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Abstract. This paper dealswith the problem of clustering a data-set. In particular, the biseding dvisive
approach ishere mnsidered. This approach can be naturally divided into two sub-problems: the problem
of choasing which cluster must be divided, and the problem of splitting the seleaed cluster. The focus
here is on the first problem. The @ntribution of this work is to propose a new simple technique for the
seledion of the duster to split. This technique is based upon the shape of the duster. This result is
presented with reference to two specific splitting algorithms: the cdebrated biseding K-means
algorithm, and the recently proposed Principal Diredion Divisive Partitioning (PDDP) algorithm. The
problem of evaluating the quality of a partition isalso dscussed.
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1. Introduction and problem statement

The problem this paper focuses on is the classcal problem of unsupervised clustering of a data-set. In
particular, the biseding dvisive clustering approach is here considered. This approach consists in recursively
splitting a cluster into two sub-clusters, starting from the main data-set. This is one of the more basic and
common problems in fields like pattern analysis, data mining, document retrieval, image segmentation,
dedsion making, etc. ([GJR6], [IMF99)).

Note that by recursively using a biseding divisive clustering procedure, the data-set can be partitioned into
any gven number of clusters. Interestingly enough, the so-obtained clusters are structured as a hierarchical
binary tree(or a binary taxonamy). This is the reason why the bisecting divisive approach is very attractive
in many applications (e.g. in document-retrieval/indexing problems — see eg. [SKV0(Q]).

Any divisive clustering algorithm can be divided into two sub-problems:



s theproblem of seleding which cluster must be split;
o theproblem of how splitting the seleded cluster.

This paper focuses on the first sub-problem. In particular, in this paper a new method for the sdedion o the
cluster to split is proposed. This method is here presented with reference to two spedfic bisecting divisive

clustering algorithms:

¢ thebiseding K-means algorithm;

o thePrincipal Diredion Divisive Partitioning (PDDP) algorithm.

K-means is the most cdebrated and widely used clustering technique (see eg. [F65], [GJXB6]|, [JD8Y],
[JMF99], [SI84], [SKVO0Q]); henceit is the best representative of the classof iterative centroid-based divisive
algorithms. On the other hand, PDDP is a recently propased technique ([B97], [B9§], [BG+00a], [BG+00h).

It is representative of the non-iterative techniques based upon the Singular Value Decomposition (SVD) of a
matrix bult from the data-set.

The paper is organized as follows: in Sedion 2 the hisecting K-means and PDDP algarithms are concisely
recalled, whereas in Sedion 3 the method for the sdedion o the cluster to split is proposed. In Sedion 4 the

problem of evaluating the quality of a set of clustersis considered and some ampirical results are presented.

2. Biseding K-means and PDDP

The clustering approach considered herein is biseding dvisive clustering. Namely, we want to solve the
problem of splitting the data-matrix M =[x, X,,....x, |e R*" (where each column o M, x, e R”, isasinge
data-point) into two sub-matrices (or sub-clusters) M, e RP™ and M, e R"™ N +N,=N.

This paper focuses on two hiseding divisive partitioning algorithms which belong to different classs of
methods: K-means is the most popular iterative centroid-based dvisive algorithm; PDDP is the latest
development of SVD-based partitioning techniques. The specific algorithms considered herein are now

recalled and briefly commented. In such algorithms the definition o “centroid” will be used extensively;
specifically, the centroid of M, say w, is given by

w—%ZN:xj , D

j-1
where X; isthej-th column of M . Similarly, the centroids of the sub-clusters M, and M., say w_ and

W, are computed as the average value of their columns.

Biseding K-means
Step 1 (Initialization). Randomly seled a point, say ¢ € R"; then compute the centroid w of M, and

compute ¢, € R” as ¢, =w—(c_ —W).




Step 2 Divide M =[x, X,,...,X, ] into two sub-clusters M, and M ., according to the following rule:

{xi eM, it [x-cf<[x

X eMy it [x —c|>[x i
Step 3. Computethe centroidsof M| and M, w,_ and w;.

Step 4 If w, =c,_ and w, =c,, stop. Otherwise, let ¢, =w,_, ¢, :=w, andgo back to Step 2

The algorithm above presented is the biseding version o the general K-means algorithm. This bisecting
algorithm has been recently discussed and emphasized in [SKV0Q] and [WW+97]. It is here worth naing
that the algorithm abowve recalled is the very clasdcal and basic version o K-means (except for a slightly
modified initialization step), also known as Forgy’ s algorithm ([F65], [GJXR6]). Many variations of this basic
version of the algorithm have been proposed, aiming to reduce the computational demand, at the price of

(hopefully little) sub-optimality.

PDDP

Step L Compute the centroid wof M .

Step 2 Compute the auxiliary matrix M as M =M —we, where e is a N-dimensional row vedor of ones,

namely e=[11111,..1].

Step 3. Compute the Singular Value Decompositions (SVD) of M, M=USVT, whee X isa diagonal
px N matrix, and U and V are orthonormal unitary square matrices having dmension px p and
N x N, respectively (see[GV96] for an exhaustive description d SVD).

Step 4. Take the first column vector of U, say u=U,, and divide M =[x,,x,,...x, | into two sub-clusters
M, and M, according to the following rule:

xeM_ if u'(x-w<0
x eM, if u"(x -w)>0

The PDDP algarithm, recently proposed in [B98], belongs to the class of SVD-based data-processng
algorithms ([BDO95], [BDJ99]); among them, the most popular and widely known are the Latent Semantic
Indexng algorithm (LSl — see [A54], [DD+9Q]), and the LSI-related Linear Least Square Fit (LLSF)
algorithm ([CY95]). PDDP and LSl mainly differ in the fact that the PDDP splits the matrix with an
hyperplane passng through its centroid; LSI through the origin. Another major feature of PDDP is that the

SVD of M (Step 3) can be stopped at the first singular value/lvedor. This makes PDDP significantly less
computationall y-demanding than L SI, especialy if the data-matrix is garse and the principal singular vector
is calculated by resorting to the Lanczos technique ( [GV96], [L50Q]).

The main dfference between K-means and PDDP is that K-means is based upan an iterative procedure




which, in general, provides different results for different initializations, whereas PDDP is a “one-shot”

algorithm which provides a unique solution, given a data-set. In arder to understand better how K-means and

PDDP work, in Fig.1a and Fig.1b the partition o a generic matrix of dimension 2x 2000 provided by K-

means and PDDP, respectively, is displayed. From Fig.1, it is easy to see how K-means and PDDP work:

¢ thebiseding K-means algorithm splits M with an hyperplane which passs through the centroid w of M,
and is perpendicular to the line passng through the centroids w, and w, of the sub-clusters M, and
M. Thisis due to the fact that the stopping condtion for K-means iterations is that each element of a
cluster must be closer to the centroid o that cluster than the centroid of any other cluster.

o PDDP splits M with an hyperplane which passes through the centroid w of M, andis perpendicular to the
principal direction o the “unbiased” matrix M , which is the trandated version o M, havi ng the origin
as centroid. The principal direction of M isitsdiredion of maximum variance (see[GV96)).

It isinteresting to note that the results of K-means and PDDP are very close, even if the two algorithms differ
substantially (a theoretical explanation d this fact is given and discussed in [SB0OQ]).

K-means and PDDP algorithms, however, provide a solution only to the first sub-problem of biseding
divisive partitioning: how to split a cluster. The problem of selecting which cluster is the best to be split is
left untouched. Thiswill be the topic of the foll owing Section.

Bisecting K-means partition PDDP partition
15 15
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Fig.la. Partitioning line (bdd) of bisecting K-means Fig.1b. Partitioning line (bad) of PDDP algorithm. The
algorithm. The bullets are the centroids of the bullet is the cetroid of the data set. The two

data-set and of the two sub-clusters. arrows show the principal diredion of M .

3. Seleding the duster to split

The problem of sdeding the cluster to split in divisive clustering techniques has received so far much less
attention than what it deserves, since it may have a remarkable impact on the overall clustering results. In the
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rest of this sction a brief overview on the eisting approaches will be given in Subsection 3.1; a new method
for cluster sdedion will be presented in Subsection 3.2, and dscussed in Subsection 3.3.

3.1. Seleding the duster to split: a quick overview

Thefollowing three approaches are typicall y used for the seledion of the cluster to split ([JD88)):
(A) complete partition: every cluster is glit, so dotaining a complete binary tree
(B) the cluster having thelargest number of elementsis 9lit;

© the cluster with the highest variancewith respect to its centroid
13 2
a(M) =<3 [x; - w] (2)
j-1

is glit (wisthe centroid of data-matrix of the cluster, X its j-th column, | is the Euclidean norm).

The abowe criteria are extremely simple and raw. Criterion A) isindeed a "nornchaice’, since every cluster is
split: it has the advantage of providing a complete tree, but it completely ignores the isaue of the quality of
the clusters. Criterion B) is also very simple: it does not provide a complete tree, but it has the advantage of
yielding a “balanced” tree, namely a tree where the leaves are (approximately) of the same size. Criterion C)
is the most “sophisticated”, since it is based upan a simple but meaningful property (the "scatter") of a

cluster. Thisisthereason why C) is the most commonly used criterion for cluster sdedion.

15 ‘ ‘ 15 ‘ ‘

N=2000; (M)=0.53 N=1000; &(M)=0.10

0.5

0.5
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Fig.2a. A data-set with 2000 data-points. Fig.2b. A data-set with 1000 data-paints.

The main limit of the abowve criteria can be pictorially described with a naive example. In Fig.2 two data-sets
are displayed: thefirst isamatrix of size 2x2000 (Fig.2a); the second is a matrix of size 2x1000 (Fig.2b). By
inspecting the two data-sets, it is apparent that the best cluster to split is the second ane: it is inherently

structured into two sub-clusters. Both criterion B) and C), however, would suggest the first one as the best



cluster to split: it has the largest number of data-paints, and the largest variance («(M) = 0.53 for the first
data-set, and «x(M ) = 0.10 for the second chta-set).

It isinteresting to doserve that the main limit of criteria A)-C) is that they completely ignore the “ shape” of
the cluster, which is known to be a key indicator of the extent to which a cluster is well-suited to be

partitioned into two sub-clusters. This $mple but crucial observation, however, deserves ome additional

comments:

¢ taking into account the “shape’ of the cluster is a difficult and dlippery task, which inherently requires
more computational power than the computation of the simple criterion (2). Henceforth, in
computationall y-intensive applications the simplicity of criteria A)-C) can be attractive; however, in
many applications characterized by a comparative small number of data-points (N) and features (p), a
better criterion than A)-C) would be appeali ng.

o taking into account the “shape’ of the cluster requires a wise balancing between an appli cation-specific
approach, and a multi-purpose approach. If the criterion is too application-specific it can only be helpful

for that application. If too generic (as A)-C) are), it cannot provide high clustering performance.

3.2. Seledaing the duster to split: a new method

Consider a cluster M =[x,,X,,....x, Je R*", its centroid w, and the vedor u (lu] =1) which defines the

diredion along which the cluster should be split, namely:

xeM_ if u'(x-w<0
x eM, if u"(x -w)>0

Both in biseding K-means and PDDP the partition rule is completely described by w and u. Specifically, in
K-means u = (c; —c,)/|c; —c_|, andin PDDP, u is the principal eigenvedor of M =M —we.

The new criterion we propose can be computed as foll ows:

e Project thepointsof M| and M, along the line passng through the centroid, having the direction o u:
M/ =u"(M_-w-€), My =u"(M,—w-€). (3
M, and M, arerow vedors having the same number of data-pointsof M and M , respectively.
Theelementsof M, are <0; theelementsof M are>O0.

e Normalize M| and M, so that they both rangefrom O to 1:

M/ =M/, /min(M,), M, =M_/maxM ).

e Compute (1,1, ) and (I .. 1) as:




(I mL’ICL)_[ WL)21kiZL:(ML‘j 7W|_ 2}1 (I mR!ICR)_[(WR)21kiZR:(MRj - ~R)2j1

R 1
where W, and W, arethe centroidsof M|, and M/, k_and k. arethe dimensionsof M, and M.,
M/, and M, arethej-th dlementsof M, and M, respectively.

Compute(1,,,1.)=(05(,, +1,:),05(, +1x))

Compute the criterion, denoted ¥ (M), as:

y(M)—I'—°. (4

m

If M, and M, aretwo clusters, and y(M,) <y(M,), M, is more suited to be partitioned than M, .

Note that the meaning of (M) is intuitive; it is the ratio between the average variance of l\ﬁL‘ and l\ﬂ

around their centroids, and the average squared values of their centroids. l\ﬁL‘ and l\ﬂ are the normalized

sub-clusters M| and M, projected along the line passng throughthe centroid with drection u.

3.3. Discusson

The method for cluster seledion presented above can be briefly commented as follows:

Note that neither the scatter of M (given by (2)) nor the distance between the centroids of its sub-clusters
provide useful information about the shape of the data-set M. Indeed, the ratio between scatter and
centroid distance is the indicator that really matters. Indeed, if (M) is gnall, the cluster is expected to

be constituted by two clearly separated sub-clusters, since their scatter is gnall with respect to their

centroids distance. On the other hand, if y(M) is large, the cluster cannot be clearly partitioned, since

the two sub-clusters are close and scattered. Criterion (M) hence is expeded to be a concise but good

indicator of the shape of the cluster.

Indicator (4) summarizes the properties of the cluster projected along a 1-dimensional line (defined by

u). Of course, thisis a limitation with resped to a p-dimensional shape analysis of M. However, note that

this provides the best compromise between computational complexity and shape-information, since u is

the direction o maximum variance of the cluster (this property holds only approximately for K-means -

see [SBOQ]).

At afirst glance, the fact that M must be split in arder to compute ¥ (M) may appear nonsensical: indeed

theroleof y(M) istotdl uswhich cluster must be split. Thisissue deserves £me comments:

- asaready said, the calculation of a shape-indicator for M is inherently a computational-demanding
task. However, among the many diff erent ways of daing this, (M) has the mgjor advantage that, if

M is slected, no additional computation are required. Note that this is not guaranteed for a generic




shape-indicator (in ather words, the dforts gent to compute ¥ (M) can be somehow "recycled").

- if the bisecting clustering recursive procedure is sopped when the data-set has been partitioned into

K sub-clusters, it is easy to see that the computation d (M) has required K-1 "usdess' biseding

partitions. However, note that this has little impact on the overall computational balance, since such
partitions are made at "leaves-level" (namely they are partitions of small clusters). Low-level

partitions are known to be much lessdemanding than high-level partitions.

The shape-indicator (4) can be given a simple but interesting gaphical interpretation. On the 2-
dimensional space where the abscissae is given by the average centroid distance from the splitting line
(1,), and the ordinate is given by the average scatter of the sub-cluster (1.), (M) is the slope of the

line pasgng through the origin and the point (| ). The smaller this dope s, the more suited M is to

m’lc

be split. Moreover, it can be proven that, whatever M is, the paint (| ) lies within a compact convex

m? Ic
2-dimensional interval bounded by the lines | =0 and I =./I, — I, (and 0<1, <1). This domain is
depicted in Fig.3 (the computation o thisis non-trivial; it is extensively described in [S0Q]).

0.25

vy T

..
*e
.

.
01
.

|
0.05fs
:

1 ..'.
Best cluster k 3
1 to split

Fig.3. Domain of points (1, ,1.).

In Fig.4 the paints (| ) computed for the data-sets displayed in Fig.2a and in Fig.2b are depicted. It

mole
is easy to seethat the criterion (4) makes the "right" choice (it indicates the data-set in Fig.2b as the most
suitable data-set to split).

Criteria (M) (eg. (2)) and y(M) (eq. (4)) can hardly be compared, since they are substantially
different. However, aroughidea of the diff erence between these two criteria can be obtained as foll ows.
Consider theindex «' (M), defined as the variance (scatter) of M projected onto a line of direction u,

and asaume that M is ymmetric with resped to the splitting hyperplane (the hyperplane passng through



w and perpendicular to u). Henceforth, v:=min(M, ) = max(M ) . Under these assumptiors, it is easy to
see that the variance of M ' (the projedion of M along u) is equal to the sum of the variance of M|, the
variance of M, and the squared distances of the centroids of M| and M, from the centroidof M'.

Given the definitionsof | and I, «' (M) can betherefore re-written as:
o' (M)=2v(l,+1.). (5)

Equation (5) is interesting since (even if it holds under some restrictive assumptions) provides a

relationship between ¥ (M) and a performance index (o' (M) )closdy related to (M) .

Fig.5 depicts the paints (| ) (indicated with symbol ) and (21, ,2V°1 ) (indicated with symbol m)

m? Ic
computed for the data-sets displayed in Fig.2. It is interesting to see that the criterion (5) sorts the points
according to lines having a slope of -45°. Note that they are almost orthogmal to those of criterion (4).
Accordingto (5), it is easy to see that the data-set in Fig.2ais the most suitable data-set to split (which is
the "wrongd' choice, as already remarked at the beginning o this Section).

0. T

02l Data-set
of Fig.2a

Best cluster to split
0.1H accordingto (M) 4

Datarset
of Fig.2b

0 I I I I I I I ! I
0 0.1 0.2 0.3 04 05 06 0.7 08 09 Im 1

Fig.4. Points (1 ,1.) computed for the data-sets displayed in Fig.2aand in Fig.2b.

0.25

0.2

Data-set
of Fig.2a

|
0.1f/

Best cluster to split
acording to

~

Data-set
of Fig.2b

I \ I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Im 1

) (indicated with symbol ) and (27| " 271 <) (indicated with symbol ®) computed for the data-
sets displayed in Fig.2aand in Fig.2b.

Fig.5. Paints (|

m'Ic
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4. Experimental results

In this sdion, the seledion method proposed in Section 3 will be experimentally tested ona set of real data.
This will be dore in Subsection 4.2. In Subsection 4.1 a key prdiminary isaue will be discussed: how to
evaluate the performance of a clustering process

4.1. Performance evaluation

When a new clustering algorithm or a modification of an existing algorithm is proposed, a crucial problem is
to understand if, and to which extent, this algorithm provides better performance. This is a very subtle and
dippery problem, which, unfortunately, is usually glossed over or de-emphasized. The goal of this
subsection is to present a framework for this problem, and to propose a way of measuring the quality of a

clustering process

J— Pre-processed
Matrix of matrix (after
ol et
selection numboers i iltering,
DATA- processing "cleaning’, &tc)
SET
L iml
"Human" Clustering
expert algorithm
0 e
INTERNAL
quality
. evaluation
Partition Partition
made by made by
expert algorithm

EXTERNAL
quality
evaluation

Fig.6. Internal and external quality evaluation.

Any clustering process can be naively described as in Fig.6. The starting point is a set of raw data to be
clustered, which are transformed into a matrix of numbers (for the sake of simplicity, we make this
restrictive assumption; partitioning methods which do not pass through the conversion into a matrix of

number also exists) . Two different paths can be foll owed:

e Theclustering is done by a human expert. Typically, it is assumed that the partition made by a human
expert is the "corred" partition; obviously, the problem is that a human expert can processonly a small

amount of data, and that the "expert-evaluation" varies from person to person.

e The partition is done automatically by a clustering process An automatic clustering procedure has
the advantage of being able to processhillions of data-points; its limit is that it can provide results, which
do not make sense to a human expert. Usually, the automatic-clustering processis constituted by three

sub-steps: the features selection, the pre-processing, and the application o a clustering algorithm.
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The evaluation o the results abtained by an automatic clustering procedure can be dore in two different

ways (see Fig.6):

o Evaluation of the external quality. In this case, an automatic clustering procedure is assumed to be

godd if it provides the same partition yielded by a human expert. A figure of merit for the eternal
quality of the partition hence is a measure of "distance" between the expert-generated and the algorithm-

generated partitions. Entropy ([BG+00a]) is awidely used measure of external quality.

o Evaluation of the internal quality. In this case, no expert-generated partition is assumed to be

available, nor external information. In this case, only the clustering algorithm (nat the entire clustering

process including feature seledion and pre-processng) is evaluated.
Merits and pitfalls of internal and external figures of merit can be summarized as foll ows:

¢ Maximizing the eternal quality is the final goal in any clustering practical application. As a matter of
fact the results obtained by the automatic clustering procedure must be validated by a human expert, in
order to be meaningful and actionable. The main limit of external quality evaluation is that it is
"subjedive’, since it is grongly dependent on a human-driven clustering process and on human-driven
steps like features wlection and pre-processing External quality indices hence must be used when
dealing with a specific application. External quality instead can be strongly misleading when the goal is
ageneral quality assessment of a clustering algorithm.

e Usinginternal quality is the best way of measuring the performance of clustering algorithm. Obviously,
high internal quality of the algorithm cannot guarantee goad results of the overall clustering processin a

specific application, since such results also depend on critical steps like features sdedion and

preprocessing.
In this paper we have proposed a general method for improving the performance of bisecting divisive
clustering algorithms. This result is general, purdy algorithmic, and it is not linked to any specific
application. The natural way of evaluating this method henceisto useaninternal quality index.
Given the K matrices {M,,M,,...,M, }, which constitute a partition of the data-matrix M, the internal quality

of the partition can be measured according to the following performance index (see eg. [JMF99], [SI84],
[SKVO0Q)):

I M, M) = Sl S w e T ®

XeMy XeMy XeMy
where W,,W,,..W, arethe centroids of {M,,M,,...,M, }, and x is thei-th column of M. Note that (6) is a

measure of cohesiveness of each cluster to its centroid: the smaller J(M,,M,,...,M, ) is, the better is the

partition. This way of measuring the quality of a partition is, however, raw and incomplete. To understand
better how an accurate measure of quality should be designed, the general standard definition o a clustering
problem is worth to be recall ed.
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Definition of an unsupervised clustering problem

Given a matrix M, the unsupervised clustering o M into K sub-matrices consists in partitioning M into
M M, M (M, AM, =@ if i =], UM, = M), without a-priori or external information, in arder to
maximize the similarity among the dements of each sub-matrix (intra-similarity), and to minimize the

similarity among dements of different sub-matrices (inter-similarity).

Note that, acoording to the above definition, the performance index (6) is incomplete: it only evaluates the
"intra-similarity”, without paying attention to "inter-similarity”. Given M and {Ml,Mz,...,MK}, a more

sophisticated performance index can be computed as foll ows.

o Compute the scatter, say {sl,sz,...,sK}, of each sub-matrix about its centroid. In the scatter the

information about "intra-similarity” is condensed. The scatter s of M, isdefined as:
13 2

S 3M, ?
K =

where w; isthecentroid of M., k; isthe number of columnsof M;,and M, ; isthej-th column o M,.

e Compute the distance, say {d,,d,,....d, }, of each sub-matrix from the the others. In d, the information
about the "inter-similarity” of M, with resped to the rest of the partition is condensed. The distance d,

can be defined as foll ows:

d, = min(d,) , where d, = rrhlikn(”Mi M) ihk=12..K, (8)
J , , ,

where | -| is the Eucli dean norm applied to the columns of matrices (notethat d; is the inter-cluster

distance used in "sing e-linkage" agglomeration methods) .

o Computetherdative weight, say {51,52,...§K}, of each sub-matrix. It can be defined as foll ows:
P ©)
where k; isthe number of columnsof M,,and N =) k .

e Computethe performance index Q(M,,M,,....M, ) asfollows:

QM M, M)=>5 (10)

K
1 i

o

Thesmaler Q(M,,M,,....M, ) is, the better the partition.

Performance index (10) is very intuitive: it is the weighted average (the weights being the rdative size of
each matrix) of the ratio between scatter and distance. Note that (10) improves (6) since it takes into account

the "inter-similarity” among sub-matrices (according to the definition of a clustering problem) and also
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weights the "importance” of eacdh cluster. In therest of this section (10) wil | be used.

We conclude this subsedion with aremark. It is worth pointing aut that clustering M by dired minimization
of QM,,M,,...M,) (or J(M;,M,,...M,)) would be conceptualy, the best clustering method.
Unfortunately, the minimization o Q(M,,M,,...,M, ) requires exhaustive search which is exporential in
time with resped to the number of data-points. Note that the clustering algorithms which have been proposed
in the literature (including K-means and PDDP) can be interpreted as alternate ways of tackiing the problem

of minimizing Q(M,,M,,...,.M, ). All of them provide a solution with a reasonable computational effort, at

the price of some sub-optimality.

4.2. A numerical example

The goal of this subsedion is to test the effectiveness of the method for the selection o the cluster to split,
presented in Section 3. The method will be tested both on biseding K-means and PDDP, and the results will

be evaluated according to the performance index (10).

Variable | Variabledescription
1 Mg or-axis diameter (in arcseconds) from O plate image
2 Integrated magnitude from O plateimage
3 Magnitude from O plate image using D-M relation for stars
4 Mg or-axis position angle (N to E) from O plateimage
5 Ellipticity from O plate image
6 Second Moment of O plateimage
7 Percent saturation of O plateimage
8 Average transmittance of O plate image
9 Mean surface brightness (in mag/asec™2) of O plate image
10 Effective (haf-light) radius from O
11 C31 concentration index from O plate. Theratio o the 100% light radius to 509 li ght radius
12 C32 concentration index from O plate. Theratio o the 100% light radius to 75% li ght radius
13 C21 concentration index from O plate. Theratio o the 75% light radius to 50% light radius
14 Mg or-axis diameter (in arcseconds) from E plate image
15 Integrated magnitude from E plate image
16 M agnitude from E plate image using D-M relation for stars
17 Mg or-axis position angle (N to E) from E plate image
18 Ellipticity from E plate image
19 Second Moment of E plate image
20 Percent saturation of E plate image
21 Average transmittance of E plate image
22 Mean surface brightness (in mag/asec™2) of E plate image
23 Effective (haf-light) radius from E
24 C31 concentration index from E plate. Theratio o the 100% light radius to 50% li ght radius
25 C32 concentration index from E plate. Theratio o the 100% light radius to 75% li ght radius
26 C21 concentration index from E plate. Theratio o the 75% light radius to 50% light radius
27 E(B-V) determined by bilinear interpolation of Burstein & Heiles [1982] extinction estimates.
28 E(B-V) determined from Schlegel, etal [1999 extinction estimates.
29 O and E imgpars flags (10* Oflag + Eflag).
30 O-E color of the object computed using intergrated magnitudes.
31 O-E color of the object computed using D-M relation magnitudes.
32 Estimated local surface density of MAPSNGP galaxies (in ga axies/degree*2)

Table 1. Features description.
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The data-set we have used as a benchmark is a 32x160@ matrix, built from 160000bjeds extracted from a
database of the University of Minnesota, consisting in a MAPSNGP catalog of galaxies images on POSS |
(Palomar Observatory Sky Survey) plates within 30 degrees of the North Galactic Pole. The list of the 32
features condensing the information embedded in each image is listed in Table 1. Each feature has been
normalized within the range [-1;+1]. Since our goal here is internal-quality evaluation, no further details on

the data-set will be given. Detail ed information on the data can be found in [C99], [PH+93], or at the URL
http://lua.stcloudstate. edu/~juary.

15 :

T T T

Quality Q of partition (better partition for lower values of Q) - Bisecting K-means

1.3

0.8 1 L 1 1 1
50 100 150 200 250
Number K of sub-clusters

Fig.7. Interna quality evaluation of a partition obtained using hiseding K-means and seledion methods (a)-(c).

15 T T

T T
Quality Q of partition (better partition for lower values of Q) - PDDP

0.8 I I I I I
50 100 150 200 250
Number K of sub-clusters

Fig.8. Interna quality evaluation of a partition obtained using PDDP and sel edion methods (a)-(c).
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Using the above 32x16000 matrix, three clustering experiments have been dore, both for K-means and
PDDP. The three experiments only differ on the method used for the selection o the cluster to split, namely
(see Subsection 3.1):

Method (B): the cluster characterized by the largest number of elementsis lit;
Method (C): thecluster characterized by the largest scatter is 9lit;

Method (D): the cluster characterized by the lowest value of ¥ (see (4)) is lit, within the set of the 10

clusters having the largest number of elements.

The clustering procedure has been applied iteratively, and stopped when the number of 256 sub-clusters has
been reached. After each step, the quality of the partition has been evaluated using (10). The results are
displayed in Fig. 7 (partition made using bisecting K-means) andin Fig.8 (partition made using PDDP).

By inspecting the results displayed in Figs.7-8, the following can be said:

¢ Both for K-means and PDDP splitting algorithms, the method (D) for cluster seledion autperforms the
traditional methods (B) and (C). The worst performanceis, in both cases, achieved by method (B).

o PDDP seans to take more advantages by method (D) than K-means. Probably this is dueto the fact that,
on this particular set of data, K-means provides better performance than PDDP. The posdble

improvements hence are more limited.

Even if these results refer to a specific set of data, they are expected to be quite general, since an internal
quality of index has been used. Internal indices are known to be much lessapplication-sensitive than external

indices. The cluster seledion based upan ¥(M) hence seams to be an effedive method to improve the

performance of biseding divisive clustering algorithms.

5. Conclusions

In this paper the problem of clustering a data-set is considered, using the bisecting divisive partitioning
approach. This approach can be naturally divided into two sub-problems: the problem of choosing which
cluster must be divided, and the problem of splitting the seleded cluster. The focus here is on the first
problem. A new simple technique for the sdedion d the cluster to split has been proposed, which is based
upan the shape of the cluster. This result is presented with reference to two specific splitting algorithms: the
celebrated biseding K-means algorithm, and the recently proposed Principal Diredion Divisive Partitioning
(PDDP) algorithm. The problem of evaluating the clustering performance has been discussed, and atest ona
set of real data has been dore.
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