors arelarger than the values being estimated.5.3. Two Landmark (but One at a Time) Experiment.This experiment was modeled after the simulation in the previous section, but we assumed thatonly one landmark was visible at a time. The experiment was carried out with the same hardwareas in the �rst experiment. In this case, the image processing was carried out an a 486-basedPC-104 system. By using a more e�cient image processing algorithm (Fischer & Gini 1996), wewere able to use landmarks consisting of a large letter T on a white 8.5 by 11 inch sheet of paper,under ordinary room light conditions. The overall layout is illustrated in Figure 6.In this experiment, we used the two landmark algorithm as described in this paper, but insertedrows of zeroes corresponding to the landmark not in the �eld of view. As the results in Figure7 show, the algorithm fails to deliver even a rough estimate of the location as long as only onelandmark is visible. This is because the system is rank de�cient, and in the current version ofthe algorithm, we accept solutions only when the rank is full. As soon as the second landmark issighted, the rank of the system immediately becomes full and we obtain valid solution estimates.After only 3 or 4 readings of the second landmark, these solution estimates have converged.6. ConclusionsWe have shown how the navigation problem can be set up as an overdetermined system of linearequations which can be solved at each step in a time independent of the number of readings. Ourmethod would be exact if the the data were error-free, so using higher resolution vision equipmentwould yield a corresponding improvement in the accuracy. The recursive methods we propose areguaranteed to converge to the nonrecursive LS or TLS solution, respectively, computed \o�-line"after all the data has been collected. This is in contrast to a method in which the model beingmanipulated is itself a linear approximation of the true system, or in which there is a possibilityof divergence, as occurs in the EKF. The cost of our recursive LS method is comparable to that{ 24 {



of a Kalman �lter, and the method also yields error estimates dynamically. These error estimatescould be used to decide when to re-initialize the iteration or 
ag an \ill-posedness" error. TheRTLS methods can be applied with only a modest increase in costs over the recursive LS methods.In practice, the Kalman �lter is also used when the item being estimated is being updated itself,such as the current robot position, as proposed in (Bonnifait & Garcia 1996). But even in thiscase, the Kalman �lter requires a good initial estimate of the robot's position, and the methodsproposed in here would be more suitable to producing such an estimate with no a-priori estimatethan using a pure Kalman �lter. Such a hybrid �lter, using the LS or TLS �lter to initialize andthe Kalman �lter to continue, would be more successful than a pure Kalman �lter.In addition, since this �lter converges rapidly, another option is to restart from scratch periodically.A restart could be done also as the landmarks change. In fact, since the computation is soinexpensive, one simple way to handle multiple landmarks visible one at a time in sequence isto carry out the computation with the �rst two landmarks as outlined above. When the secondlandmark comes into view, one starts a new computation to be used with the the second and thirdlandmark while continuing the computation with the �rst two landmarks. The computation usinglandmarks 1 and 2 will yield a position while that using landmarks 2 and 3 will be ready to yielda position as soon as landmark 3 comes into view. Upon this latter event, the �rst computationis terminated, and the resources used to start a new computation for landmarks 3 and 4. In thisway two computations are always active, one yielding a currently valid position estimate. Thisscenario is just one example of the 
exibility possible with a simple, rapidly converging positionestimator.ReferencesAyache, N., and Faugeras, O. D. 1989. Maintaining representations of the environment of amobile robot. IEEE Transactions on Robotics and Automation 5(6):804{819.Bjorck, A. 1996. Numerical Methods for Least Squares Problems. SIAM, Philadelphia.Boley, D. L.; Steinmetz, E. S.; and Sutherland, K. T. 1995. Recursive total least squares: Analternative to using the discrete Kalman �lter in robot navigation. In Dorst, L.; van Lambalgen,M.; and Voorbraak, F., eds., Lecture Notes in Arti�cial Intelligence 1093 - Reasoning withUncertainty in Robotics, 221{234. Springer Verlag.{ 25 {
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Figure 5: Mean deviations (d on vertical axis) between estimated and actual start positions, versus timesteps (t on horizontal axis). Each row of plots shows the results with uniform errors in the angles of0;�2�;�4�, respectively, and each column shows the results with normally distributed errors in t withstandard deviations 0; 5%; 10%, respectively. TLS shown with solid line, Kalman with dashes.
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Figure 7: Typical results with two landmarks visible only one at a time. Notice convergence takesplace within 3 or 4 readings of the second landmark.
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Appendix { Kalman Filter EquationsWe sketch the Kalman �lter equations with a rough estimate of the costs, assuming the weightingmatrices Ui, Vi are diagonal. By estimating the costs in this simple way, we do not intend toclaim that our methods are faster, only that the 
op counts involved are comparable with thoseof the Kalman �lter.item formula approx. costSystem Model xi = Fi�1xi�1 + ei�1 (
ops)Measurement Model bi = Aixi + �iInitial Conditions x0 = (AT0 V �10 A0)�1AT0 V �10 b0P0 = (AT0 V �10 A0)�1State Estimate Extrapolation xi(�) = Fi�1xi�1(+) 0Error Covariance Extrapolation Pi(�) = Fi�1Pi�1(+)F Ti�1 + Ui�1 pState Estimate Update xi(+) = xi(�) +Ki[bi �Aixi(�)] 4p2 + 2pError Covariance Update P�1i (+) = P�1i (�) +ATi V �1i Ai 2p3 + 2p2Kalman Gain Matrix Ki = Pi(+)ATi V �1i 2p3 + 2p2Total 4p3 + 8p2 + 3pwhen p = 2 70when p = 4 396Table 4: Discrete Kalman Filter Equations where B is the measurement vector, A is the datamatrix, F is the state transition matrix, x is the state vector, and ei � N(0; Ui), �i � N(0; Vi).
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