A Parallel Formulation of the Spatial Auto-Regresson Model for Mining

Large Geo-Spatial Datasets
Baris M. Kazat, Shashi ShekhdrDavid J. Lilja*, Daniel Boley

Abstract: The spatial auto-regression model (SAM) [5,14] is a
The spatial auto-regression model (SAM) is a papudaneralization of the linear regression model tooaat
spatial data mining technique which has been usedor spatial auto-correlation. It has been succdlysfised
many applications with geo-spatial datasets. Howeve analyze spatial datasets in regional economics,
serial procedures for estimating SAM parameters egelogy [2,13], etc. The model yields better cifissiion
computationally expensive due to the need to coenpartd prediction accuracy [2,13] for many spatialdats
all the eigenvalues of a very large matrix. We ps®pa exhibiting strong spatial auto-correlation.
parallel formulation of the SAM parameter estimatio However, it is computationally expensive to
procedure in this paper using data parallelismtayidid estimate the parameters of SAM. For example, it can
programming technique. Experimental results onBiv | take an hour of computation for a spatial datas¢h w
Regatta show that the proposed parallel formulatid@©00 observation points on an IBM Regatta 32-
achieves a speedup of up to 7 on 8 processors.ré&V@racessor node composed of 1.3GHz pSeries 690
developing algebraic cost models to analyze ®®werd architecture processors sharing 47.5 GB main
experimental results to further improve the spesdup memory. This has limited the use of SAM to small
Keywords: Spatial Auto-regression, Spatial Autgroblems, despite its promise to improve clasdifica
correlation, Parallel Formulation, Spatial Data M@n and prediction accuracy for larger spatial datasets

Parallel processing is a promising approach to dygee
1 Introduction. the sequential solution procedure for SAM and plaiper
Explosive growth in the size of spatial databasas focuses on this approach.
highlighted the need for spatial data mining teghes to The only related work [9] implemented the SAM
mine the interesting but implicit spatial pattemmghin solution for one-dimensional geo-spaces and used
these large databases. Extracting useful and stiege CMSSL [4], a parallel linear algebra library writtén
patterns from massive geo-spatial datasets is i@mpoiCM-Fortran (CMF) for the CM-5 supercomputers of
for many application domains such as regiofdlinking Machines Corporation, neither of which is
economics, ecology and environmental managemawsilable for use anymore. That approach was refulis
public safety, transportation, public health, bass andfor spatial datasets embedded in spaces of twoore m
travel and tourism [2,13,14]. dimensions. Thus, it is not included in comparative

Many classical data mining algorithms such asdinevaluation in this paper.

regression assume that the learning samples areWe propose a parallel formulation for a general
independently and identically distributed (11D). This exact estimation procedure [6] for SAM parametéet t
assumption is violated in the case of spatial daiato can be used for spatial datasets embedded in multi-
spatial auto-correlation [14] and classical lineadimensional space. We use a public domain parallel
regression yields a weak model with not only lawmerical analysis library to implement the stepshe
prediction accuracy [13] but also residual errsgrial solution on an SMP architecture machine, ae
exhibiting spatial dependence. single node of an IBM Regatta. To tune the perforrea

we modify the source code of the library to change

parameters such as scheduling and data-partitioning
T This work was partially supported by the Army High We evaluate the proposed parallel formulation on a
Performance Computing Research Center (AHPCRC) ruB Regatta. Results of experiments show that the
the auspices of the Department of the Army, Armydech proposed parallel formulation achieves a speeduppof
Laboratory (ARL) under contract number DAAD19-0D@34. to 7 on 8 processors within a single node of ths 1B
This work reqeiyed additional support from the Lb’l'mity of Regatta. We compare different load-balancing tech-
Minnesota Digital Technology Center and the M'nmes?iiques supported by OpenMP [1] for improving the

Supercomputing Institute. ;
* Electrical and Computer Engineering Departmentfyehsity speedup of the proposed parallel formulation of SAM

of Minnesota, Twin-Cities MN 55455, Ematﬂazar@ece.umn.edda_‘ﬁ'mty schedullng_, which is bOth_ a static .and dynic

§ Computer Science and Engineering Department, sityeof (I-€., quasi-dynamic) load-balancing techniquefquers
Minnesota, Twin-Cities MN 55455, Emasihekhar@cs.umn.edu D€st on average. We also evaluate the impact @ oth
* Electrical and Computer Engineering Departmentividrsity OpenMP parameters, i.e. chunk size defined as the
of Minnesota, Twin-Cities MN 55455, Emalilia@ece.umn.edu number of iterations per scheduling step.

" Computer Science and Engineering Department, Usityeof We plan to expand the experimental studies to
Minnesota, Twin-Cities MN 55455, Emalfloley@cs.umn.edu jnclude a larger number of processors via hybridfel

programming, and other parameters such as degredepéndent variable, is ann-by-k matrix of observations

auto-correlation. To further improve speedup weo atsn the explanatory variableW is the n-by-n

plan to develop algebraic cost models to charastdlie neighborhood matrix that accounts for the spatial

scalability and identify the performance bottlerieck relationships (dependencies) among the spatial ¢aita
Eventually, we want to develop parallglk-by-1 vector of regression coefficientsis ann-by-1

formulations for approximate solution procedures fgsctor of unobservable error.

SAM that exploit sparse matrix techniques [8].

Scope:This paper covers parallel formulation foryg, w, Stagen Sages] - Slage,[) ,é 52
i g,Nn Compute rangeof Golden Sectio| a C , B,
densg an_d exact solution to SAM. The par’allel. SAM Egomalies [Chall < Pttt ey o [P)
solution is portable and can run on today’s distell Eigenvalues | ML function
shared-memory architecture supercomputers such as of W

IBM Regatta, SGI Origin SGI Altix. and Cray X1. & Figure 1. System diagram of the serial exact algorithm fier $AM
’ ' ') solution composed of three stages, Stags, andc. Stageq is further

do nOt addr?SS non-parallel a_pprqaches, e._g., &pars composed of three sub-stages (pre-processing, Holass
matrix techniques and approximation techniques, 1O transformation and QL transformation) which are sfawn.
speedup the sequential solutions to SAM.

The remainder of the paper is organized as follows Figure 1 highlights the stages of the serial exact
Section 2 presents the problem statement and esplaigorithm for the SAM solution. It is based on
the serial exact algorithm for the SAM solutioncen maximum-likelihood (ML) theory, which requires
3 discusses our parall_el forml_JIation. Exp_erimer&ghlts computing the logarithm of the determinant of thegé
are presented in Section 4. Finally, Section 5 sarzes (i - ,w) matrix. The derivation of the ML theory will not

and concludes the paper with a discussion of futgeeshown here due to limited space. However, tisé fi

work. term of the end-result of the derivation of theddthm

. of the likelihood function i.e. equation 2.2 clgashows
2 Problem Statement and Serial Exact SAM why we need to compute the (natural) logarithmhef t
Solution. determinant of a large matrix. In equation 2.2 riHgy-n

We first present the problem statement and thecusss jjentity matrix is denoted byl™, the transpose operator
the serial exact SAM solution based on the maximygiyenoted by ™, “In” denotes the logarithm operator

likelihood (ML) theory [6]. 2 .
The problem studied in this paper is defined %%da is the common variance of the error.

follows: Given the serial solution procedure described in
the Serial Dense Matrix Approach [9], we needitd a (2.2)In(L) =In|l - pW|-
pa(;allel fr(])rmulation for multi%mensional geo}sTlxado where
reduce the response time. Tdemstraints are as follows: __ 1 [T T TqT Tl T
the spatial auto-regression parameteryaries in the SSE_QG_Z{(y (=AW T =6 -6 - W)
range [0,1); the error is normally distributed,. ig
[N(0,6°1) 11D; the input spatial dataset is composed of Therefore, Figure 1 can be viewed as an
normally distributed random numbers with unit stam implementation of the ML theory. This section déses
deviation and zero mean; the parallel platform egch stage. Stageis composed of three sub-stages: pre-
composed of an IBM Regatta, OpenMP and MPI; gigcessing, Householder transformation [11], and QL
the size of the neighborhood matr/ is n. The transformation [3]. The pre-processing sub-stagé no
objective is to implement parallel and portable softwapaly forms the row-standardized neighborhood matrix
whose scalability is evaluated analytically and, but also converts it to its symmetric eigenvalue-
experimentally. equivalent matrixv. The Householder transformation
A spatial auto-correlation terpvy is added to theand QL transformation sub-stages are used to finaf a
linear regression model in order to model the sfiieof the eigenvalues of the neighborhood matrix. The
the spatial dependencies among the elements of thelouseholder transformation sub-stage takeas input
dependent variabley. The resulting equation — whicland forms the tri-diagonal matrix whose eigenvalaes
accounts for the spatial relationships — is showncomputed by the QL transformation sub-stage.
equation 2.1 and is called ttspatial auto-regression Computing all of the eigenvalues of the neighbothoo

nin@27) _nin(g?) _
2 2

SSE

model (SAM) [5]. matrix takes approximately 99% of the total serial
response time as shown in Table 1.
(2.2) y=pWy +xB +¢ StageB uses the eigenvalues of the neighborhood matrix

to calculate the determinant @f-,w) at each step of
where pis the spatial auto-regression (auto-correlatieh@ non-linear one-dimensional parameter optinorati
parametery is ann-by-1 vector of observations on thesing the golden section search [3]. The valuehef t

logarithm of the likelihood function (equation 2.2) needs We use a public domain parallel eigenvalue solver
to be computed at each iteration step of the non-lifeam the Scalapack Library [12]. This library is available
optimization because the auto-regression parametesni8/IPIl-based communication paradigm. Thus, we use a
updated at each step. There are two ways to computéyhad programming technique to exploit this library
value of the logarithm of the likelihood function: ithin OpenMP, a shared memory programming model
compute the eigenvalues of the large dense maéttrixwhich is preferred within each node of the IBM Regatta.
once; 2) compute the determinant of the large demseuture work, we will use OpenMP within nodes and
matrix (1-pw) at each step of the non-lineafPl across nodes of the IBM Regatta. We modified the
optimization. Due to space limitations, it is enough &Purce code of the parallel eigensolver within Scalapack
note that the former option takes less execution timetgor allow evaluation of different design decisions
large problem sizes, i.e., for large number of observatisiuding the choice of scheduling techniques and chunk
points. Equation 2.3 expresses the relationship betw#ees. OpenMP provides a rich set of choices for
the eigenvalues of th& matrix and the logarithm of thécheduling techniques i.e., static, dynamic, guided, and

determinant of the(i - ,w) matrix. The optimization isaffinity scheduling techniques. .
O(n) complexity. Another important design decision relates to the

partitioning of data items. We instructed OpenMP to

(2.3) partition the neighborhood matrix across processors.
taking the
[l - pW |'| (- p) O BFHMED o in 1 - oW |=_§ In(1- ;) 3.2 Stage 8 Fitting for the Autoregression
i=1 Parameter. The golden section search algorithm itself is

Fmally, stage C computes the sum of the squarestt un-parallelized since it is very fast in serial format
error, i.e., theSSE term, which isO(n) complex. Table 1and the response time may increase due to the
shows our measurements of the serial response timgg®nunication overhead. The serial golden section
the stages of the exact SAM solution based on BHarch stage has linear complexity. However, the golden
theory. Each response time given in this study is $@etion search needs to compute the logarithm of the
average of five runs. We note that stagyeakes a largemaximum-likelihood function, all of whose constant
fraction of the total time. (spatial statistics) terms are computed in parallel.

Table 1. Measured serial response times of stages of thet ey 3 StagecC. Least Squares.Once the estimate for the
SAM solution. Problem size denotes the number skolation autoregressive paramefeis computed, the estimate for

ponts Time (sec) Spent on the regression coefficiept, which is a scalar in our
T | machine Stage 4 Stage % Stage ¢ spatial auto-regression model, is calculated in parallel.
Computing Eigenvalues | ML Function |Least Squares The formula for,é iS derived from ML theory. The
SGI Origin 78.10 0.41 0.06 i . X
2500 [op 5920 130 007 estimate of the common variance of the error térivs
BV Regatia 26.90 0.58 0.06 also computed in parallel to compare with the actual
o1 onam 173541 =00 G value. The complexity is reduced @(n?p) from O(n?)
6400 [IBM SP 1194.80 17.65 0.44 due to the parallelization of this stage.
BM Regatta 798.70 6.19 0.42
SGl Origin 6450.90 11.20 1.22 4 Experimental Design.
10000 [IBM SP 6546.00 66.88 1.63 Our experimental design answers four important
IBM Regatia 3439.30 24.15 0.93 guestions by using synthetic data-sets:
1.Which load-balancing method provides best speedup?
3 Our Parallel Formulation. 2.How does problem size i.e., the number of observation

The parallel SAM solution implemented here uses @oints) affect speedup?

data-parallelism approach such that each proce8sbow does chunk size i.e., the number of iterations per

works on different data with the same instructions. Datacheduling stepB) affect speedup?

parallelism is chosen since it provides finer granuladtyiow does number of processops é&ffect speedup?

for parallelism than functional parallelism. Figure 2 summarizes the factors and their parameter
domains. The most important factors are load-balancing

3.1 Stageq: Computing Eigenvalues.Stage4 can be technique, problem size, chunk-size and number of

parallelized using parallel eigenvalue solvers [7,10,J®@pcessors. These factors determine the performance of

If the source code of the parallel eigenvalue solvethie parallel formulation. We used 4 neighbors in the

available, the code may be modified in order to tune meéghborhood structure, but 8 and more neighbors could

performance by changing the parameters suchalag be used. The load-balancing techniques of OpenMP

scheduling technique and chunk size. can be grouped in four major classes:

Static Load-Balancing (SLB) e W’ij”}& —

Contiguous Scheduling: SinceB is not specified, [~7moo7em 57z —|[7500, 6400 and 10000 observation points
the iterations of a loop are divided into chunksiipf |Xeieiborioos Scrvctergle b w/ 4 nelgioors

method [Maximum Likelihood for exact SAM

iterations each. We refer to this schedulingtaic zo—resression raramedi|[0, D
B=n/ contiguous (B=npJ
=n/p.]))) s, |[Rouna-robin w7 B=11, 7,38, 167
Round-robin Scheduling: The iterations are Load-satancing CombTned (ContiguousiRound-robiny
. . . - . . . Dynamic w/ B={n/p,L1,4,s5,1b}
distributed in chunks of sizB in a cyclic fashion. DLB ferraea B =TT I ——ToT
This scheduling is referred to satic B={1,4,8,16}. WiE [Ny W/ B=1p, 1,78, 167
Dynamic Load-Balancing (DLB) nardware platforn ||TBY Regatta w/ 47.5 GB Main Memory; 32

1.3 GHz Power4 architecture processors

Dynamic Scheduling: If B is specified, the
iterations of a loop are divided into chunks
containingB iterations each. IB is not specified,

then the chunks consist ofip iterations. The4 1 which load-balancing method provides the best
processors are assigned these chunks on a "#séedup? Experimental Setup: The response variables
come, first-do” basis. Chunks of the remaining waike speedup and parallel efficiency. Even though the
are assigned to available processors. neighborhood structure used is the 4-nearest neighbors
Guided Scheduling: If B is specified, then thefor multi-dimensional geo-spaces, our method can solve
iterations of a loop are divided into progressivett any type of neighborhood matrix depending on
smaller chunks until a minimum chunk sizeB®is different structures.
reached. The default value fBris 1. The first chunk Trends: Figure 3 summarizes the average speedup
containg/p iterations. Subsequent chunks consistrebults for different load-balancing techniques. For each
number of remaining iterations divided by p problem size, affinity scheduling appears to be the best.
iterations. Available processors are assigned chupés example, in Figure 3(a) affinity scheduling with

Number of pProcessors |[1,4, and 8

Figure 2. The experimental design

on a "first-come, first-do" basis. chunk-size 1 provides best speedup. In Figure 3(b) for
Quasi-Dynamic Load-Balancing composed of bgjfoblem size 6400, affinity scheduling with chunk-size
static and dynamic components (QDLB). 8 provides best speedup. Affinity scheduling with

Affinity Scheduling: The iterations of a loop argehunk-sizen/p provides best speedup in Figure 3(c) for
initially divided into p chunks, containingn/p problem size 2500. The main reason is that affinity
iterations. If B has been specified, then eaegheduling does scheduling both at compile time and
processor is initially assigned to a chunk, and is then-time, allowing it to adapt quickly to the dynamism
further subdivided into chunks containin® in the program without much overhead. Results show
iterations. If B has not been specified, then thiat the parallel efficiency increases as the problem size
chunks consist ohalf of the number of iterations increases. The best parallel efficiency obtained for
remaining iterations. When a thread becomes freepibblem size 10000 is 93.13%, while for problem size
takes the next chunk from its initially assign@#00, it is 83.45%; and for problem size 2500 it is
partition. If there are no more chunks in thé6.26%. This is due to the fact that as the problem size
partition, then the thread takes the next availaiplereases, the ratio of parallel time spent in the code to
chunk from a partition initially assigned to anothtfe serial time spent also increases.
thread.

Mixed Load-BalanCing: Effect of Load-Balancing Techniques on Speedup
Mixed1 and Mixed2 Schedulings: Composed of both for Problem Size 10000
static and round-robin scheduling

The first response variableggeedup and is defined as
the ratio of the serial execution time to the paral
execution time. The second response varighdeallel
efficiency, is a metric that is defined as the best spee
number obtained on 8 processors divided by 8. 1
standard deviation of five runs reported in o
experiments for problem size 10000 is 16% of t
average run-time (i.e. 561 seconds). It is 9.5% (i.e.
seconds) of the average run-time for problem size 6
and 10.6% of the average run-time (i.e.5.2 seconds)

Speedup
o - N w S (5] o ~ (=]

_

—e—mixedl

—a— Static B=8
Dynamic B=8
Affinity B=1

—x— Guided B=16

4 8
Number of Processors

problem size 2500.

(32)

Effect of Load-Balancing Techniques on Speedup
for Problem Size 6400

Speedup
S

—e—mixedl

—=—static B=8
dynamic B=8
affinity B=8

—x—guided B=8

Number of Processors

(3b)

Effect of Load-Balancing Techniques on Speedup
for Problem Size 2500

Speedup
w

1 4 8

Number of Processors

—e—mixedl

—%— gudied B=4

—=— static B=4

dynamic B=16
affinity B=n/p

(30)

problem sizes greater than 10000 due to the quadratic
growth in W matrix, we were unable to observe
whether this trend is maintained for larger problem
sizes.

4.3 How does chunk-size affect speedup?
Experimental Setup: The response variable is the
speedup. The number of processors is fixed at 8
processors. The problem sizes and the chunk sizes are
varied. We want to compare two load-balancing
techniques, static scheduling and dynamic scheduling.
Static scheduling is arranged only at compile time,
while dynamic scheduling is arranged only at run-time.

Trends. Figure 5 presents the comparison. As can
be seen, there is a value of chunk size between 1 and
n/p that results in the highest speedup for each load-
balancing scheme. The dynamic scheduling reaches the
maximum speedup when chunk size is 16, while static
scheduling reaches the maximum speedup at chunk size
8. This is due to the fact that dynamic scheduling needs
more work per processor in order to beat the scheduling
overhead. There is a critical value of the chunk size for
which the speedup reaches the maximum. This value is
higher for dynamic scheduling to compensate for the
scheduling overhead. The workload is more evenly
distributed across processors at the critical chunk size
value.

Impact of Problem Size on Speedup Using Affinity Scheduling

Figure 3. The best speedup results from each class of lokahdiag
techniques (i.e. mixedl, mixed2, static wBp with B={1,4,8,16};

on 8 Processors

dynamic withB={n/p,1,4, 8,16}; affinity w/oB, with B={1,4,8,16},
guided w/oB or with B=n/p, andB={4,8,16) for problem sizesf a)
10000, b) 6400 and ¢)2500 on 1,4 and 8 processlixedl scheduling
uses static wittB=4 (round-robin w/B=4) for non-uniform workload
and static w/oB (contiguous) for uniform workload. Mixed2
scheduling uses static witB=16 (round-robin w/B=16) for non-
uniform workload and static wM (contiguous) for uniform workload.

o o N ®

Speedup

ok N W &

4.2 How does problem size impact speedup

m
e
/

—e— affinity B=n/p

—m— affinity B=1
affinity B=4
affinity B=8

—x— afiinity B=16

Experimental Setup: The number of processors is fixe
at 8 processors. The best and worst load-baland

2500 6400

Problem Size

10000

techniques, namely affinity scheduling and gwded
scheduling, are presented as two extremes. Speedyr—ic

(4a)

the response variable. The chunk-sizes and problem g
are varied. Recall that chunk size is the number

Impact of Problem Size on Speedup Using Guided Scheduling

on 8 Processors

iterations per scheduling step and problem size is

number of observation points. s

Trends. The two extremes for the load-balancing

—e— Guided B=1
—=— Guided B=4

techniques are shown in Figure 4. In the case of affini §3
scheduling the speedup increases linearly with proble &

Guided B=8
Guided B=16

size. In the case of guided scheduling, even though t

increase in speedup is not linear as the problem si

increases, there is still some speedup. An interesti| °
trend for affinity scheduling with chunk size 1 is it

2500 6400

Problem Size

10000

starts as the worst scheduling but then moves ahead o1

every other scheduling when the problem size is 100R@yre 4. impact of problem siz

(4b)

observation points. Since we ran out of memory faided scheduling on 8 processors.

e on speedup using a) affiaitd b)

Effect of Chunk Size on Speedup Using Static Scheduling on 8 for a‘ Chlflnk Size Wthh 1S SomeWhere between 16 and
Processors n/p iterations.

Effect of Number of Processors on Speedup (PS=10000)

‘(/’0‘\A —e— PS=2500

" | —=—PS=6400
PS=10000

Speedup

1 4 8 16 n/p
Chunk Size

(5a)

1
4
8
1
8
16
n/p
.
4
8
16

1
4
8

16

Speedup
ok N W A O O N ®
/i
O Rk N WA OO N ®
]
.
5 !
1 \
B=
B=
=16
=n/p
n/p‘
B |
—
M

stati
stati
stati
static
static B
finity B:
finity B=4
finity B:
affinity B:
nity B
guided B:
guided B:
guided B:
guided B:

dynamic B:
dynamic B:
dynamic B:
dynamic B:
dynamic B:
af
af
af
affi

,_
o
o
-
o
=4
>,
-]

Effect of Chunk Size on Speedup Using Dynamic Scheduling
on 8 Processors

Figure 6. Analyzing the effect of number of processors oeestup
when problem size is 10000 using 4 and 8 procesddizedl
scheduling uses static wiBr4 (round-robin wB=4) for non-uniform
workload and static w/& (contiguous) for uniform workload. Mixed2
/"" B scheduling uses static witB=16 (round-robin w/B=16) for non-

—e— PS=2500

_w ps-saco | Uniform workload and static w/d@ (contiguous) for non-uniform
ps=10000|| Workload

5 Conclusions and Future Work.

Speedup
ok N w A& O O N ®

Chunk Size Linear regression is one of the best-known classical data
mining techniques. However, it makes the assumption of
independent identical distribution (11D) in learning data
Figure 5. Effect of chunk size on speedup using a) stati¢ Bp samples, which does not apply to geo-spatial data. In the
dynamic schedulings on 8 processors. spatial auto-regression model (SAM), spatial

cj)ependencies within data are taken care of by the auto-
4.4 How does number of processors affect speeduiyrelation term and the linear regression model thus

Experimental Setup: The chunk size is kept constant & cmes a spatial auto-regression model. Incorporating
and 16. Spgedup_ IS t.he response variable. Th_e nymbﬁ{ OTauto-correlation term enables better prediction
Processors IS varlgd I-€. _{4’ 8}. The prob[em Size IS f'X§ uracy. However, computational complexity increases
at 10000 observation points. Due to the limited budge;9

: ;) . to the logarithm of the determinant of a large matrix,
computational time available on IBM Regatta, we did ggticp, jg computed by finding all of the eigenvalues of
explore other values for the number of processors.

another matrix. Parallel processing helps provide a
Trends. As Figure 6 shows, the speedup increas P J ps D

ractical solution to make SAM computationally
as the number of processors goes from 4 to 8. Thgiqient

average speedup across all scheduling techniques is |, ihis study
3.43 for the 4-processor case and 5.91 for the '

(5h)

we developed a parallel formulation

> . r a general exact estimation procedure for SAM
processor case. Affinity scheduling shows the besl ameters that can be used for spatial datasets

speedup, on average 7 times on 8 processors. Theref@fyaqded in multi-dimensional space. This formulation
Fhe speedup Increases as _the number. of ProcesyQys pe used for location prediction problems. We studied
increases. Guided scheduling results in the worst iy, load-balancing techniques allowed by the

speedup because the first processor is always assign 8nMP API. The aim was to distribute the workload as

chunk of sizen/p. The rest of the processors alwayﬁk\iformly as possible among the processors. The results

have less work to do even though the rest of the wogk,,y that our parallel formulation achieves a speedup up

can be distributed evenly. The same scenario applie§ 07 \ising 8 processors. We are developing algebraic
static scheduling with chunk size/p. Dynamic .,qt models to analyze the experimental results to further
scheduling tends to result in better speedup as %ﬁ}prove the speedups. We will expand our experimental
chunk size increases. quever, it also s_uffers from_t fudies to include a larger number of processors via
same problem of guided and static scheduling iy harallel programming and other parameters such
techniques when the chunk sizenip. Therefore, we 55 qegree of auto-correlation. In the future, we plan to

expect dynamic scheduling will have its best Speedﬂ%velop parallel formulations for approximate solution
procedures for SAM that exploit sparse matrix

techniques in order to reach very large problem sizesviming Geospatial Data, IEEE Transactions on

the order of a billion observation points. Multimedia 4 (2), June 2002.
[14] S. Shekhar and S. Chawlgpatial Databases. A
Acknowledgments Tour, Prentice Hall 2003.

This work was partially supported by the Army High

Performance Computing Research Center (AHPCR@pendix:

under the auspices of the Department of the Army, Arfgebraic Cost Model

Research Laboratory (ARL) under contract numBdHs section concentrates on the analysis of ranking of
DAAD19-01-2-0014. The content of this work does b€ load-balancing techniques. The clock speed is
necessarily reflect the position or policy of tHe3GHz. The cache line of IBM Regatta is 128 bytes
government and no official endorsement should @@ i-e. 16 floating-point numbers.

inferred. The authors would like to thank the University The contiguous and guided scheduling techniques
of Minnesota Digital Technology Center and Minnes&@nh be categorized as the poorest techniques. The round-
Supercomputing Institute for using their computifigbin scheduling technique comes next in the ranking.
resources. The authors would also like to thank THe a coefficient for the cost of local work terna,(,) in

members of the Spatial Database Group, ARCIabs equation App.1 implies this selection. Equation App.1
Group, Birali Runesha and Shuxia Zhang at Minnesgfigws the algebraic cost model expression for parallel
Supercomputing Institute for valuable discussions. Hggrams parallelized at with finer granularity level.
authors thank Kim Koffolt for helping improve thghe, coefficient is dependent on how granular the
readability of this paper. chunk-size is spread across the processors. The finer
selection is achieved by the cost of load-balancing term

(cspg)- In other words, g, represents the

[1] R. Chandra, L. Dagum, D. Kohr, D. Maydan, Synchronization overhead in the parallel program. This
McDonald, R. Menon, Parallel Programming in term is zero for a serial program. Figure 7 abstracts any
OpenMP, Morgan Kauffman Publishers 2001. parallel program parallelized at finer granularity level in

[2] S. Chawla, S. Shekhar, W. Wu, U. Ozesmi, Modeliig§ms of these two major terms. Here, the main
Spatial Dependencies for Mining Geospatial D&c. assumption for this cost model is that the time spent in
of the 1t SIAM International Conference on Data the parallel region is much greater than the time spent in

References

Mining, Chicago, IL, 2001. the serial region argl<<n/ p, both of which hold for our
[3] W. Cheney and D. Kincaidjyumerical Mathematics formulation.

and Computing, 3¢ Edition, 1999. Process

[4] CMSSL for CM-Fortran: CM-5 Edition, Cambridge, Local »DLB

MA, 1993. Work

[5]_ N. A. Qressie,Statistics for Spatial Data (Revised [Serial ,[stB sLB|, [Seral
Edition). Wiley, New York, 1993. Regior Reaior
[6] D. A. Griffith, Advanced Spatial Satistics, Kluwer L Process

Academic Publishers 1988. ng' »(DLE

[7] Information about Freely Available Eigenvalue-
Solver Software: http://www.netlib.org/utk/people/ Figure 7. Generic parallel program parallelized at finemgrarity
JackDongarrdd-sw.html level

[8] J. LeSage and R. K. Pace, Spatial Dependence, in _

Data Mining, in Data Mining for Scientific and Taepl) Go =@ Hew * Cs/ oL

Engineering Applications, R. L. Grossman, C. Kamath, , - : - .
P. Kegelmeyer, V. Kumar, and R. R. Namburu (eds Since affinity scheduling does an initial scheduling

Kiuwer Academic Publishing, p. 439-462001. g ’compile time,_ it may hgve Iess_ overhe_ad_then the
. X X o namic scheduling. A possible partial ranking is shown
[9] B. Li, Implementing Spatial Statistics on Parall%\f/Fi ure 8.a. The worst point in this space is at thew
Computers, In: Arlinghaus S. (Ed.), edPractical 9 o P) p) PP
Handbook of Spatial Satistics, CRC Press, Boca Ratofight-hand corner where synchronization cost ¢,5)
FL, pp. 107-148. is too high and the load-imbalance (tg,) reaches the
[10] NAG SMP Fortran Libraryhttp://www.nag.com most non-uniform state. The best point is at the lower
[11] Numerical Recipes in Fortran 77, Cambridggt-hand corner where synchronization cost is the lowest
University Press 1986-1992. and the load-imbalance is almost zero, which is

[12] Scalapack http://www.netlib.org/scalapack/ hypothetical. The real scenarios lie between these two
[13] S. Shekhar, P. Schrater, W. R. Raju, W. WU, Spaliglemes. Thus, the decision tree in Figure8.b
Contextual Classification and Prediction Models for

summarizes a possible total ranking of the load-
balancing techniques used in this study.

Synchronization cost

bes

Guided

Dynamic

Affirfity

Rou

Load

Balanc

WOrS!
\ 4
v v v

medium| | poor

round- contiguous
robin auided

Contiyuou
-robini

Load imbalance affinity dynamic
(a) (b)

Figure 8. a) Partial Ranking and b) Total Ranking of loatkhaing

techniques

