
A Parallel Formulation of the Spatial Auto-Regression Model for Mining
Large Geo-Spatial Datasets†

Baris M. Kazar‡, Shashi Shekhar§, David J. Lilja*, Daniel Boley¶

Abstract:
The spatial auto-regression model (SAM) is a popular
spatial data mining technique which has been used in
many applications with geo-spatial datasets. However,
serial procedures for estimating SAM parameters are
computationally expensive due to the need to compute
all the eigenvalues of a very large matrix. We propose a
parallel formulation of the SAM parameter estimation
procedure in this paper using data parallelism and hybrid
programming technique. Experimental results on an IBM
Regatta show that the proposed parallel formulation
achieves a speedup of up to 7 on 8 processors. We are
developing algebraic cost models to analyze the
experimental results to further improve the speedups.
Keywords: Spatial Auto-regression, Spatial Auto-
correlation, Parallel Formulation, Spatial Data Mining

1 Introduction.
Explosive growth in the size of spatial databases has
highlighted the need for spatial data mining techniques to
mine the interesting but implicit spatial patterns within
these large databases. Extracting useful and interesting
patterns from massive geo-spatial datasets is important
for many application domains such as regional
economics, ecology and environmental management,
public safety, transportation, public health, business, and
travel and tourism [2,13,14].
 Many classical data mining algorithms such as linear
regression assume that the learning samples are
independently and identically distributed (IID). This
assumption is violated in the case of spatial data due to
spatial auto-correlation [14] and classical linear
regression yields a weak model with not only low
prediction accuracy [13] but also residual error
exhibiting spatial dependence.

† This work was partially supported by the Army High
Performance Computing Research Center (AHPCRC) under
the auspices of the Department of the Army, Army Research
Laboratory (ARL) under contract number DAAD19-01-2-0014.
This work received additional support from the University of
Minnesota Digital Technology Center and the Minnesota
Supercomputing Institute.
‡ Electrical and Computer Engineering Department, University
of Minnesota, Twin-Cities MN 55455, Email:kazar@ece.umn.edu
§ Computer Science and Engineering Department, University of
Minnesota, Twin-Cities MN 55455, Email: shekhar@cs.umn.edu
* Electrical and Computer Engineering Department, University
of Minnesota, Twin-Cities MN 55455, Email: lilja@ece.umn.edu
¶ Computer Science and Engineering Department, University of
Minnesota, Twin-Cities MN 55455, Email: boley@cs.umn.edu

The spatial auto-regression model (SAM) [5,14] is a
generalization of the linear regression model to account
for spatial auto-correlation. It has been successfully used
to analyze spatial datasets in regional economics,
ecology [2,13], etc. The model yields better classification
and prediction accuracy [2,13] for many spatial datasets
exhibiting strong spatial auto-correlation.
 However, it is computationally expensive to
estimate the parameters of SAM. For example, it can
take an hour of computation for a spatial dataset with
10000 observation points on an IBM Regatta 32-
processor node composed of 1.3GHz pSeries 690
Power4 architecture processors sharing 47.5 GB main
memory. This has limited the use of SAM to small
problems, despite its promise to improve classification
and prediction accuracy for larger spatial datasets.
Parallel processing is a promising approach to speedup
the sequential solution procedure for SAM and this paper
focuses on this approach.
 The only related work [9] implemented the SAM
solution for one-dimensional geo-spaces and used
CMSSL [4], a parallel linear algebra library written in
CM-Fortran (CMF) for the CM-5 supercomputers of
Thinking Machines Corporation, neither of which is
available for use anymore. That approach was not useful
for spatial datasets embedded in spaces of two or more
dimensions. Thus, it is not included in comparative
evaluation in this paper.
 We propose a parallel formulation for a general
exact estimation procedure [6] for SAM parameters that
can be used for spatial datasets embedded in multi-
dimensional space. We use a public domain parallel
numerical analysis library to implement the steps of the
serial solution on an SMP architecture machine, i.e., a
single node of an IBM Regatta. To tune the performance,
we modify the source code of the library to change
parameters such as scheduling and data-partitioning.
 We evaluate the proposed parallel formulation on an
IBM Regatta. Results of experiments show that the
proposed parallel formulation achieves a speedup of up
to 7 on 8 processors within a single node of the IBM
Regatta. We compare different load-balancing tech-
niques supported by OpenMP [1] for improving the
speedup of the proposed parallel formulation of SAM.
Affinity scheduling, which is both a static and dynamic
(i.e., quasi-dynamic) load-balancing technique, performs
best on average. We also evaluate the impact of other
OpenMP parameters, i.e. chunk size defined as the
number of iterations per scheduling step.
 We plan to expand the experimental studies to
include a larger number of processors via hybrid parallel

programming, and other parameters such as degree of
auto-correlation. To further improve speedup we also
plan to develop algebraic cost models to characterize the
scalability and identify the performance bottlenecks.
 Eventually, we want to develop parallel
formulations for approximate solution procedures for
SAM that exploit sparse matrix techniques [8].
 Scope: This paper covers parallel formulation for a
dense and exact solution to SAM. The parallel SAM
solution is portable and can run on today’s distributed
shared-memory architecture supercomputers such as
IBM Regatta, SGI Origin, SGI Altix, and Cray X1. We
do not address non-parallel approaches, e.g., sparse
matrix techniques and approximation techniques, to
speedup the sequential solutions to SAM.
 The remainder of the paper is organized as follows:
Section 2 presents the problem statement and explains
the serial exact algorithm for the SAM solution. Section
3 discusses our parallel formulation. Experimental results
are presented in Section 4. Finally, Section 5 summarizes
and concludes the paper with a discussion of future
work.

2 Problem Statement and Serial Exact SAM
Solution.
We first present the problem statement and then discuss
the serial exact SAM solution based on the maximum-
likelihood (ML) theory [6].

The problem studied in this paper is defined as
follows: Given the serial solution procedure described in
the Serial Dense Matrix Approach [9], we need to find a
parallel formulation for multi-dimensional geo-spaces to
reduce the response time. The constraints are as follows:
the spatial auto-regression parameter,ρ , varies in the
range [0,1); the error is normally distributed, i.e. εεεε
∼N(0,σ2I) IID; the input spatial dataset is composed of
normally distributed random numbers with unit standard
deviation and zero mean; the parallel platform is
composed of an IBM Regatta, OpenMP and MPI; and
the size of the neighborhood matrix W is n. The
objective is to implement parallel and portable software
whose scalability is evaluated analytically and
experimentally.
 A spatial auto-correlation term yWρ is added to the
linear regression model in order to model the strength of
the spatial dependencies among the elements of the
dependent variable, y. The resulting equation – which
accounts for the spatial relationships – is shown in
equation 2.1 and is called the spatial auto-regression
model (SAM) [5].

(2.1) εx

β
Wyy ++= ρ

where ρ is the spatial auto-regression (auto-correlation)
parameter, y is an n-by-1 vector of observations on the

dependent variable, x is an n-by-k matrix of observations
on the explanatory variable, W is the n-by-n
neighborhood matrix that accounts for the spatial
relationships (dependencies) among the spatial data, β is
a k-by-1 vector of regression coefficients, ε is an n-by-1
vector of unobservable error.

Figure 1. System diagram of the serial exact algorithm for the SAM
solution composed of three stages, Stage A, B, and C. Stage A is further

composed of three sub-stages (pre-processing, Householder
transformation and QL transformation) which are not shown.

 Figure 1 highlights the stages of the serial exact
algorithm for the SAM solution. It is based on
maximum-likelihood (ML) theory, which requires
computing the logarithm of the determinant of the large

)(WI ρ− matrix. The derivation of the ML theory will not
be shown here due to limited space. However, the first
term of the end-result of the derivation of the logarithm
of the likelihood function i.e. equation 2.2 clearly shows
why we need to compute the (natural) logarithm of the
determinant of a large matrix. In equation 2.2 the n-by-n
identity matrix is denoted by “I ”, the transpose operator
is denoted by “ T”, “ ln” denotes the logarithm operator
and 2σ is the common variance of the error.

(2.2) SSE
nn

L −−−−=
2

)ln(

2

)2ln(
ln)ln(

2σπρWI

{ }))]()([])([)((
2

1
 where

11
2

yWIxxxxIxxxxIWIy ρρ
σ

−−−−= −− TTTTTTTSSE

 Therefore, Figure 1 can be viewed as an
implementation of the ML theory. This section describes
each stage. Stage A is composed of three sub-stages: pre-
processing, Householder transformation [11], and QL
transformation [3]. The pre-processing sub-stage not
only forms the row-standardized neighborhood matrix
W, but also converts it to its symmetric eigenvalue-
equivalent matrixW~ . The Householder transformation
and QL transformation sub-stages are used to find all of
the eigenvalues of the neighborhood matrix. The
Householder transformation sub-stage takes W

~ as input
and forms the tri-diagonal matrix whose eigenvalues are
computed by the QL transformation sub-stage.
Computing all of the eigenvalues of the neighborhood
matrix takes approximately 99% of the total serial
response time as shown in Table 1.
Stage B uses the eigenvalues of the neighborhood matrix
to calculate the determinant of)(WI ρ− at each step of
the non-linear one-dimensional parameter optimization
using the golden section search [3]. The value of the

Stage B

Golden Section
Search Calculate

 ML function

Stage A

Compute
Eigenvalues

Stage
C

SSE
n,

,,, ε Wyx
Eigenvalues

of W

ρ̂ 2ˆ,ˆ,ˆ σβρ ρ of range

logarithm of the likelihood function (equation 2.2) needs
to be computed at each iteration step of the non-linear
optimization because the auto-regression parameter is
updated at each step. There are two ways to compute the
value of the logarithm of the likelihood function: 1)
compute the eigenvalues of the large dense matrix W
once; 2) compute the determinant of the large dense
matrix)(WI ρ− at each step of the non-linear
optimization. Due to space limitations, it is enough to
note that the former option takes less execution time for
large problem sizes, i.e., for large number of observation
points. Equation 2.3 expresses the relationship between
the eigenvalues of the W matrix and the logarithm of the
determinant of the)(WI ρ− matrix. The optimization is
O(n) complexity.

(2.3)

∑

=
−=− →∏

=
−=−

n

i
i

ρ λρn

i
i

ρ λρ
1

)ln(1||ln
1

)(1|| logarithm
 thetaking

WIWI

Finally, stage C computes the sum of the squared
error, i.e., the SSE term, which is O(n2) complex. Table 1
shows our measurements of the serial response times of
the stages of the exact SAM solution based on ML
theory. Each response time given in this study is the
average of five runs. We note that stage A takes a large
fraction of the total time.

Table 1. Measured serial response times of stages of the exact
SAM solution. Problem size denotes the number of observation
points

Stage A Stage B Stage C

Computing Eigenvalues ML Function Least Squares

SGI Origin 78.10 0.41 0.06
IBM SP 69.20 1.30 0.07
IBM Regatta 46.90 0.58 0.06

SGI Origin 1735.41 5.06 0.51
IBM SP 1194.80 17.65 0.44
IBM Regatta 798.70 6.19 0.42

SGI Origin 6450.90 11.20 1.22
IBM SP 6546.00 66.88 1.63
IBM Regatta 3439.30 24.15 0.93

Time (sec) Spent on

2500

6400

10000

Problem
size (n)

Machine

3 Our Parallel Formulation.
The parallel SAM solution implemented here uses a
data-parallelism approach such that each processor
works on different data with the same instructions. Data
parallelism is chosen since it provides finer granularity
for parallelism than functional parallelism.

3.1 Stage AAAA: Computing Eigenvalues. Stage A can be
parallelized using parallel eigenvalue solvers [7,10,12].
If the source code of the parallel eigenvalue solver is
available, the code may be modified in order to tune the
performance by changing the parameters such as
scheduling technique and chunk size.

 We use a public domain parallel eigenvalue solver
from the Scalapack Library [12]. This library is available
on MPI-based communication paradigm. Thus, we use a
hybrid programming technique to exploit this library
within OpenMP, a shared memory programming model
which is preferred within each node of the IBM Regatta.
In future work, we will use OpenMP within nodes and
MPI across nodes of the IBM Regatta. We modified the
source code of the parallel eigensolver within Scalapack
to allow evaluation of different design decisions
including the choice of scheduling techniques and chunk
sizes. OpenMP provides a rich set of choices for
scheduling techniques i.e., static, dynamic, guided, and
affinity scheduling techniques.
 Another important design decision relates to the
partitioning of data items. We instructed OpenMP to
partition the neighborhood matrix across processors.

3.2 Stage BBBB: Fitting for the Autoregression
Parameter. The golden section search algorithm itself is
left un-parallelized since it is very fast in serial format
and the response time may increase due to the
communication overhead. The serial golden section
search stage has linear complexity. However, the golden
section search needs to compute the logarithm of the
maximum-likelihood function, all of whose constant
(spatial statistics) terms are computed in parallel.

3.3 Stage CCCC: Least Squares. Once the estimate for the
autoregressive parameterρ̂ is computed, the estimate for

the regression coefficientβ̂ , which is a scalar in our
spatial auto-regression model, is calculated in parallel.
The formula for β̂ is derived from ML theory. The

estimate of the common variance of the error term 2σ̂ is
also computed in parallel to compare with the actual
value. The complexity is reduced to O(n2/p) from O(n2)
due to the parallelization of this stage.

4 Experimental Design.
Our experimental design answers four important
questions by using synthetic data-sets:
1. Which load-balancing method provides best speedup?
2. How does problem size i.e., the number of observation

points (n) affect speedup?
3. How does chunk size i.e., the number of iterations per

scheduling step (B) affect speedup?
4. How does number of processors (p) affect speedup?
 Figure 2 summarizes the factors and their parameter
domains. The most important factors are load-balancing
technique, problem size, chunk-size and number of
processors. These factors determine the performance of
the parallel formulation. We used 4 neighbors in the
neighborhood structure, but 8 and more neighbors could
also be used. The load-balancing techniques of OpenMP
can be grouped in four major classes:

1. Static Load-Balancing (SLB)
• Contiguous Scheduling: Since B is not specified,

the iterations of a loop are divided into chunks of n/p
iterations each. We refer to this scheduling as static
B=n/p.

• Round-robin Scheduling: The iterations are
distributed in chunks of size B in a cyclic fashion.
This scheduling is referred to as static B={ 1,4,8,16}.

2. Dynamic Load-Balancing (DLB)
• Dynamic Scheduling: If B is specified, the

iterations of a loop are divided into chunks
containing B iterations each. If B is not specified,
then the chunks consist of n/p iterations. The
processors are assigned these chunks on a "first-
come, first-do" basis. Chunks of the remaining work
are assigned to available processors.

• Guided Scheduling: If B is specified, then the
iterations of a loop are divided into progressively
smaller chunks until a minimum chunk size of B is
reached. The default value for B is 1. The first chunk
contains n/p iterations. Subsequent chunks consist of
number of remaining iterations divided by p
iterations. Available processors are assigned chunks
on a "first-come, first-do" basis.

3. Quasi-Dynamic Load-Balancing composed of both
static and dynamic components (QDLB).

• Affinity Scheduling: The iterations of a loop are
initially divided into p chunks, containing n/p

iterations. If B has been specified, then each
processor is initially assigned to a chunk, and is then
further subdivided into chunks containing B
iterations. If B has not been specified, then the
chunks consist of half of the number of iterations
remaining iterations. When a thread becomes free, it
takes the next chunk from its initially assigned
partition. If there are no more chunks in that
partition, then the thread takes the next available
chunk from a partition initially assigned to another
thread.

4. Mixed Load-Balancing:
• Mixed1 and Mixed2 Schedulings: Composed of both

static and round-robin scheduling
 The first response variable is speedup and is defined as
the ratio of the serial execution time to the parallel
execution time. The second response variable, parallel
efficiency, is a metric that is defined as the best speedup
number obtained on 8 processors divided by 8. The
standard deviation of five runs reported in our
experiments for problem size 10000 is 16% of the
average run-time (i.e. 561 seconds). It is 9.5% (i.e. 76
seconds) of the average run-time for problem size 6400
and 10.6% of the average run-time (i.e.5.2 seconds) for
problem size 2500.

Factor Name
Language

Problem Size (n)

Neighborhood Structure

Method

Auto-regression Parameter

Contiguous (B=n/p)
Round-robin w/ B ={1,4,8,16}

Combined (Contiguous+Round-robin)
Dynamic w/ B ={n/p ,1,4,8,16}
Guided w/ B ={1,4,8,16}

MLB Affinity w/ B ={n/p ,1,4,8,16}

Number of Processors

Maximum Likelihood for exact SAM

[0,1)

SLB

DLB

Parameter Domain
f77 w/ OpenMP & MPI

2500,6400 and 10000 observation points

2-D w/ 4-neighbors

IBM Regatta w/ 47.5 GB Main Memory; 32

1.3 GHz Power4 architecture processors
Hardware Platform

1,4, and 8

Load-Balancing

Figure 2. The experimental design

4.1 Which load-balancing method provides the best
speedup? Experimental Setup: The response variables
are speedup and parallel efficiency. Even though the
neighborhood structure used is the 4-nearest neighbors
for multi-dimensional geo-spaces, our method can solve
for any type of neighborhood matrix depending on
different structures.
 Trends: Figure 3 summarizes the average speedup
results for different load-balancing techniques. For each
problem size, affinity scheduling appears to be the best.
For example, in Figure 3(a) affinity scheduling with
chunk-size 1 provides best speedup. In Figure 3(b) for
problem size 6400, affinity scheduling with chunk-size
8 provides best speedup. Affinity scheduling with
chunk-size n/p provides best speedup in Figure 3(c) for
problem size 2500. The main reason is that affinity
scheduling does scheduling both at compile time and
run-time, allowing it to adapt quickly to the dynamism
in the program without much overhead. Results show
that the parallel efficiency increases as the problem size
increases. The best parallel efficiency obtained for
problem size 10000 is 93.13%, while for problem size
6400, it is 83.45%; and for problem size 2500 it is
66.26%. This is due to the fact that as the problem size
increases, the ratio of parallel time spent in the code to
the serial time spent also increases.

Effect of Load-Balancing Techniques on Speedup
for Problem Size 10000

0

1

2

3

4

5

6

7

8

1 4 8

Number of Processors

S
p

ee
d

u
p

mixed1

Static B=8

Dynamic B=8

Affinity B=1

Guided B=16

(3a)

Effect of Load-Balancing Techniques on Speedup
for Problem Size 6400

0

1

2

3

4

5

6

7

8

1 4 8

Number of Processors

S
p

ee
d

u
p

mixed1

static B=8

dynamic B=8

affinity B=8

guided B=8

(3b)

Effect of Load-Balancing Techniques on Speedup
for Problem Size 2500

0

1

2

3

4

5

6

1 4 8

Number of Processors

S
p

ee
d

u
p

mixed1

static B=4

dynamic B=16

affinity B=n/p

gudied B=4

(3c)

Figure 3. The best speedup results from each class of load-balancing
techniques (i.e. mixed1, mixed2, static w/o B, with B={1,4,8,16};
dynamic with B={n/p,1,4, 8,16}; affinity w/o B, with B={1,4,8,16};
guided w/o B or with B=n/p, and B={4,8,16) for problem sizes (n) a)
10000, b) 6400 and c)2500 on 1,4 and 8 processors. Mixed1 scheduling
uses static with B=4 (round-robin w/ B=4) for non-uniform workload
and static w/o B (contiguous) for uniform workload. Mixed2
scheduling uses static with B=16 (round-robin w/ B=16) for non-
uniform workload and static w/o B (contiguous) for uniform workload.

4.2 How does problem size impact speedup?
Experimental Setup: The number of processors is fixed
at 8 processors. The best and worst load-balancing
techniques, namely affinity scheduling and guided
scheduling, are presented as two extremes. Speedup is
the response variable. The chunk-sizes and problem sizes
are varied. Recall that chunk size is the number of
iterations per scheduling step and problem size is the
number of observation points.
 Trends: The two extremes for the load-balancing
techniques are shown in Figure 4. In the case of affinity
scheduling the speedup increases linearly with problem
size. In the case of guided scheduling, even though the
increase in speedup is not linear as the problem size
increases, there is still some speedup. An interesting
trend for affinity scheduling with chunk size 1 is it
starts as the worst scheduling but then moves ahead of
every other scheduling when the problem size is 10000
observation points. Since we ran out of memory for

problem sizes greater than 10000 due to the quadratic
growth in W matrix, we were unable to observe
whether this trend is maintained for larger problem
sizes.

4.3 How does chunk-size affect speedup?
Experimental Setup: The response variable is the
speedup. The number of processors is fixed at 8
processors. The problem sizes and the chunk sizes are
varied. We want to compare two load-balancing
techniques, static scheduling and dynamic scheduling.
Static scheduling is arranged only at compile time,
while dynamic scheduling is arranged only at run-time.
 Trends: Figure 5 presents the comparison. As can
be seen, there is a value of chunk size between 1 and
n/p that results in the highest speedup for each load-
balancing scheme. The dynamic scheduling reaches the
maximum speedup when chunk size is 16, while static
scheduling reaches the maximum speedup at chunk size
8. This is due to the fact that dynamic scheduling needs
more work per processor in order to beat the scheduling
overhead. There is a critical value of the chunk size for
which the speedup reaches the maximum. This value is
higher for dynamic scheduling to compensate for the
scheduling overhead. The workload is more evenly
distributed across processors at the critical chunk size
value.

Impact of Problem Size on Speedup Using Affinity Scheduling
on 8 Processors

0

1

2

3

4

5

6

7

8

2500 6400 10000

Problem Size

S
p

ee
d

u
p

affinity B=n/p

affinity B=1

affinity B=4

affinity B=8

afiinity B=16

(4a)

Impact of Problem Size on Speedup Using Guided Scheduling
on 8 Processors

0

1

2

3

4

5

6

2500 6400 10000

Problem Size

S
p

ee
d

u
p

Guided B=1

Guided B=4

Guided B=8

Guided B=16

(4b)

Figure 4. Impact of problem size on speedup using a) affinity and b)
guided scheduling on 8 processors.

Effect of Chunk Size on Speedup Using Static Scheduling on 8
Processors

0

1

2

3

4

5

6

7

8

1 4 8 16 n/p

Chunk Size

S
p

ee
d

u
p PS=2500

PS=6400

PS=10000

(5a)

Effect of Chunk Size on Speedup Using Dynamic Scheduling
on 8 Processors

0

1

2

3

4

5

6

7

8

1 4 8 16 n/p

Chunk Size

S
p

ee
d

u
p PS=2500

PS=6400

PS=10000

(5b)

Figure 5. Effect of chunk size on speedup using a) static and b)
dynamic schedulings on 8 processors.

4.4 How does number of processors affect speedup?
Experimental Setup: The chunk size is kept constant at 8
and 16. Speedup is the response variable. The number of
processors is varied i.e. {4, 8}. The problem size is fixed
at 10000 observation points. Due to the limited budget of
computational time available on IBM Regatta, we did not
explore other values for the number of processors.

Trends: As Figure 6 shows, the speedup increases
as the number of processors goes from 4 to 8. The
average speedup across all scheduling techniques is
3.43 for the 4-processor case and 5.91 for the 8-
processor case. Affinity scheduling shows the best
speedup, on average 7 times on 8 processors. Therefore,
the speedup increases as the number of processors
increases. Guided scheduling results in the worst
speedup because the first processor is always assigned a
chunk of size n/p. The rest of the processors always
have less work to do even though the rest of the work
can be distributed evenly. The same scenario applies to
static scheduling with chunk size n/p. Dynamic
scheduling tends to result in better speedup as the
chunk size increases. However, it also suffers from the
same problem of guided and static scheduling
techniques when the chunk size is n/p. Therefore, we
expect dynamic scheduling will have its best speedup

for a chunk size which is somewhere between 16 and
n/p iterations.

Effect of Number of Processors on Speedup (PS=10000)

0

1

2

3

4

5

6

7

8

m
ix

ed
1

m
ix

ed
2

st
at

ic
 B

=
1

st
at

ic
 B

=
4

st
at

ic
 B

=
8

st
at

ic
 B

=
16

st
at

ic
 B

=
n/

p

dy
na

m
ic

 B
=

1

dy
na

m
ic

 B
=

4

dy
na

m
ic

 B
=

8

dy
na

m
ic

 B
=

16

dy
na

m
ic

 B
=

n/
p

af
fin

ity
 B

=
1

af
fin

ity
 B

=
4

af
fin

ity
 B

=
8

af
fin

ity
 B

=
16

af
fin

ity
 B

=
n/

p

gu
id

ed
 B

=
1

gu
id

ed
 B

=
4

gu
id

ed
 B

=
8

gu
id

ed
 B

=
16

Load-Balancing (Scheduling) Techniques

S
p

ee
d

u
p

4

8

Figure 6. Analyzing the effect of number of processors on speedup
when problem size is 10000 using 4 and 8 processors. Mixed1
scheduling uses static with B=4 (round-robin w/ B=4) for non-uniform
workload and static w/o B (contiguous) for uniform workload. Mixed2
scheduling uses static with B=16 (round-robin w/ B=16) for non-
uniform workload and static w/o B (contiguous) for non-uniform
workload

5 Conclusions and Future Work.

Linear regression is one of the best-known classical data
mining techniques. However, it makes the assumption of
independent identical distribution (IID) in learning data
samples, which does not apply to geo-spatial data. In the
spatial auto-regression model (SAM), spatial
dependencies within data are taken care of by the auto-
correlation term and the linear regression model thus
becomes a spatial auto-regression model. Incorporating
the auto-correlation term enables better prediction
accuracy. However, computational complexity increases
due to the logarithm of the determinant of a large matrix,
which is computed by finding all of the eigenvalues of
another matrix. Parallel processing helps provide a
practical solution to make SAM computationally
efficient.

In this study, we developed a parallel formulation
for a general exact estimation procedure for SAM
parameters that can be used for spatial datasets
embedded in multi-dimensional space. This formulation
can be used for location prediction problems. We studied
various load-balancing techniques allowed by the
OpenMP API. The aim was to distribute the workload as
uniformly as possible among the processors. The results
show that our parallel formulation achieves a speedup up
to 7 using 8 processors. We are developing algebraic
cost models to analyze the experimental results to further
improve the speedups. We will expand our experimental
studies to include a larger number of processors via
hybrid parallel programming and other parameters such
as degree of auto-correlation. In the future, we plan to
develop parallel formulations for approximate solution
procedures for SAM that exploit sparse matrix

techniques in order to reach very large problem sizes on
the order of a billion observation points.

Acknowledgments
This work was partially supported by the Army High
Performance Computing Research Center (AHPCRC)
under the auspices of the Department of the Army, Army
Research Laboratory (ARL) under contract number
DAAD19-01-2-0014. The content of this work does not
necessarily reflect the position or policy of the
government and no official endorsement should be
inferred. The authors would like to thank the University
of Minnesota Digital Technology Center and Minnesota
Supercomputing Institute for using their computing
resources. The authors would also like to thank the
members of the Spatial Database Group, ARCTiC Labs
Group, Birali Runesha and Shuxia Zhang at Minnesota
Supercomputing Institute for valuable discussions. The
authors thank Kim Koffolt for helping improve the
readability of this paper.

References

[1] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J.
McDonald, R. Menon, Parallel Programming in
OpenMP, Morgan Kauffman Publishers 2001.
[2] S. Chawla, S. Shekhar, W. Wu, U. Ozesmi, Modeling
Spatial Dependencies for Mining Geospatial Data, Proc.
of the 1st SIAM International Conference on Data
Mining, Chicago, IL, 2001.
[3] W. Cheney and D. Kincaid, Numerical Mathematics
and Computing, 3rd Edition, 1999.
[4] CMSSL for CM-Fortran: CM-5 Edition, Cambridge,
MA, 1993.
[5] N. A. Cressie, Statistics for Spatial Data (Revised
Edition). Wiley, New York, 1993.
[6] D. A. Griffith, Advanced Spatial Statistics, Kluwer
Academic Publishers 1988.
[7] Information about Freely Available Eigenvalue-
Solver Software: http://www.netlib.org/utk/people/
JackDongarra/la-sw.html
[8] J. LeSage and R. K. Pace, Spatial Dependence in
Data Mining, in Data Mining for Scientific and
Engineering Applications, R. L. Grossman, C. Kamath,
P. Kegelmeyer, V. Kumar, and R. R. Namburu (eds.),
Kluwer Academic Publishing, p. 439-460, 2001.
[9] B. Li, Implementing Spatial Statistics on Parallel
Computers, In: Arlinghaus S. (Ed.), ed. Practical
Handbook of Spatial Statistics, CRC Press, Boca Raton,
FL, pp. 107-148.
[10] NAG SMP Fortran Library: http://www.nag.com
[11] Numerical Recipes in Fortran 77, Cambridge
University Press 1986-1992.
[12] Scalapack http://www.netlib.org/scalapack/
[13] S. Shekhar, P. Schrater, W. R. Raju, W. Wu, Spatial
Contextual Classification and Prediction Models for

Mining Geospatial Data, IEEE Transactions on
Multimedia 4 (2), June 2002.
[14] S. Shekhar and S. Chawla, Spatial Databases: A
Tour, Prentice Hall 2003.

Appendix:
Algebraic Cost Model
This section concentrates on the analysis of ranking of
the load-balancing techniques. The clock speed is
1.3GHz. The cache line of IBM Regatta is 128 bytes
long i.e. 16 floating-point numbers.

The contiguous and guided scheduling techniques
can be categorized as the poorest techniques. The round-
robin scheduling technique comes next in the ranking.
The α coefficient for the cost of local work term (LWc) in

equation App.1 implies this selection. Equation App.1
shows the algebraic cost model expression for parallel
programs parallelized at with finer granularity level.
Theα coefficient is dependent on how granular the
chunk-size is spread across the processors. The finer
selection is achieved by the cost of load-balancing term
(DLBSc /). In other words, DLBSc / represents the

synchronization overhead in the parallel program. This
term is zero for a serial program. Figure 7 abstracts any
parallel program parallelized at finer granularity level in
terms of these two major terms. Here, the main
assumption for this cost model is that the time spent in
the parallel region is much greater than the time spent in
the serial region and pnB /<< , both of which hold for our
formulation.

Figure 7. Generic parallel program parallelized at finer granularity
level

(App.1) DLBSLWtotal ccc /+∗= α

Since affinity scheduling does an initial scheduling

at compile time, it may have less overhead then the
dynamic scheduling. A possible partial ranking is shown
in Figure 8.a. The worst point in this space is at the upper
right-hand corner where synchronization cost (i.e.DLBSc /)

is too high and the load-imbalance (i.e.LWc) reaches the

most non-uniform state. The best point is at the lower
left-hand corner where synchronization cost is the lowest
and the load-imbalance is almost zero, which is
hypothetical. The real scenarios lie between these two
extremes. Thus, the decision tree in Figure8.b

Serial
Region

SLB

Process
Local
Work

Process
Local
Work

…

DLB

DLB

SLB Serial
Region

summarizes a possible total ranking of the load-
balancing techniques used in this study.

 (a) (b)
Figure 8. a) Partial Ranking and b) Total Ranking of load-balancing

techniques

best

worst

Load imbalance

Synchronization cost

Round-robin
Contiguous Affinity

Dynamic
Guided

round-
robin

contiguous
guided

affinity dynamic

 Load
Balance

medium poor

 Synchr.
 cost

high low

good

