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Abstract:   
The spatial auto-regression model (SAM) is a popular 
spatial data mining technique which has been used in 
many applications with geo-spatial datasets. However, 
serial procedures for estimating SAM parameters are 
computationally expensive due to the need to compute 
all the eigenvalues of a very large matrix. We propose a 
parallel formulation of the SAM parameter estimation 
procedure in this paper using data parallelism and hybrid 
programming technique. Experimental results on an IBM 
Regatta show that the proposed parallel formulation 
achieves a speedup of up to 7 on 8 processors. We are 
developing algebraic cost models to analyze the 
experimental results to further improve the speedups. 
Keywords: Spatial Auto-regression, Spatial Auto-
correlation, Parallel Formulation, Spatial Data Mining 
 
1     Introduction. 
Explosive growth in the size of spatial databases has 
highlighted the need for spatial data mining techniques to 
mine the interesting but implicit spatial patterns within 
these large databases. Extracting useful and interesting 
patterns from massive geo-spatial datasets is important 
for many application domains such as regional 
economics, ecology and environmental management, 
public safety, transportation, public health, business, and 
travel and tourism [2,13,14].  
 Many classical data mining algorithms such as linear 
regression assume that the learning samples are 
independently and identically distributed (IID). This 
assumption is violated in the case of spatial data due to 
spatial auto-correlation [14] and classical linear 
regression yields a weak model with not only low 
prediction accuracy [13] but also residual error 
exhibiting spatial dependence.  
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The spatial auto-regression model (SAM) [5,14] is a 
generalization of the linear regression model to account 
for spatial auto-correlation. It has been successfully used 
to analyze spatial datasets in regional economics, 
ecology [2,13], etc. The model yields better classification 
and prediction accuracy [2,13] for many spatial datasets 
exhibiting strong spatial auto-correlation. 
 However, it is computationally expensive to 
estimate the parameters of SAM. For example, it can 
take an hour of computation for a spatial dataset with 
10000 observation points on an IBM Regatta 32- 
processor node composed of 1.3GHz pSeries 690 
Power4 architecture processors sharing 47.5 GB main 
memory. This has limited the use of SAM to small 
problems, despite its promise to improve classification 
and prediction accuracy for larger spatial datasets. 
Parallel processing is a promising approach to speedup 
the sequential solution procedure for SAM and this paper 
focuses on this approach. 
 The only related work [9] implemented the SAM 
solution for one-dimensional geo-spaces and used 
CMSSL [4], a parallel linear algebra library written in 
CM-Fortran (CMF) for the CM-5 supercomputers of 
Thinking Machines Corporation, neither of which is 
available for use anymore. That approach was not useful 
for spatial datasets embedded in spaces of two or more 
dimensions. Thus, it is not included in comparative 
evaluation in this paper. 
 We propose a parallel formulation for a general 
exact estimation procedure [6] for SAM parameters that 
can be used for spatial datasets embedded in multi-
dimensional space. We use a public domain parallel 
numerical analysis library to implement the steps of the 
serial solution on an SMP architecture machine, i.e., a 
single node of an IBM Regatta. To tune the performance, 
we modify the source code of the library to change 
parameters such as scheduling and data-partitioning. 
 We evaluate the proposed parallel formulation on an 
IBM Regatta. Results of experiments show that the 
proposed parallel formulation achieves a speedup of up 
to 7 on 8 processors within a single node of the IBM 
Regatta. We compare different load-balancing tech-
niques supported by OpenMP [1] for improving the 
speedup of the proposed parallel formulation of SAM. 
Affinity scheduling, which is both a static and dynamic 
(i.e., quasi-dynamic) load-balancing technique, performs 
best on average. We also evaluate the impact of other 
OpenMP parameters, i.e. chunk size defined as the 
number of iterations per scheduling step. 
 We plan to expand the experimental studies to 
include a larger number of processors via hybrid parallel 



programming, and other parameters such as degree of 
auto-correlation. To further improve speedup we also 
plan to develop algebraic cost models to characterize the 
scalability and identify the performance bottlenecks.  
 Eventually, we want to develop parallel 
formulations for approximate solution procedures for 
SAM that exploit sparse matrix techniques [8]. 
 Scope: This paper covers parallel formulation for a 
dense and exact solution to SAM. The parallel SAM 
solution is portable and can run on today’s distributed 
shared-memory architecture supercomputers such as 
IBM Regatta, SGI Origin, SGI Altix, and Cray X1.  We 
do not address non-parallel approaches, e.g., sparse 
matrix techniques and approximation techniques, to 
speedup the sequential solutions to SAM. 
 The remainder of the paper is organized as follows: 
Section 2 presents the problem statement and explains 
the serial exact algorithm for the SAM solution. Section 
3 discusses our parallel formulation. Experimental results 
are presented in Section 4. Finally, Section 5 summarizes 
and concludes the paper with a discussion of future 
work. 
 
2     Problem Statement and Serial Exact SAM 
Solution. 
We first present the problem statement and then discuss 
the serial exact SAM solution based on the maximum-
likelihood (ML) theory [6]. 

The problem studied in this paper is defined as 
follows: Given the serial solution procedure described in 
the Serial Dense Matrix Approach [9], we need to find a 
parallel formulation for multi-dimensional geo-spaces to 
reduce the response time. The constraints are as follows: 
the spatial auto-regression parameter,ρ , varies in the 
range [0,1); the error is normally distributed, i.e. εεεε 
∼N(0,σ2I ) IID; the input spatial dataset is composed of 
normally distributed random numbers with unit standard 
deviation and zero mean; the parallel platform is 
composed of an IBM Regatta, OpenMP and MPI; and 
the size of the neighborhood matrix W is n. The 
objective is to implement parallel and portable software 
whose scalability is evaluated analytically and 
experimentally. 
 A spatial auto-correlation term yWρ  is added to the 
linear regression model in order to model the strength of 
the spatial dependencies among the elements of the 
dependent variable, y. The resulting equation – which 
accounts for the spatial relationships – is shown in 
equation 2.1 and is called the spatial auto-regression 
model (SAM) [5]. 
 
(2.1)   εx

β
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where ρ is the spatial auto-regression (auto-correlation) 
parameter, y is an n-by-1 vector of observations on the 

dependent variable, x is an n-by-k matrix of observations 
on the explanatory variable, W is the n-by-n 
neighborhood matrix that accounts for the spatial 
relationships (dependencies) among the spatial data, β is 
a k-by-1 vector of regression coefficients, ε is an n-by-1 
vector of unobservable error. 
  

 
 

 
 

Figure 1. System diagram of the serial exact algorithm for the SAM 
solution composed of three stages, Stage A, B, and C. Stage A is further 

composed of three sub-stages (pre-processing, Householder 
transformation and QL transformation) which are not shown. 

  
 Figure 1 highlights the stages of the serial exact 
algorithm for the SAM solution. It is based on 
maximum-likelihood (ML) theory, which requires 
computing the logarithm of the determinant of the large 

)( WI ρ−  matrix. The derivation of the ML theory will not 
be shown here due to limited space. However, the first 
term of the end-result of the derivation of the logarithm 
of the likelihood function i.e. equation 2.2 clearly shows 
why we need to compute the (natural) logarithm of the 
determinant of a large matrix. In equation 2.2 the n-by-n 
identity matrix is denoted by “I ”, the transpose operator 
is denoted by “ T”, “ ln” denotes the logarithm operator 
and 2σ  is the common variance of the error. 
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 Therefore, Figure 1 can be viewed as an 
implementation of the ML theory. This section describes 
each stage. Stage A is composed of three sub-stages: pre-
processing, Householder transformation [11], and QL 
transformation [3]. The pre-processing sub-stage not 
only forms the row-standardized neighborhood matrix 
W, but also converts it to its symmetric eigenvalue-
equivalent matrixW~ . The Householder transformation 
and QL transformation sub-stages are used to find all of 
the eigenvalues of the neighborhood matrix. The 
Householder transformation sub-stage takes W

~ as input 
and forms the tri-diagonal matrix whose eigenvalues are 
computed by the QL transformation sub-stage. 
Computing all of the eigenvalues of the neighborhood 
matrix takes approximately 99% of the total serial 
response time as shown in Table 1.  
Stage B uses the eigenvalues of the neighborhood matrix 
to calculate the determinant of )( WI ρ−  at each step of 
the non-linear one-dimensional parameter optimization 
using the golden section search [3]. The value of the 
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logarithm of the likelihood function (equation 2.2) needs 
to be computed at each iteration step of the non-linear 
optimization because the auto-regression parameter is 
updated at each step. There are two ways to compute the 
value of the logarithm of the likelihood function: 1) 
compute the eigenvalues of the large dense matrix W 
once; 2) compute the determinant of the large dense 
matrix )( WI ρ−  at each step of the non-linear 
optimization. Due to space limitations, it is enough to 
note that the former option takes less execution time for 
large problem sizes, i.e., for large number of observation 
points. Equation 2.3 expresses the relationship between 
the eigenvalues of the W matrix and the logarithm of the 
determinant of the )( WI ρ−  matrix. The optimization is 
O(n) complexity. 
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Finally, stage C computes the sum of the squared 
error, i.e., the SSE term, which is O(n2) complex. Table 1 
shows our measurements of the serial response times of 
the stages of the exact SAM solution based on ML 
theory. Each response time given in this study is the 
average of five runs. We note that stage A takes a large 
fraction of the total time. 
 
Table 1. Measured serial response times of stages of the exact 
SAM solution. Problem size denotes the number of observation 
points 

Stage A Stage B Stage C

Computing Eigenvalues ML Function Least Squares

SGI Origin 78.10 0.41 0.06
IBM SP 69.20 1.30 0.07
IBM Regatta 46.90 0.58 0.06

SGI Origin 1735.41 5.06 0.51
IBM SP 1194.80 17.65 0.44
IBM Regatta 798.70 6.19 0.42

SGI Origin 6450.90 11.20 1.22
IBM SP 6546.00 66.88 1.63
IBM Regatta 3439.30 24.15 0.93

Time (sec) Spent on 

2500

6400

10000

Problem 
size (n)

Machine

 
3     Our Parallel Formulation. 
The parallel SAM solution implemented here uses a 
data-parallelism approach such that each processor 
works on different data with the same instructions. Data 
parallelism is chosen since it provides finer granularity 
for parallelism than functional parallelism. 

 
3.1 Stage AAAA: Computing Eigenvalues. Stage A can be 
parallelized using parallel eigenvalue solvers [7,10,12]. 
If the source code of the parallel eigenvalue solver is 
available, the code may be modified in order to tune the 
performance by changing the parameters such as 
scheduling technique and chunk size. 

 We use a public domain parallel eigenvalue solver 
from the Scalapack Library [12]. This library is available 
on MPI-based communication paradigm. Thus, we use a 
hybrid programming technique to exploit this library 
within OpenMP, a shared memory programming model 
which is preferred within each node of the IBM Regatta. 
In future work, we will use OpenMP within nodes and 
MPI across nodes of the IBM Regatta. We modified the 
source code of the parallel eigensolver within Scalapack 
to allow evaluation of different design decisions 
including the choice of scheduling techniques and chunk 
sizes. OpenMP provides a rich set of choices for 
scheduling techniques i.e., static, dynamic, guided, and 
affinity scheduling techniques.  
 Another important design decision relates to the 
partitioning of data items. We instructed OpenMP to 
partition the neighborhood matrix across processors. 
 
3.2 Stage BBBB: Fitting for the Autoregression 
Parameter. The golden section search algorithm itself is 
left un-parallelized since it is very fast in serial format 
and the response time may increase due to the 
communication overhead. The serial golden section 
search stage has linear complexity. However, the golden 
section search needs to compute the logarithm of the 
maximum-likelihood function, all of whose constant 
(spatial statistics) terms are computed in parallel.  
 
3.3 Stage CCCC: Least Squares. Once the estimate for the 
autoregressive parameterρ̂ is computed, the estimate for 

the regression coefficientβ̂ , which is a scalar in our 
spatial auto-regression model, is calculated in parallel. 
The formula for β̂  is derived from ML theory. The 

estimate of the common variance of the error term 2σ̂ is 
also computed in parallel to compare with the actual 
value. The complexity is reduced to O(n2/p) from O(n2) 
due to the parallelization of this stage. 
 
4    Experimental Design. 
Our experimental design answers four important 
questions by using synthetic data-sets: 
1. Which load-balancing method provides best speedup? 
2. How does problem size i.e., the number of observation 

points (n) affect speedup?  
3. How does chunk size i.e., the number of iterations per 

scheduling step (B) affect speedup?  
4. How does number of processors (p) affect speedup?  
 Figure 2 summarizes the factors and their parameter 
domains. The most important factors are load-balancing 
technique, problem size, chunk-size and number of 
processors. These factors determine the performance of 
the parallel formulation. We used 4 neighbors in the 
neighborhood structure, but 8 and more neighbors could 
also be used. The load-balancing techniques of OpenMP 
can be grouped in four major classes: 



1. Static Load-Balancing (SLB) 
• Contiguous Scheduling: Since B is not specified, 

the iterations of a loop are divided into chunks of n/p 
iterations each. We refer to this scheduling as static 
B=n/p. 

• Round-robin Scheduling: The iterations are 
distributed in chunks of size B in a cyclic fashion. 
This scheduling is referred to as static B={ 1,4,8,16}. 

2. Dynamic Load-Balancing (DLB) 
• Dynamic Scheduling: If B is specified, the 

iterations of a loop are divided into chunks 
containing B iterations each. If B is not specified, 
then the chunks consist of n/p iterations. The 
processors are assigned these chunks on a "first-
come, first-do" basis. Chunks of the remaining work 
are assigned to available processors. 

• Guided Scheduling: If B is specified, then the 
iterations of a loop are divided into progressively 
smaller chunks until a minimum chunk size of B is 
reached. The default value for B is 1. The first chunk 
contains n/p iterations. Subsequent chunks consist of 
number of remaining iterations divided by p 
iterations. Available processors are assigned chunks 
on a "first-come, first-do" basis. 

3. Quasi-Dynamic Load-Balancing composed of both 
static and dynamic components (QDLB).   

• Affinity Scheduling: The iterations of a loop are 
initially divided into p chunks, containing n/p 

iterations. If B has been specified, then each 
processor is initially assigned to a chunk, and is then 
further subdivided into chunks containing B 
iterations. If B has not been specified, then the 
chunks consist of half of the number of iterations 
remaining iterations. When a thread becomes free, it 
takes the next chunk from its initially assigned 
partition. If there are no more chunks in that 
partition, then the thread takes the next available 
chunk from a partition initially assigned to another 
thread. 

4. Mixed Load-Balancing:  
• Mixed1 and Mixed2 Schedulings: Composed of both 

static and round-robin scheduling  
 The first response variable is speedup and is defined as 
the ratio of the serial execution time to the parallel 
execution time. The second response variable, parallel 
efficiency, is a metric that is defined as the best speedup 
number obtained on 8 processors divided by 8. The 
standard deviation of five runs reported in our 
experiments for problem size 10000 is 16% of the 
average run-time (i.e. 561 seconds). It is 9.5% (i.e. 76 
seconds) of the average run-time for problem size 6400 
and 10.6% of the average run-time (i.e.5.2 seconds) for 
problem size 2500. 
 

Factor Name
Language

Problem Size (n)

Neighborhood Structure

Method

Auto-regression Parameter

Contiguous (B=n/p )
Round-robin w/ B ={1,4,8,16}

Combined (Contiguous+Round-robin)
Dynamic w/ B ={n/p ,1,4,8,16}
Guided w/ B ={1,4,8,16}

MLB Affinity w/ B ={n/p ,1,4,8,16}

Number of Processors

Maximum Likelihood for exact SAM

[0,1)

SLB

DLB

Parameter Domain 
f77 w/ OpenMP & MPI

2500,6400 and 10000 observation points

2-D w/ 4-neighbors

IBM Regatta w/ 47.5 GB Main Memory; 32 

1.3 GHz Power4 architecture processors
Hardware Platform

1,4, and 8

Load-Balancing

 
Figure 2. The experimental design 

 
4.1 Which load-balancing method provides the best 
speedup? Experimental Setup: The response variables 
are speedup and parallel efficiency. Even though the 
neighborhood structure used is the 4-nearest neighbors 
for multi-dimensional geo-spaces, our method can solve 
for any type of neighborhood matrix depending on 
different structures. 
 Trends: Figure 3 summarizes the average speedup 
results for different load-balancing techniques. For each 
problem size, affinity scheduling appears to be the best. 
For example, in Figure 3(a) affinity scheduling with 
chunk-size 1 provides best speedup. In Figure 3(b) for 
problem size 6400, affinity scheduling with chunk-size 
8 provides best speedup. Affinity scheduling with 
chunk-size n/p provides best speedup in Figure 3(c) for 
problem size 2500.  The main reason is that affinity 
scheduling does scheduling both at compile time and 
run-time, allowing it to adapt quickly to the dynamism 
in the program without much overhead. Results show 
that the parallel efficiency increases as the problem size 
increases. The best parallel efficiency obtained for 
problem size 10000 is 93.13%, while for problem size 
6400, it is 83.45%; and for problem size 2500 it is 
66.26%. This is due to the fact that as the problem size 
increases, the ratio of parallel time spent in the code to 
the serial time spent also increases. 
 

Effect of Load-Balancing Techniques on Speedup 
for Problem Size 10000
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Effect of Load-Balancing Techniques on Speedup 
for Problem Size 6400
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Effect of Load-Balancing Techniques on Speedup 
for Problem Size 2500 
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Figure 3. The best speedup results from each class of load-balancing 
techniques (i.e. mixed1, mixed2, static w/o B, with B={1,4,8,16}; 
dynamic with B={n/p,1,4, 8,16}; affinity w/o B, with B={1,4,8,16}; 
guided w/o B or with B=n/p, and B={4,8,16) for problem sizes (n) a) 
10000, b) 6400 and c)2500 on 1,4 and 8 processors. Mixed1 scheduling 
uses static with B=4 (round-robin w/ B=4) for non-uniform workload 
and static w/o B (contiguous) for uniform workload. Mixed2 
scheduling uses static with B=16 (round-robin w/ B=16) for non-
uniform workload and static w/o B (contiguous) for uniform workload. 
 

4.2 How does problem size impact speedup? 
Experimental Setup: The number of processors is fixed 
at 8 processors. The best and worst load-balancing 
techniques, namely affinity scheduling and guided 
scheduling, are presented as two extremes. Speedup is 
the response variable. The chunk-sizes and problem sizes 
are varied. Recall that chunk size is the number of 
iterations per scheduling step and problem size is the 
number of observation points. 
 Trends: The two extremes for the load-balancing 
techniques are shown in Figure 4. In the case of affinity 
scheduling the speedup increases linearly with problem 
size. In the case of guided scheduling, even though the 
increase in speedup is not linear as the problem size 
increases, there is still some speedup. An interesting 
trend for affinity scheduling with chunk size 1 is it 
starts as the worst scheduling but then moves ahead of 
every other scheduling when the problem size is 10000 
observation points. Since we ran out of memory for 

problem sizes greater than 10000 due to the quadratic 
growth in W matrix, we were unable to observe 
whether this trend is maintained for larger problem 
sizes. 
 
4.3 How does chunk-size affect speedup? 
Experimental Setup: The response variable is the 
speedup. The number of processors is fixed at 8 
processors. The problem sizes and the chunk sizes are 
varied. We want to compare two load-balancing 
techniques, static scheduling and dynamic scheduling. 
Static scheduling is arranged only at compile time, 
while dynamic scheduling is arranged only at run-time. 
 Trends: Figure 5 presents the comparison. As can 
be seen, there is a value of chunk size between 1 and 
n/p that results in the highest speedup for each load-
balancing scheme. The dynamic scheduling reaches the 
maximum speedup when chunk size is 16, while static 
scheduling reaches the maximum speedup at chunk size 
8. This is due to the fact that dynamic scheduling needs 
more work per processor in order to beat the scheduling 
overhead. There is a critical value of the chunk size for 
which the speedup reaches the maximum. This value is 
higher for dynamic scheduling to compensate for the 
scheduling overhead. The workload is more evenly 
distributed across processors at the critical chunk size 
value.  
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Impact of Problem Size on Speedup Using Guided Scheduling 
on 8 Processors
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Figure 4. Impact of problem size on speedup using a) affinity and b) 
guided scheduling on 8 processors. 



Effect of Chunk Size on Speedup Using Static Scheduling on 8 
Processors
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Effect of Chunk Size on Speedup Using Dynamic Scheduling 
on 8 Processors
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Figure 5. Effect of chunk size on speedup using a) static and b) 
dynamic schedulings on 8 processors. 
 
4.4 How does number of processors affect speedup? 
Experimental Setup: The chunk size is kept constant at 8 
and 16. Speedup is the response variable. The number of 
processors is varied i.e. {4, 8}. The problem size is fixed 
at 10000 observation points. Due to the limited budget of 
computational time available on IBM Regatta, we did not 
explore other values for the number of processors. 

Trends: As Figure 6 shows, the speedup increases 
as the number of processors goes from 4 to 8. The 
average speedup across all scheduling techniques is 
3.43 for the 4-processor case and 5.91 for the 8-
processor case. Affinity scheduling shows the best 
speedup, on average 7 times on 8 processors. Therefore, 
the speedup increases as the number of processors 
increases. Guided scheduling results in the worst 
speedup because the first processor is always assigned a 
chunk of size n/p. The rest of the processors always 
have less work to do even though the rest of the work 
can be distributed evenly. The same scenario applies to 
static scheduling with chunk size n/p. Dynamic 
scheduling tends to result in better speedup as the 
chunk size increases. However, it also suffers from the 
same problem of guided and static scheduling 
techniques when the chunk size is n/p. Therefore, we 
expect dynamic scheduling will have its best speedup 

for a chunk size which is somewhere between 16 and 
n/p iterations. 
 

Effect of Number of Processors on Speedup (PS=10000)
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Figure 6. Analyzing the effect of number of processors on speedup 
when problem size is 10000 using 4 and 8 processors. Mixed1 
scheduling uses static with B=4 (round-robin w/ B=4) for non-uniform 
workload and static w/o B (contiguous) for uniform workload. Mixed2 
scheduling uses static with B=16 (round-robin w/ B=16) for non-
uniform workload and static w/o B (contiguous) for non-uniform 
workload 

 
5    Conclusions and Future Work. 
  
Linear regression is one of the best-known classical data 
mining techniques. However, it makes the assumption of 
independent identical distribution (IID) in learning data 
samples, which does not apply to geo-spatial data. In the 
spatial auto-regression model (SAM), spatial 
dependencies within data are taken care of by the auto-
correlation term and the linear regression model thus 
becomes a spatial auto-regression model. Incorporating 
the auto-correlation term enables better prediction 
accuracy. However, computational complexity increases 
due to the logarithm of the determinant of a large matrix, 
which is computed by finding all of the eigenvalues of 
another matrix. Parallel processing helps provide a 
practical solution to make SAM computationally 
efficient.     

In this study, we developed a parallel formulation 
for a general exact estimation procedure for SAM 
parameters that can be used for spatial datasets 
embedded in multi-dimensional space. This formulation 
can be used for location prediction problems. We studied 
various load-balancing techniques allowed by the 
OpenMP API. The aim was to distribute the workload as 
uniformly as possible among the processors. The results 
show that our parallel formulation achieves a speedup up 
to 7 using 8 processors.  We are developing algebraic 
cost models to analyze the experimental results to further 
improve the speedups. We will expand our experimental 
studies to include a larger number of processors via 
hybrid parallel programming and other parameters such 
as degree of auto-correlation. In the future, we plan to 
develop parallel formulations for approximate solution 
procedures for SAM that exploit sparse matrix 



techniques in order to reach very large problem sizes on 
the order of a billion observation points. 
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Appendix:   
Algebraic Cost Model 
This section concentrates on the analysis of ranking of 
the load-balancing techniques. The clock speed is 
1.3GHz. The cache line of IBM Regatta is 128 bytes 
long i.e. 16 floating-point numbers.  

The contiguous and guided scheduling techniques 
can be categorized as the poorest techniques. The round-
robin scheduling technique comes next in the ranking. 
The α coefficient for the cost of local work term (LWc ) in 

equation App.1 implies this selection. Equation App.1 
shows the algebraic cost model expression for parallel 
programs parallelized at with finer granularity level. 
Theα coefficient is dependent on how granular the 
chunk-size is spread across the processors. The finer 
selection is achieved by the cost of load-balancing term 
( DLBSc / ). In other words, DLBSc /  represents the 

synchronization overhead in the parallel program. This 
term is zero for a serial program. Figure 7 abstracts any 
parallel program parallelized at finer granularity level in 
terms of these two major terms. Here, the main 
assumption for this cost model is that the time spent in 
the parallel region is much greater than the time spent in 
the serial region and pnB /<< , both of which hold for our 
formulation. 

 
 
 
 
 
 
 
 

 
 

Figure 7. Generic parallel program parallelized at finer granularity 
level 

 

(App.1)  DLBSLWtotal ccc /+∗= α  

 
Since affinity scheduling does an initial scheduling 

at compile time, it may have less overhead then the 
dynamic scheduling. A possible partial ranking is shown 
in Figure 8.a. The worst point in this space is at the upper 
right-hand corner where synchronization cost (i.e.DLBSc / ) 

is too high and the load-imbalance (i.e.LWc ) reaches the 

most non-uniform state. The best point is at the lower 
left-hand corner where synchronization cost is the lowest 
and the load-imbalance is almost zero, which is 
hypothetical. The real scenarios lie between these two 
extremes. Thus, the decision tree in Figure8.b 
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summarizes a possible total ranking of the load-
balancing techniques used in this study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                       (a)                                                             (b) 
Figure 8. a) Partial Ranking and b) Total Ranking of load-balancing 

techniques 
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